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ABSTRACT

We describe a new finite element method (FEM) to construct continuous equilibrium distri-

bution functions (DFs) of stellar systems. The method is a generalization of Schwarzschild’s

orbit superposition method from the space of discrete functions to continuous ones. In contrast

to Schwarzschild’s method, FEM produces a continuous DF and satisfies the intra-element

continuity and Jeans equations. The method employs two finite element meshes, one in con-

figuration space and one in action space. The DF is represented by its values at the nodes

of the action-space mesh and by interpolating functions inside the elements. The Galerkin

projection of all equations that involve the DF leads to a linear system of equations, which

can be solved for the nodal values of the DF using linear or quadratic programming, or other

optimization methods. We illustrate the superior performance of FEM by constructing ergodic

and anisotropic equilibrium DFs for spherical stellar systems (Hernquist models). We also

show that explicitly constraining the DF by the Jeans equations leads to smoother and/or more

accurate solutions with both Schwarzschild’s method and FEM.

Key words: methods: numerical – galaxies: elliptical and lenticular, cD – galaxies: kinematics

and dynamics – galaxies: structure.

1 IN T RO D U C T I O N

For over three decades, Schwarzschild’s (1979) orbit superposition

method has been one of the most important numerical tools for mod-

elling the equilibrium states of spherical (Richstone & Tremaine

1984), axisymmetric (Thomas et al. 2004) and triaxial galaxies

(van den Bosch et al. 2008 and references therein). Schwarzschild’s

method constructs discrete phase-space distribution functions (DF)

and works even if the gravitational potential supports chaotic orbits

(e.g. Capuzzo-Dolcetta et al. 2007). Observational constraints can

also be incorporated, in particular on the surface brightness or the

line-of-sight velocity distributions. Schwarzschild’s basic assump-

tions were: (i) the amount of mass contributed by an orbit to a

cell/element in the configuration space is proportional to the frac-

tion of time spent by that orbit inside the element; (ii) the matter

density and velocity distribution inside each element are constant;

(iii) the DF is non-zero only on a subset of phase space with mea-

sure zero (except perhaps in some cases where the potential admits

large-scale chaos). In particular, if all orbits are regular the DF is

discrete, i.e. non-zero only at a finite set of positions in action space.

Despite its central role in modelling galaxies, Schwarzschild’s

method has several shortcomings. (i) There is no mathematical

proof that increasing the number of elements and orbits in this

scheme will guarantee the convergence of the coarse-grained DF

⋆E-mail: mjalali@sharif.edu (MAJ); tremaine@ias.edu (ST)

to a smooth function. (ii) In practice, Schwarzschild models often

converge rather slowly, in part because of the inverse square-root

singularity in the density contributed by an orbit near a turning

point. (iii) Working with discrete DFs is not ideal if we require their

derivatives for linear stability analysis, or use them to set initial

conditions for N-body simulations.

The majority of these limitations can be removed if one extends

the method from the space of discrete functions to a more general

continuous class. This is a problem in galactic dynamics whose

solution is overdue, and we aim to solve it using a modified finite

element method (FEM). Essentially, we replace the finite set of delta

functions in action space that represent the DF in Schwarzschild’s

method by a piecewise continuous function; the FEM can also be

generalized to construct differentiable DFs but we do not describe

this extension in the present paper.

The mathematical principles of FEM are rather simple. Assume

a general governing equation

A[u(x, t)] = 0 (1)

for the physical quantity u(x, t), with A being a partial integro-

differential operator, and seek the solutions in terms of the coor-

dinates x and the time t. An approximate solution of (1) may be

expanded as the series

u(x, t) =
jmax
∑

j=1

uj (t)ψj (x), (2)
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where ψj (x) constitute a complete set of basis functions that satisfy

any given boundary conditions. Substituting (2) into (1), multiplying

both sides of the resulting equation by ψj ′ (x) and integrating over

the x domain result in
∫

ψj ′ (x)A[u(x, t)]dx = 0, j ′ = 1, 2, . . . , jmax. (3)

This is called the weighted residual form, weak form or Galerkin

projection of the governing equation (1), from which one may com-

pute the unknown functions uj(t). Here, the basic assumption is that

if the equations (3) are satisfied for all j′ then equation (1) is also

satisfied to an adequate degree of approximation.

It is, however, a non-trivial and sometimes impossible task to

find suitable basis functions that (i) satisfy all boundary conditions,

(ii) make a complete set, (iii) do not contribute noise when the

solution is changing rapidly. Moreover, the integration over the

spatial variables is expensive if the domain of each basis function is

the entire x-space. One can overcome these difficulties by dividing

the x-space into N finite elements. The union of elements, each of

volume Vn, is the entire x domain. Each element contains Nd nodes

on its boundaries or in its interior. The function u is approximated

inside the nth element as a weighted sum of smooth shape functions

ψ̂nj (x); these are defined only within element n and are zero at all

nodes except node j of bin n, where they are unity. The weights unj

are time-dependent and are chosen to fit the unknown value of u at

the nodes. The determining equations of the weights are
∫

Vn

ψ̂n′j ′ (x)A[u(x, t)]dx

=
∫

Vn

ψ̂n′j ′ (x)A

[

∑

n,j

unj (t)ψ̂nj (x)

]

dx = 0,

n′ = 1, 2, . . . , N, j ′ = 1, . . . , Nd.

(4)

This procedure, which leaves us with a system of ordinary integro-

differential equations for the weights ujk(t) (the nodal values of u),

is called the FEM (Zienkiewicz, Taylor & Zhu 2005).

For example, when the operator A has the form Au = ∂u/∂t +
Lu with L(t) a linear operator, the weighted residual form takes a

simple matricial form

d

dt
u(t) = A(t) · u(t) + F(t), (5)

where the matrix A(t) is the projection of the operator −L and F(t)

is a forcing vector. The vector u(t) contains nodal values of u(x, t).

Therefore, the combination of finite elements and Galerkin projec-

tion reduces an infinite-dimensional partial differential equation to

a finite-dimensional system.

A formulation of FEM for stellar systems was presented in

Jalali (2010), where the perturbed collisionless Boltzmann equa-

tion (CBE) was reduced to a form like (5) and solved over a range

of finite ring elements in the configuration space. That analysis,

however, cannot be directly used to construct equilibrium DFs be-

cause they are not unique: according to the Jeans theorem, any

DF f that depends on phase space coordinates only through the

integrals of motion I is an equilibrium solution of the CBE. Conse-

quently, the local variation of f in the I-space is free. This implies

non-uniqueness, and f can admit discrete, piece-wise continuous,

continuous and differentiable solutions.

In this paper, we develop a general method to build numerical

DFs that exhibit nice properties of differentiability within each

element and continuity across elements. After defining the problem

in Section 1.1, in Section 2 we discuss finite elements, interpolation

functions, and their properties in both the configuration and action

spaces. In Section 3, we obtain the Galerkin projections of velocity

moments, and the continuity and Jeans equations. Schwarzschild’s

method is derived as a special case of FEM in Section 4, and finite

element models of spherical systems are discussed in Section 5.

We apply the FEM to the spherical Hernquist model in Section 6

and Section 7 contains a discussion of our results. The reader who

would like to see a direct comparison of the two methods can turn

to Fig. 3, which shows the ergodic, spherical, Hernquist model: the

errors in the FEM model on the left are about five times smaller

than the errors in the Schwarzschild models on the right.

1.1 Equilibrium stellar systems

The DF of a collisionless system in dynamical equilibrium depends

on the position x = (x1, x2, x3) and the velocity v = (v1, v2, v3)

vectors only through the integrals of motion.

Integrable systems. The Hamilton–Jacobi equation is separable

in spherical systems, razor-thin axisymmetric discs and triaxial sys-

tems in which the potential is of Stäckel form. Orbits in these

systems are regular, and can be represented using a suitable action

vector J = (J1, J2, J3) and its associated angle variables w = (w1,

w2, w3). The Hamiltonian function H depends only on the action

vector and the evolution of the angle variables is linear in time:

w(t) = Ωt + w(0), Ω( J) =
∂H

∂ J
, (6)

where Ω = (�1, �2, �3) is the vector of orbital frequencies. The

actions are isolating integrals of motion, so any DF of the form

f ( J) defines a possible equilibrium stellar system. For separable

systems, the actions can be computed by quadratures. In this study,

we focus on building equilibrium models of stellar systems with

integrable potentials.

Non-integrable systems. Generic axisymmetric or triaxial poten-

tials are not integrable. There are surviving invariant tori of regular

orbits (cf. KAM theory) but these are separated by chaotic layers.

If the chaotic layers are narrow (the potential is ‘nearly integrable’)

the DF may be assumed to be zero in the chaotic phase subspace and

written as a function of the actions in the regular phase subspace.

However, the actions must then be calculated either using canonical

perturbation theory or by generating a frequency map of the system

(Laskar 1990; Hunter 2002; Binney & Tremaine 2008).

A simpler and more powerful approach, which can be used even

if the potential is far from integrability, is to express the integrals

of motion in terms of initial conditions of orbits (Schwarzschild

1979). Thus, let [x0(x, v), v0(x, v)] be the position and velocity

of the trajectory through (x, v) on some global surface of section

D through which all orbits must pass (e.g. a symmetry plane of a

triaxial potential). Then, any DF of the form f (x0, v0) defines an

equilibrium stellar system.

1.1.1 Moments of the DF

A collisionless system with a given density function ρ(x) is a pos-

sible equilibrium if one can find a DF f ( J) ≥ 0 so that

ρ(x) =
∫

f ( J)dv. (7)

We shall also sometimes use the first- and second-order velocity

moments:

ui(x) ≡ ρ 〈vi〉 (x) =
∫

vif ( J)dv, (8)
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τ ij (x) ≡ ρ〈vivj 〉(x) =
∫

vivjf ( J)dv. (9)

In an equilibrium system these are related by the steady-state con-

tinuity equation

3
∑

i=1

∂ui

∂xi

= 0, (10)

and Jeans equations

3
∑

j=1

∂τ ij

∂xj

= −ρ
∂�

∂xi

, i = 1, 2, 3, (11)

with �(x) being the potential. In systems with spherical symmetry

only the radial and tangential velocity dispersions matter and three

Jeans equations reduce to one.

We shall argue below that including constraints based on the con-

tinuity and Jeans equations can significantly improve the accuracy

of both Schwarzschild and FEM models of stellar systems.

2 FINITE ELEMENTS IN CONFIGURATIO N

A N D AC T I O N SPAC E

We assume that the configuration space has been split into N el-

ements, each of Nd nodes, and that the density ρ(x) is known at

the nodal points. Inside each element, the density function can be

approximated by suitable interpolation (shape) functions. Denoting

ρn(x) as the functional form of the density inside the nth element,

one may write

ρ(x) =
N

∑

n=1

Hn(x)ρn(x), ρn(x) =
Nd
∑

k=1

gk,n(x)ρk,n. (12)

The density at the kth node of the nth element has been indexed by

the pair (k, n). The function Hn(x) is unity inside the nth element

in the x-space and zero outside. The interpolation functions gj,n(x)

have the following properties:

gj,n (xkn) = δjk, j , k = 1, 2, . . . , Nd, (13)

where δjk is the Kronecker delta, and xkn is the position vector of

the kth node of the nth element. Fig. 1 shows some elementary

one-, two- and three-dimensional elements. The rectangular and

brick elements can be distorted to obtain the so-called mapped ele-

ments (Zienkiewicz et al. 2005), which help to reconstruct complex

morphologies in curvilinear coordinates. For instance, elements

confined between confocal ellipsoids and hyperboloids can bet-

ter describe elliptical galaxy models that may have potentials close

to the Stäckel form. Thin rings and spherical shells are the most

efficient elements for axisymmetric discs and spherical systems,

respectively.

Using the superscript ‘T’ to transpose a vector/matrix, we define

the row vector

gn(x) = [ g1,n(x) g2,n(x) · · · gNd,n(x) ], (14)

Figure 1. Elementary finite elements. The degree of interpolating polyno-

mial increases by adding interior nodes, which can lie on the edges, sides or

even inside elements.

and the column vector

bn = [ ρ1,n ρ2,n · · · ρNd,n ]T, (15)

and rewrite the components of ρn(x) in the following compact form

ρn = gn · bn. (16)

Here, a dot denotes matrix/vector multiplication. The above proce-

dure can be readily applied to higher order velocity moments. In

particular, we obtain

ui
n = gn · ci

n, τ ij
n = gn · d ij

n , (17)

where the column vectors ci
n and d ij

n contain, respectively, the nodal

values of ui and τ ij inside the nth element.

To construct a DF f ( J), we divide the action space into M finite

elements, each of Md nodes, and write

f ( J) =
M

∑

m=1

Hm( J)fm( J), fm( J) =
Md
∑

j=1

hj,m( J)fj,m, (18)

where the interpolation functions hj,m( J) satisfy the condition

hj,m( J km) = δjk, j , k = 1, 2, . . . ,Md, (19)

at the action vector J km associated with the kth node of the mth

element in action space. The union of the domains of hj,m covers

the action space. The components of fm can be rewritten in the form

fm = hm · pm

hm( J) = [ h1,m( J) h2,m( J) · · · hMd,m( J) ],

pm = [ f1,m f2,m · · · fMd,m ]T, (20)

analogous to equations (14)–(16).

In this study, we use interpolation functions of C0 class in both the

x and J spaces. The use of C0 functions implies that all physical

quantities are smooth (continuous and differentiable) inside each

element and along its boundary lines. In the direction perpendic-

ular to the boundary lines and at the nodes, the DF, density and

higher-order velocity moments will only be continuous. For ex-

ample, consider the simplest one-dimensional set of C0 elements:

element n has boundaries at xn and xn+1 > xn and has two nodes,

with node 1 at the smaller boundary xn and node 2 at the larger. The

continuity of ρ(x) at x = xn+1 implies ρn(xn+1) = ρn+1(xn+1). Using

(13), this condition reduces to

b2,n = b1,(n+1). (21)

The first derivative of ρn(x) with respect to x exists inside element

n and is given by

∂ρn

∂x
= b1,n

∂g1,n

∂x
+ b2,n

∂g2,n

∂x
, (22)

but the differentiability condition at the nodes of elements is not

necessarily satisfied, i.e.
[

∂ρn

∂x

]

x=xn+1

�=
[

∂ρn+1

∂x

]

x=xn+1

. (23)

One can resolve this problem by applying C1 finite elements. The

application of C1 elements requires larger vectors of nodal quanti-

ties (which should now include partial derivatives), and thus larger

element matrices. In this paper we restrict ourselves to C0 elements;

however, we note that C1 elements provide smoother solutions (at

the cost of larger matrices and greater analytic complexity), and

are likely to be useful when the partial derivatives of f ( J) are also

needed (e.g. in linear stability analyses).
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3 G A L E R K I N W E I G H T I N G O F G OV E R N I N G

E QUAT I O N S

This section implements a Bubnov–Galerkin procedure

(Zienkiewicz et al. 2005) to satisfy the governing equations

of physical quantities (dependent variables) over individual

elements in a weighted residual sense. As a result, independent

variables are eliminated from equations, leaving a system of alge-

braic equations between nodal values of DF, density and velocity

moments. The formulation is done in Cartesian coordinates, and

it should be modified for non-Cartesian ones (see Section 5 for

spherical systems).

3.1 Density and velocity moments

Inside the nth element in the configuration space, equation (7) re-

duces to

Hn(x)ρn(x) =
∫

Hn(x)f ( J)dv; (24)

the presence of Hn(x) on the right side ensures that the integration

is carried out over a phase subspace whose particles visit the nth

element and contribute to the density and velocity dispersion of that

element. By substituting from (16) and (18) into (24) we obtain

Hn(x)gn(x) · bn =
M

∑

m=1

Hm( J)

∫

Hn(x)hm( J) · pmdv. (25)

Denoting ⊗ as the dyadic product, we operate with dx gn(x)⊗ on

equation (25), and integrate the result over the x-domain to get

Gn · bn =
M

∑

m=1

∫∫

dxdvHm( J)

× [Hn(x)gn(x) ⊗ hm( J)] · pm, (26)

with

Gn =
∫

Hn(x)[gn(x) ⊗ gn(x)]dx (27)

being an Nd × Nd constant matrix. The function Hn(x) in the in-

tegrand of (27) restricts the domain of integration to the region

occupied by the nth element. The integral in Gn can be done ana-

lytically should one use interpolation functions of polynomial type.

The transformation (x, v) → (w, J) is canonical and so the

infinitesimal phase-space volume dxdv can be replaced by dwd J .

Furthermore, the vectorial function Hn(x)gn(x) can be expressed

in terms of angle-action variables (Jalali 2010):

Hn(x)gn(x) =
∑

k

g̃k(n, J)eik·w, (28)

with g̃∗
k = g̃−k. Here, the asterisk stands for complex conjugation,

k is a three-vector of integers and i =
√

−1. The row vector g̃k has

the same dimension as gn and it is calculated from

g̃k =
1

(2π)3

∫

Hn(x)gn(x)e−ik·wdw. (29)

When a test particle with the action vector J is inside the nth

element in the configuration space, the function Hn(x) is unity and

that particle contributes to g̃k. In other situations, the integrand of

(29) will vanish.

Using (28), equation (26) is transformed to

bn =
M

∑

m=1

∑

k

∫∫

dwd JHm( J)eik·w

× G
−1
n · [ g̃k(n, J) ⊗ hm( J)] · pm. (30)

It is obvious that only the term with k = (0, 0, 0) ≡ 0 contributes to

the integral over the w-space and equation (30) reads as

bn =
M

∑

m=1

Fe(n, m) · pm, n = 1, 2, . . . , N, (31)

with

Fe(n, m) = (2π)3

∫

d JHm( J)G−1
n · [ g̃0(n, J) ⊗ hm( J)]. (32)

We define

g̃0(i, n, J) =
1

(2π)3

∫

viHn(x)gn(x)dw, (33)

g̃0(i, j , n, J) =
1

(2π)3

∫

vivjHn(x)gn(x)dw, (34)

and repeat the above procedure for the functions Hn(x)ui(x) and

Hn(x)τ ij (x) to obtain

ci
n =

M
∑

m=1

Ue(i, n, m) · pm, d ij
n =

M
∑

m=1

Se(i, j , n, m) · pm, (35)

where

Ue = (2π)3

∫

d JHm( J)G−1
n · [ g̃0(i, n, J) ⊗ hm( J)], (36)

Se = (2π)3

∫

d JHm( J)G−1
n · [ g̃0(i, j , n, J) ⊗ hm( J)]. (37)

The constant element matrices Fe, Ue and Se are of the size Nd ×
Md and there are N × M of them.

To compute g̃k, we simply integrate the equations of motion

corresponding to the action J or the initial conditions (x0, v0) until

the particle enters the nth element at time t1,n and exits at t2,n. We

then calculate the values of the angles at the entry and exit times, w1,n

and w2,n = w1,n + Ω(t2,n − t1,n). We then carry out the integrations

in (29), (33) and (34) using Gaussian quadrature, typically with

8–15 points. The numerical integration of the equations of motion

continues and g̃k is updated every time that the particle enters

element n, until the trajectory closes on itself for periodic orbits

or becomes dense in the w-space. The only extra effort of this

procedure compared to Schwarzschild’s method is to perform the

integrals over angle variables. In Section 3.3, we show that one can

avoid this numerical integration for separable models.

There are additional constraints associated with the element equa-

tions (31) and (35) at a node shared by several elements, since a

physical quantity must have the same value in the Galerkin projec-

tions of all those elements. In fact, one can introduce N t-dimensional

column vectors b, ci and d ij that contain all nodal densities and first-

and second-order velocity moments, and because nodes are shared

the dimension N t < N × Nd. Similarly, the nodal DFs constitute an

Mt-dimensional column vector p where Mt < M × Md is the total

number of distinct nodes in the J-space. Equation (31) can thus be

written as

b = F · p. (38)

This matrix equation can be solved to yield the DF, as parametrized

by its nodal values p. The rank of the matrix F is generally less than

its dimension N t, and there are additional constraints that the DF

should be non-negative, so in either Schwarzschild’s method or the

FEM the solution must be sought by linear or quadratic program-

ming (QP) or some other optimization method (see Section 3.4).
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Once the solution is known, the nodal values of the streaming ve-

locity and velocity-dispersion tensor are obtained from equations

(35), which can be written as

ci = U(i) · p, d ij = S(i, j ) · p. (39)

The N t × Mt constant global matrices F, U and S are generally

dense.

Assembling the element equations is the most important step in

finite element analysis, and we explain this step for equation (38).

Based on the generated FEM mesh, we first determine N t and Mt

(counting only once nodes shared by several elements), allocate

the N t × Mt dimensional matrix F and initialize it to zero. Within a

nested loop over n and m, the labels of the elements in configuration

and action space, the matrices Fe(n, m) are then computed and

inserted in the global matrix F through the following algorithm:

we find the location of ρ i,n in b, and the location of f j,m in p,

and denote them by I(i, n) and J(j, m), respectively. These integer

numbers depend on the global numbering of nodes. We then add

Fe(n,m) to F using

FIJ = FIJ + Fij ,e(n, m), (40)

where FIJ and Fij,e are, respectively, the elements of F and Fe(n, m).

The element FIJ in the global matrix will be incremented more

than once if the pair (I, J) denotes a node that is shared between

neighbouring finite elements. As the matrix F is assembled, b is also

altered and its components bi (1 ≤ i ≤ N t) are eventually multiplied

by ns(i), which is the number of spatial bins that share the ith node.

After assembling F, we thus divide its ith row by ns(i) and transform

b to its original form. This procedure is applied to all systems of

element equations that we derive in this study.

3.2 Continuity and Jeans equations

The accuracy of FEM models of equilibrium stellar systems can

be improved by adding additional constraints that ensure that the

continuity and Jeans equations (10) and (11) are satisfied. Inside the

nth element, these equations can be written as

Hn(x)

3
∑

j=1

∂gn

∂xj

· cj
n = 0, (41)

Hn(x)

3
∑

j=1

∂gn

∂xj

· d ij
n = −Hn(x)

∂�

∂xi

gn · bn, i = 1, 2, 3. (42)

Defining

T
j
n =

∫

Hn(x)

[

gn ⊗
∂gn

∂xj

]

dx, (43)

Vn(i) = −
∫

Hn(x)
∂�

∂xi

[gn ⊗ gn]dx, (44)

one obtains the Galerkin projections of (41) and (42) as

3
∑

j=1

T
j
n · cj

n = 0,

3
∑

j=1

[Vn(i)]−1 · Tj
n · d ij

n = bn. (45)

We assemble these element equations to obtain the global forms

3
∑

j=1

A(j ) · cj = 0,

3
∑

j=1

B(j ) · d ij = b. (46)

Combining (39) and (46) leads to

3
∑

j=1

[A(j ) · U(j )] · p = 0,

3
∑

j=1

[B(j ) · S(i, j )] · p = b. (47)

The global matrices A and B are assembled, respectively, from the

blocks T
j
n and [Vn(i)]−1 ·Tj

n. We make some remarks. (i) The solu-

tions of the continuity and Jeans equations, whether the continuous

versions (10) and (11) or their FEM counterparts (46) above, are

generally not unique. A notable exception is triaxial potentials of

Stäckel form, in which the second-order tensor τ ij (x) is diagonal

in ellipsoidal coordinates (van de Ven et al. 2003). (ii) When using

C0 finite elements, as we do here, the moments ρ, ui and τ ij (equa-

tions 7–9) are continuous across element boundaries but generally

their derivatives are not; however, since the right-hand sides of the

continuity and Jeans equations are continuous across boundaries,

the combinations of derivatives of ui and τ ij that appear on the

left-hand sides of these equations must also be continuous. (iii)

Equations (47) do not say that the mass and momentum flow into

each element, through its boundaries, exactly balance their outflows

(although the balance will become more and more accurate as the

number of nodes increases). Only finite volume methods (LeV-

eque 2002) and conservative FEMs ensure the exact conservation

of physical fluxes and this paper does not discuss those techniques.

The interpolation functions gn(x) used in equations (16) and (17)

are identical, that is, we have chosen to use the same interpolation

functions for the density and the velocity moments. The results

of Section 6 show that this choice works reasonably well. None

the less, it is possible, and perhaps desirable, to apply different

interpolation functions to model ui and τ ij, and to use this additional

flexibility to improve the accuracy of FEM models constrained by

the continuity and Jeans equations. The reason is that the derivatives

of streaming velocity and stress components which appear in these

equations are naturally less accurate than the density. Therefore, to

satisfy the constraints in (38) and (47) with comparable error levels,

one could usefully adopt higher order interpolation functions, or

use C1 finite elements to approximate the first- and second-order

velocity moments. We have not yet explored this refinement.

3.3 Separable models

The computation of the element matrices Fe, Ue and Se is ac-

celerated when the Hamilton–Jacobi equation is separable for the

potential �(x). In such a circumstance, the velocity vector can be

expressed as v(x, J), which implies

dv = Q(x, J)d J, Q(x, J) =
∂(v1, v2, v3)

∂(J1, J2, J3)
. (48)

This allows us to bypass the costly integration of orbit equations

needed for calculating the Fourier coefficients g̃0. Using (48), we

replace the phase-space element dxdv by dxd J and compute the

element matrices from

Fe =
∫∫

P(x, J)dxd J, (49)

Ue =
∫∫

vi(x, J)P(x, J)dxd J, (50)

Se =
∫∫

vi(x, J)vj (x, J)P(x, J)dxd J, (51)

where

P(x, J) = Hn(x)Hm( J)Q(x, J)G−1
n · [gn(x) ⊗ hm( J)]. (52)
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The integrals over the x and J subdomains can be evaluated using

Gaussian quadratures.

In separable models the turning points of orbits and their shapes

in the configuration space are known. Therefore, the null integrals in

the element matrices can be avoided, and the computational effort is

reduced, by a priori identification of the J-subspaces whose orbits

never enter a selected element in the x-space. In fact, the informa-

tion related to the passage of an orbit through a given element is

carried by the function Hm( J)Hn(x), and before evaluating the inte-

grals we can exclude all (m, n) pairs that give Hm( J)Hn(x) = 0. For

separable models in non-Cartesian coordinates, the velocity com-

ponents in the Jacobian Q are replaced by generalized momenta,

and the matrix P is divided by the product of metric coefficients.

3.4 Linear and quadratic programming

The size of the unknown vector p is not necessarily, or usually,

equal to the total number of constraints. Even if it were, the solution

vector would not necessarily fulfil the requirement that the DF must

be non-negative. We therefore employ either linear programming

(LP) or QP (Gill, Murray & Wright 1981) and search for pl, the

components of p, by minimizing the objective function

J =
Mt

∑

l=1

Clpl +
1

2

Mt
∑

l=1

Mt
∑

l′=1

Wll′plpl′ , (53)

with Wll′ = 0 for LP. The minimization is subject to the inequalities

pl ≥ 0 (for l = 1, 2, . . . , Mt) and the equality constraints (38). If we

also demand satisfaction of the continuity and Jeans equation these

are supplemented by the equality constraints (47). The QP routines

begin from a vector p0 that satisfies the imposed constraints with

a tolerance of ǫf , then proceed to minimize J . The vector p0 is

usually called a feasible solution and ǫf is the feasibility tolerance;

the latter must be greater than the computational accuracy of the

variables involved in the constraints.

The weights Wll′ are chosen based on the desired attributes of the

model, such as bias towards radial or tangential orbits, maximization

of a quadratic entropy, or fitting to specified data. For example, if a

series of observables oα are linear functions of the DF,

oα =
Mt

∑

l=1

Oαlpl, α = 1, . . . , K, (54)

and they are observed to have values oα with observational errors

σ α , then a suitable objective function is specified by

Cl = −
K

∑

α=1

oαOαl

σ 2
α

, Wll′ =
K

∑

α=1

OαlOαl′

σ 2
α

. (55)

The LP and QP algorithms we have used can stall at weak local

minima or ‘dead points’. Whenever this happens, we perturb the

solution and restart the algorithm.

4 D ERIVATION O F SCHWARZSCHILD’S

M E T H O D

It is now straightforward to show that Schwarzschild’s orbit super-

position method is a subclass of FEM. We assume for simplicity that

the potential is integrable so the orbits are regular. The orbit library

in Schwarzschild’s method is collected by sampling over the space

of initial conditions. For regular orbits there is a one to one and in-

vertible map between (x0, v0) and [w(0), J], and Schwarzschild’s

DFs will have the following form (Vandervoort 1984)

f ( J) =
M

(2π)3

M
∑

m=1

pmδ( J − Jm), (56)

where δ(· · ·) is the Dirac delta function and pm is the discrete DF

associated with an orbit of the action vector Jm. Equation (56) is

derived from (18) by shrinking the elements in the action space to

zero size. The total mass of the galaxy is computed from

M =
∫∫

f ( J)d Jdw, (57)

which is combined with (56) to obtain the constraint

M
∑

m=1

pm = 1. (58)

Schwarzschild assumes a uniform density ρn inside the nth ele-

ment in configuration space. This implies that there is one node per

element (Nd = 1) and that the vector function gn(x) reduces to a

scalar constant, gn = 1. Equation (12) then reduces to

ρ(x) =
N

∑

n=1

Hn(x)ρn. (59)

The matrix Gn is now a single number Vn, which is the volume of

the nth element. The quantity Mn = Gn · bn = Vnρn will thus be

the mass inside the nth element. We substitute (56) and (59) into

(31) and obtain

Mn = M

M
∑

m=1

pmg̃0(n, Jm), (60)

with the zeroth-order Fourier coefficient given by

g̃0(n, Jm) =
1

(2π)3

∫

Hn[x(w, Jm)]dw. (61)

According to time averages theorem (Binney & Tremaine 2008),

the quantity on the right-hand side of (61) is the fraction of time

tn( Jm) that an orbit of action Jm spends in the nth spatial element.

Consequently, we obtain

Mn = M

M
∑

m=1

tn( Jm)pm, (62)

which is Schwarzschild’s equation.

The approach described in Section 3.2 to incorporate constraints

based on the continuity and Jeans equations into FEM models does

not work for Schwarzschild’s method: because the interpolating

functions gn are constants, the matrices T
j
n defined in equation (43)

are zero so the first of equations (45) is trivially satisfied and the

second has no solution. Physically, the stress tensor τ ij
n is constant

within an element so there is no divergence in the momentum flux

to balance the gravitational force per unit volume −ρ∂�/∂xi .

The failure of Schwarzschild’s method to satisfy the Jeans equa-

tions within an element does not imply that the method is incorrect.

Indeed, the method must satisfy the Jeans equations on larger scales

because the assumed discrete DF (56) depends only on the actions

and hence must satisfy the CBE, and the Jeans equations are mo-

ments of the CBE. The correct statement is that Schwarzschild’s

method satisfies the Jeans equations approximately if we calcu-

late gradients of the stress tensor between adjacent elements and

match their sum to −ρ∇� at the centre of an element. In this pro-

cess, which we carry out for spherical systems in Section 5, one

must appropriately handle partial derivatives because elements in

the configuration space are not usually separated uniformly.
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5 SP HER ICALLY SYMMETRIC SYSTEMS

In spherical systems, one can use simple shell elements (ring ele-

ments for axisymmetric discs). Moreover, the distance of particles

from the centre is represented as the Fourier series of the radial angle

wr only. This remarkably simplifies the calculation of the vectorial

function g̃0 should one decide to compute the element matrices

from (32), (36) and (37). Consider the spherical polar coordinates

(r, θ , φ) and the corresponding velocities (vr, vθ , vφ) where r is

the radial distance from the centre, θ is the co-latitude and φ is the

azimuthal angle. The density of a spherical system is a function

of r, its first-order velocity moment 〈vr〉 is zero and the following

relations hold for second-order velocity moments:
〈

v2
t

〉

= 2
〈

v2
φ

〉

= 2
〈

v2
θ

〉

, 〈vrvφ〉 = 〈vrvθ 〉 = 0, (63)

where v2
t = v2

θ +v2
φ = L2/r2 with L being the magnitude of angular

momentum vector. We confine ourselves to models with 〈vφ〉 =
〈vθ 〉 = 〈vφvθ 〉 = 0. The continuity equation (mass conservation)

is trivially satisfied for such a system. The elements of the stress

tensor are

τ rr = ρ
〈

v2
r

〉

, τ t t = ρ
〈

v2
t

〉

, τ θθ = ρ
〈

v2
θ

〉

, τ φφ = ρ
〈

v2
φ

〉

,

(64)

and the Jeans equation in the radial direction reads

dτ rr

dr
+

1

r
(2τ rr − τ t t ) = −ρ

d�

dr
. (65)

The other two equations, in the θ - and φ-direction, do not provide

further information.

We consider a mesh of N concentric shell elements and define

the nth element by its inner and outer radii rn and rn+1, respectively.

We then approximate the density and velocity moments as

ρ(r) =
N

∑

n=1

Hn(r)gn(r) · bn, (66)

τ rr (r) =
N

∑

n=1

Hn(r)gn(r) · drr
n , (67)

τ t t (r) =
N

∑

n=1

Hn(r)gn(r) · d t t
n . (68)

The continuity conditions at the boundaries of adjacent elements

are b1,(n+1) = bNd,n, drr
1,(n+1) = drr

Nd,n and d t t
1,(n+1) = d t t

Nd,n. Let us

now substitute from equations (66)–(68) into (65) and derive its

Galerkin projection as

M
∑

m=1

V
−1
n ·

[

T
r
n · Srr

e (n, m) − T
t
n · St t

e (n, m)
]

· pm = bn, (69)

for n = 1, 2, . . . , N. The matrices S
rr
e and S

t t
e are determined from

(51) by replacing vivj with v2
r and v2

t , respectively, and we have

T
r
n =

∫

Hn(r)

[

gn ⊗
dgn

dr

]

r2dr + 2Tt
n, (70)

T
t
n =

∫

Hn(r)

[

1

r
gn ⊗ gn

]

r2dr, (71)

Vn = −
∫

Hn(r)
d�

dr

[

gn ⊗ gn

]

r2dr. (72)

All other equations of Section 3 can be directly applied to spherical

systems using the following substitutions:

dx = 4πr2dr, dv = Q(x, J)d J =
4πLdEdL

r2vr

, (73)

where E is the orbital energy of particles:

E =
1

2
v2

r +
L2

2r2
+ �(r). (74)

If we apply the FEM without Jeans equation constraints we must

satisfy the linear constraint equations b = F · p (equation 38). If we

include the Jeans equation constraints we assemble equations (69)

to a global form T · p = b and combine this with b = F · p to give

(T − F) · p = 0. (75)

In the C0 finite element formulation, it is difficult to construct a

function (here the stress components) and its derivatives with the

same accuracy. Therefore, we replace the equality constraints (75)

with the weaker inequality constraints

0 ≤ ǫn ≤ ǫmax, (76)

where ǫn are the normalized components of the residual vector

(T − F) · p, defined as

ǫn =
1

bn

Mt
∑

l=1

(Tnl − Fnl)pl, n = 1, 2, . . . , Nt, (77)

and minimize J by setting

Cl =
Nt

∑

n=1

Tnl − Fnl

bn

. (78)

Here Tnl and Fnl are the elements of T and F, respectively. The

value of ǫmax cannot be arbitrarily small: at large radii the magni-

tudes of the stresses become comparable to the numerical errors,

and the Jeans equations are correspondingly less accurate. In our

calculations, we have been able to secure convergence with ǫmax as

small as
√

ǫf over a wide radial range.

It is worth deriving the weighted residual form of the Jeans equa-

tion for discrete Schwarzschild models to investigate whether ap-

plying this as a constraint improves the accuracy of these models.

For gn = 1, the density and second velocity moments are constant

inside each element and the vectors bn, drr
n and d t t

n in (66)–(68) are

replaced by the scalars ρn, τ rr
n and τ t t

n , respectively. We rewrite (65)

as

1

r2

d(r2τ rr )

dr
−

τ t t

r
= −ρ

d�

dr
. (79)

We obtain the Galerkin projection through multiplying the differen-

tial equation (79) by Hn(r)r2dr and integrating over the nth spatial

element. For the first term this procedure gives F(rn+1) − F(rn)

where F(r) = r2τ rr(r). Since τ rr is discontinuous at the element

boundaries we must make some arbitrary choice; after some exper-

imentation we have found that the best convergence is obtained by

taking τ rr(rn) to be τ rr
n−1, that is, the value of the stress in the element

interior to the boundary. Then the discretized Jeans equation is

r2
nτ

rr
n−1 − r2

n+1τ
rr
n +

r2
n+1 − r2

n

2
τ t t
n = ρn

∫ rn+1

rn

d�

dr
r2dr. (80)

This difference equation is not necessarily satisfied by an optimiza-

tion procedure that attempts to fit observables using a DF of the

form (56). We note that τ rr
n−1 and τ rr

n are normal stresses exerted on
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the nth shell element at its inner and outer boundaries. For suffi-

ciently thin elements when (�rn)2 ≪ rn�rn, one may replace r2
n+1

by r2
n + 2rn�rn and write (80) as

τ rr
n−1 − τ rr

n

�rn

+
1

rn

[

τ t t
n − 2τ rr

n

]

= ρn

[

d�

dr

]

r=rn

, (81)

which is the discrete counterpart of (65) obtained using a backward

difference scheme.

6 EX A M P LES

We illustrate the performance of FEM for spherically symmetric

systems by constructing ergodic and anisotropic DFs for the Hern-

quist (1990) model. Each orbit is characterized by its maximum and

minimum galactocentric distances rmax( J) and rmin( J). We define

a( J) =
rmax + rmin

2
, e( J) =

rmax − rmin

rmax + rmin

, (82)

and the finite element mesh is generated in (a, e)-space instead of

action space.

The potential-density pair for the Hernquist model is given by

�(r) = −
1

1 + r
, ρ(r) =

1

2π

1

r(1 + r)3
. (83)

Since ρ diverges towards the centre, and to resolve the behaviour of

functions in the central regions, the nodes of our N shell elements

are distributed with equal logarithmic spacing, using the power law

rn = 10−γ1+α1y(n,N),

y(n,N ) =
1

2(N + 1)
+

n − 1

N + 1
, n = 1, . . . , N + 1. (84)

We use simple double-node elements with Nd = 2 (no interior

nodes) and linear interpolating functions in the radial direction,

gn(r) =
[

1

2
(1 − r̄)

1

2
(1 + r̄)

]

, r̄ =
2(r − rn)

rn+1 − rn

− 1. (85)

Having the grid information and interpolation functions, the matri-

ces Gn, Tr
n, Tt

n and Vn can be calculated.

The mesh in the two-dimensional (a, e)-space consists of M =
Ma × Me rectangular elements, each with Md = 4 nodes (Fig. 2).

For the mth element sitting in the jth row and ith column of the

mesh, the local coordinates (ξ , η) are defined as

ξ =
2(a − ai)

ai+1 − ai

− 1, i = 1, 2, . . . , Ma, (86)

η =
2(e − ej )

ej+1 − ej

− 1, j = 1, 2, . . . , Me, (87)

where m = (i − 1) × Me + j and

ai′ = 10−γ2+α2y(i′,Ma ), ej ′ = y(j ′, Me). (88)

Figure 2. Two-dimensional finite element mesh in the (a, e)-space. Local

variables (ξ , η) vary in the interval [−1, +1] and the centre of element is

located at (ξ , η) = (0, 0).

The minimum eccentricity in our grid is e1 = 1

2
/(Me +1); we avoid

zero-eccentricity orbits because of the singularity of the Jacobian

Q(x, J) at the circular orbit boundary of the action space. We do not

have exactly radial orbits in our models as the maximum eccentricity

in our grid is eMe+1 = 1 − 1

2
/(Me + 1).

The four nodal coordinates of each element are given by

(ξ1, η1) = (−1,−1), (ξ2, η2) = (−1,+1),

(ξ3, η3) = (+1,−1), (ξ4, η4) = (+1,+1). (89)

The DF at (ξ k, ηk) is indexed by k and the following interpolation

functions are used inside the mth element

hj,m(ξ, η) =
1

4
(1 + ξj ξ )(1 + ηjη), j = 1, 2, 3, 4. (90)

These are smooth quadratic functions that behave linearly along

element boundaries. DFs at the common nodes of adjacent elements

must be equal in order to build a continuous f ( J). This condition is

taken into account in assembling the global matrices F, U and S. Our

experiments show that FEM is not highly sensitive to the parameters

γ i and αi (i = 1, 2) but they should be chosen so that at least one

orbit passes through each element. The cost of computations is

remarkably reduced by minimizing the size M of the grid in action

space while keeping the number of constraints constant. In such

conditions, securing a feasible solution p0 becomes harder though

the choices γ 1 = γ 2 and α1 = α2 are often helpful when the same

element nodes are used in the r and a spaces. The reason is that a

solution p = F
−1 · b always exists in the limit of a DF composed

of circular orbits, f = f 0(a)δ(e2), and one can imagine smooth DFs

of the form

f = (1 − α)f0(a)δ(e2) + αf1(a, e), 0 ≤ α < 1, (91)

which are found by the optimizer through varying α and f 1.

6.1 Ergodic distribution functions

We begin our numerical experiments by constructing ergodic DFs;

these give an isotropic stress tensor with

2τ rr = τ t t −→ (2Srr − S
t t ) · p = 0. (92)

Here S
rr and S

t t are N t × Mt matrices assembled from S
rr
e and S

t t
e ,

respectively. We solve this particular problem by LP. Our first FEM

model has N = 50 shell elements in the configuration space and a

mesh of Ma × Me = 40 × 40 elements in the (a, e)-space. The grid

points have been obtained by setting α1 = α2 = 3 and γ 1 = γ 2 = 2.

The innermost grid point in the configuration space is at r1 = 0.0107

and the outermost at rN+1 = 9.345 where the Hernquist model

density is 1.54 × 10−5. The innermost and outermost grid points

in the a-direction are located at a1 = 0.0109 and aMa+1 = 9.1921.

The total number of unknown nodal DFs is Mt = 1681. For N linear

elements with Nd = 2 nodes per element, we have N × (Nd − 1)

+ 1 = 51 equality constraints to build ρ from b = F · p, and 51

equality constraints to impose the isotropy condition (92). There

are also 51 inequalities of the type (76) when the Jeans constraints

are present. The weights of all nodal DFs in the objective function

J =
∑

l Clpl are assumed to be equal: Cl = 1 (l = 1, 2, . . . , Mt) in

the absence of Jeans constraints, which corresponds to minimizing

the sum of the values of the DF at all the nodes. Experiments with

other choices for the Cl suggest that our solutions are not sensitive

to this choice, which is to be expected since the ergodic DF for a

spherical system with a given density and potential is unique.

We also construct a model with the parameters N = 50, α1 =
α2 = 3 and γ 1 = γ 2 = 2 as in the first model, but with a coarser
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Figure 3. The computed profiles of the density ρ, radial velocity dispersion σ r and fractional dispersion error ǫσ for the Hernquist model with ergodic DF.

In all FEM and Schwarzschild experiments, the anisotropy parameter β(r) is zero over elements with an accuracy of 10−8. The exact values of ρ and σ r are

shown by filled circles. (a) FEM results for N = 50 shells in the configuration space. Three models are shown, although they are indistinguishable in the top

panel and almost indistinguishable in the middle panel: Ma × Me = 40 × 40 elements in the (a, e)-space, no Jeans equation constraints (dashed line); Ma ×
Me = 40 × 40 with Jeans constraints (solid line), and Ma × Me = 30 × 30 with Jeans constraints (dot–dashed line). (b) Schwarzschild models with N =
50 shells. The three models are: Ma × Me = 30 × 30 elements in (a, e)-space, no Jeans equation constraints (dashed line); Ma × Me = 40 × 40, no Jeans

constraints (dot–dashed line); Ma × Me = 40 × 40 with Jeans constraints (solid line). Note that the vertical scales in the two bottom panels are different.

grid of Ma × Me = 30 × 30 in the (a, e)-space. These give a1 =
0.0112, aMa+1 = 8.9457 and Mt = 961.

In all of our runs with and without Jeans equation constraints, ρ(r)

is successfully reconstructed with a fractional error ≤10−8, and the

anisotropy parameter β(r) = 1− 1

2
τ t t/τ rr is zero to within the feasi-

bility tolerance ǫf = 10−8. The fractional accuracy in satisfying the

Jeans equations is controlled by the parameter ǫmax (equation 76).

We initialize ǫmax to O(10−4) for r < 3.2 and O(10−2) at larger

radii where the magnitude of τ rr becomes comparable with the dis-

cretization errors, which are greater than the feasibility tolerance

by several orders of magnitude. At some nodes the prescribed ǫmax

may be too small to allow for a reasonable optimal solution. We

tolerate constraint violations of up to 5 per cent at individual nodes

should the rms of ǫn (over all nodes) be of O(10−3).

Fig. 3(a) displays the computed density ρ(r), radial velocity dis-

persion σ r(r), and fractional error ǫσ = 1 − σr/σ
0
r , where the exact

dispersion σ 0
r comes from equation (10) in Hernquist (1990). The

FEM solution constrained by equation (92) but not the Jeans equa-

tion constraint (75) exhibits an error of 3 per cent in the outermost

element, and a systematic drift from σ 0
r (r) in the central regions,

amounting to a 1.5 per cent error for r � 0.03. If we had not any

information about the exact dispersion profile, the computed σ r

was smooth enough to be accepted as a solution. When we add the

Jeans equation constraint the mean error is reduced by a factor of

2.5, typically to �0.3 per cent. The errors of up to 0.5 per cent

near the inner and outer boundaries are due to FEM discretization

and model truncation, and hence are not improved by adding the

Jeans equation constraint; these can be suppressed by using bound-

ary elements to cover the currently neglected ranges [0, r1) and

(rN+1, ∞). Adding more spatial elements is not helpful beyond the

radius at which the stresses become as small as the discretization

errors.

To compare FEM with Schwarzschild’s method, we build

Schwarzschild models using the same N = 50 shells in configu-

ration space, with a discrete DF (equation 56) that is non-zero only

at actions Jm given by the nodes of the mesh defined in (88). The

equality constraints in the LP routine consist of Schwarzschild’s

equation (62) and a variant of the isotropy constraints (92). We use

the same tolerances as in the FEM models. The profiles of ρ, σ r

and ǫσ in our Schwarzschild models are shown in Fig. 3(b) for two

grids, Ma × Me = 30 × 30 and 40 × 40. It is seen that the dispersion

error ǫσ is as large as 10 per cent, about five times larger than in

the FEM method; the radial fluctuations in ǫσ are also larger. We

remark that the model with the smaller orbit library or action-space

grid (Ma × Me = 30 × 30) is more accurate, which highlights the

fact that Schwarzschild’s method is sensitive to the locations Jm
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Figure 4. Isocontours of log10(f ) for radially biased models unconstrained (panel a) and constrained (panel b) by the differential Jeans equation (65). Both

models have 70 × 70 elements in the (a, e)-space and 70 shell elements in the configuration space.

of the delta functions in the action space. Special orbit sampling

strategies can reduce this sensitivity and enhance the accuracy of

computations (Thomas et al. 2004). Note that this sensitivity is not

present in FEM; Fig. 3(a) shows FEM models with 30 × 30 and 40 ×
40 grids and the error is generally smaller with the larger grid, as

expected.

Adding the constraints (80) to the optimization procedure brings

a dramatic change for Schwarzschild models. For the model with

Ma × Me = 40 × 40, the curve of σ r and its fractional error

are astonishingly smooth when the Jeans constraints are imposed,

although the rms error is not substantially reduced. By following

this procedure, the sensitivity to the sampling of orbits (or choosing

the location of delta functions) disappears. Our experiments with

models constrained by the Jeans equation show that the deviation

between the exact and computed curves of σ r is ofO(�rn). An exact

match is anticipated in the limit of �rn → 0, but convergence to the

correct solution will be slow and costly. In contrast, FEM converges

at a rate O(hp+1) where h is the element size (in either action

space or configuration space), and p is the order of the interpolating

polynomial (p = 1 in our case). Thus, FEM should, and does,

converge faster than Schwarzschild’s method by one order in the

element size.

6.2 Anisotropic distribution functions

In this subsection we use FEM and QP optimization to construct

anisotropic DFs. We begin with a model constructed without Jeans

equation constraints (ǫn varies freely) having N = 70 spatial shell

elements and a mesh Ma × Me = 70 × 70 in (a, e)-space. We set

γ 1 = γ 2 = −1.5 and α1 = α2 = 2.5, which correspond to r1 = a1 =
0.0329 and rN+1 = aMa+1 = 9.6027. The weights in the objective

function (53) are chosen as Cl = 0 and

Wll′ ( J) = δll′

[

1 − e2( J l)
]

, l = (i ′ − 1)(Me + 1) + j ′,

i ′ = 1, 2, . . . , Ma + 1,

j ′ = 1, 2, . . . ,Me + 1, (93)

which is designed to minimize the population of low-eccentricity

orbits. Note that Wll′ is positive definite so there is a single global

minimum of the objective function. The node l in the (a, e)-space

is located at (ai′ , ej ′ ) where ai′ and ej ′ are computed from (88).

We thus have e( J l) = ej ′ . There are (Ma + 1) × (Me + 1) =
5041 unknown components of p, and 71 equality constraints that

correspond to b = F · p. The QP routine converges and finds the

global minimum J = 3.218 for the objective function. Fig. 4(a)

shows the isocontours of the computed DF. The smoothness of the

DF is evident. The narrow curved feature is inherited from a feasible

solution: the QP method smooths the distribution around a feasible

solution p0 that satisfies problem constraints. Since the number of

non-zero components of p0 is much less than Mt, the subdomain

covered by that feasible solution in the action space shows up as a

distinct feature.

To probe whether the Jeans equation is satisfied in this model,

we have calculated the distribution of the errors ǫn in the Jeans

equation (77), and we display these in Fig. 5. For this model, the

rms error,

ǫ̂ =

[

1

Nt

Nt
∑

n=1

ǫ2
n

]1/2

, (94)

is ǫ̂ = 0.226. It is evident that the differential Jeans constraints (69)

have been violated by a large margin in the innermost element, and

this problem bleeds over into the stresses in nearby elements, out to

r ≃ 0.3.

We now include the differential Jeans equation constraint (75) in

the solution procedure. Since the number of constraints has been

increased, the QP algorithm yields a larger objective, J = 54.607.

We find ǫ̂ = 0.056 which is four times smaller than the rms error in

the unconstrained model. The relatively large errors in the outermost

elements are due to discretization errors, just as in the case of

the ergodic solutions of the preceding subsection, and could be

corrected by a proper boundary element.

The computed DF (displayed in Fig. 4b) is now less smooth and

has developed several narrow eccentricity spikes, the strongest of

which is at e ≃ 0.75. The centroid of the DF has also shifted to

smaller a. The narrow curved feature has also shifted, because the

number of constraints has been doubled and a new feasible so-

lution has emerged. There are several isolated small rectangular

regions with non-zero f ; these would have been delta functions in

Schwarzschild’s approach, but now occupy subdomains contain-

ing at least four elements. The continuity and differentiability of
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Figure 5. The residuals ǫn and radial velocity dispersion σr = 〈v2
r 〉1/2 for

models constrained (solid lines) and unconstrained (dotted lines) by the

differential Jeans equation (65). The node number n and its corresponding

radial distance rn are related through log10(rn) = −1.5 + 2.5y(n, N). The

error in the innermost bin is off the scale of the lower panel, ǫ1 = 1.828.

The larger errors in the outermost elements arise because the magnitude of

the stress τ rr is comparable to the discretization errors for r � 8.

f are clear even in such isolated subdomains. The radial velocity

dispersions of the two solutions (with and without Jeans equation

constraints) are compared in Fig. 5.

Since some wiggles exist in the dispersion σ r of the constrained

model and the magnitude of J is substantially larger than in the

unconstrained model, we suspect that QP has not been able to find

a global minimum corresponding to a reasonably smooth DF. This

may have occurred because our strict ǫn → 0+ constraints have

shielded the global minimum. To locate the global minimum, one

can identify unnecessarily small values of ǫn and ease the corre-

sponding constraints that may have strongly constrained dτ rr/dr

in a p-subspace where this gradient is actually inaccurate due to

errors in the computed τ rr. An alternative way of employing Jeans

constraints, which gives smoother DFs, is discussed below.

We integrate equation (65) to obtain

r2τ rr =
∫ ∞

r

rτ t tdr −
∫ ∞

r

r2ρ
d�

dr
dr, (95)

in which we have imposed the boundary condition that the stresses

vanish at infinity. Substituting from (66)–(68) into (95), and per-

forming integrals over individual elements, gives

N
∑

n=1

Hn(r)r2 gn · drr
n =

N
∑

n=1

Hn(r)
(

gt t
n · d t t

n + g�
n · bn

)

, (96)

where

gt t
n (r) =

∫

r gn(r)dr, g�
n (r) = −

∫

r2 d�

dr
gn(r)dr.

Operating with drHn(r)gn(r)⊗ on (96) and integrating over the

r-domain leave us with

M
∑

m=1

Ṽ
−1

n · [Gn · Srr
e (n, m) − T̃

t

n · St t
e (n,m)] · pm = bn (97)

for n = 1, 2, . . . , N with

Ṽn =
∫

Hn(r)gn ⊗ g�
n dr, T̃

t

n =
∫

Hn(r)gn ⊗ gt t
n dr. (98)

One can assemble equations (97) into a global form T̃ · p = b and

follow the procedure of Section 5 by replacing T with T̃ in equations

(75)–(78). The advantage of these integral Jeans constraints (97)

over their differential counterparts (69) is that they do not involve

derivatives of the interpolating functions and τ rr.

We have assumed the same model properties as in Fig. 4 and

constructed a smooth DF (top panel in Fig. 6) using the integral

Jeans equation. To impose the constraints T̃ · p = b we have

minimized the new residuals

ǫ̃n =
1

bn

Mt
∑

l=1

(T̃nl − Fnl)pl, n = 1, 2, . . . , Nt, (99)

using only the lower zero bound on them: ǫ̃n ≥ 0. Fig. 6 displays

σ r(r) and the variation of ǫ̃n for models that are unconstrained

and constrained by the integral Jeans equation. The close agree-

ment between the radial dispersion curves of the unconstrained

and constrained models shows that the DF of the unconstrained

model, which is identical to the model of Fig. 4(a), is accurate

and smooth enough to satisfy the integral Jeans equation. For the

constrained model, we have found J = 3.453 which is close to

the unconstrained minimum J = 3.218, indicating convergence to

the global minimum. Smaller values of ǫ̃n in the central regions of

the unconstrained model, compared to what we displayed in Fig. 5

for ǫn, show that the DF constructed by FEM satisfies the integral

Jeans constraints more accurately than differential ones. The correc-

tion ǫ̃n → 0+ in the constrained model yields satisfactory results in

the central regions, but again, the outermost element shows a large

error because of the model truncation.

We are also able to construct anisotropic models with prescribed

anisotropy profiles. In terms of β(r), the Jeans equation reads

dτ rr

dr
+

2β(r)

r
τ rr = −ρ

d�

dr
. (100)

We seek a model with β(r) = −1/(1 + r) that has a tangentially

biased core and becomes isotropic as r → ∞. For the Hernquist

model, this yields the exact solution of equation (100):

τ rr = ρσ 2
r =

r2

2π(1 + r)2

×
[

6 ln

(

1 + r

r

)

−
(1 + 2r)(6r2 + 6r − 1)

2r2(1 + r)2

]

. (101)

We now follow the procedure of Section 5, and project the equation

2(1 − β)τ rr = τ tt on the p-space. One can verify that

M
∑

m=1

[

(

I − T
β
n

)

· Srr
e (n,m) −

1

2
S

t t
e (n,m)

]

· pm = 0 (102)

holds for n = 1, 2, . . . , N where I is the identity matrix of dimension

Nd × Nd and

T
β
n =

∫

Hn(r)β(r)G−1
n · [gn ⊗ gn]r2dr. (103)
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Figure 6. Top: isocontours of log10(f ) for radially biased models con-

strained by the integral Jeans equation. There are 70 × 70 elements in

the (a, e)-space and 70 shell elements in the configuration space. Bottom:

radial velocity dispersion σ r and the normalized error ǫ̃n. The solid and

dashed lines correspond to models with and without integral Jeans equa-

tion constraints (97), respectively. The DF of the unconstrained model is

displayed in Fig. 4(a).

After assembling the system of new constraints (102) into a global

form, we ran our FEM code and compared its outcome for σ r with

that of equation (101). Fig. 7 illustrates our results for N = 50 spa-

tial shells and Ma × Me = 30 × 30 elements in the (a, e)-space.

As in the ergodic case, there are distinguishable differences be-

tween models constrained and unconstrained by the Jeans equation.

We did our calculations using both LP and QP, and could recover

theoretical curves of ρ and β with the fractional accuracy 10−8 in

both approaches. The QP results were not sensitive to the choice

of Wll′ , but we worked with Wll′ = δll′e( J l) (l = 1, 2, . . . , Mt),

which is more consistent with a tangential core. For the LP without

Jeans constraints, choosing Cl = 1 always gave accurate results.

The results of LP and QP were almost identical.
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Figure 7. Density, anisotropy parameter, radial velocity dispersion and frac-

tional error ǫσ for a model with β(r) = −1/(1 + r). The exact values of

quantities have been shown by filled circles. The solid and dashed lines cor-

respond to models with and without differential Jeans equation constraints

(69), respectively.

7 D ISCUSSION

We have demonstrated that Schwarzschild’s method for construct-

ing stellar systems can be regarded as a special case of FEM, and

that FEM can be used to construct stellar systems that are more ac-

curate approximations to the CBE for given grids in configuration

and action space. We have also shown that the accuracy of both

Schwarzschild and FEM models can be substantially improved by

incorporating the Jeans equations as explicit additional constraints.

There are rigorous mathematical methods for proving the con-

vergence of C0 FEM schemes to continuous and smooth solutions

of initial and boundary value problems described by ordinary and

partial differential equations (Szabó & Babuska 1991). Such analy-

ses have also been carried out for eigenvalue problems (Babuska &

Rheinboldt 1978) and adaptive FEMs in two-dimensional problems

(Morin, Nochetto & Siebert 2002). Although we did not mathe-

matically prove the convergence of FEM-constructed equilibrium

DFs, our numerical experiments with the Hernquist model show

convergence to the exact values of observables as the element sizes

are decreased in a uniform logarithmic mesh. Nevertheless, a ma-

jor challenge in the convergence analysis of equilibrium models
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constructed by FEM is to understand the role of constrained opti-

mization routines and why they appear to give non-unique models

in some cases such as given in Fig. 5.

The disadvantage of FEM codes is that they are more time-

consuming to write and to run than Schwarzschild codes – but not

by a large factor. The main difference is in the procedure where the

element matrices are computed and assembled, and in our imple-

mentation this procedure contains fewer than twice as many state-

ments. The time required for optimization is the same, since the

matrices have the same size in both methods, but the construction

of the matrices takes longer in FEM. Overall, the calculations used

to produce an FEM model usually take three to five times as long

to run as the calculations for the analogous Schwarzschild model.

There are at least two reasons why the higher accuracy provided

by FEM is likely to become more important in the future. The first is

that the quality of kinematic and photometric observations of galax-

ies is growing, in particular because of integral-field spectrographs

on large telescopes, and higher quality data demand more accurate

dynamical models. The second is that the state of the art has gradu-

ally progressed from spherical models to axisymmetric and triaxial

ones; the higher dimensionality of triaxial models demands much

larger grids in configuration space and this in turn calls for numer-

ical methods that converge as a higher power of the characteristic

scale of the grid elements.

It is also possible to apply FEM to time-dependent stellar sys-

tems, such as barred and spiral galaxies. Since the evaluation of the

element integrals does not depend on the nodal variables, the extra

computational cost of unsteady problems is associated only with the

integration of the evolutionary equations in the time domain. Jalali

(2010) has used FEM to study the linear stability of razor-thin disc

galaxies and the response of such galaxies to external perturbations

such as satellite galaxies.
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