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GENERALIZED SECOND DERIVATIVES 
OF CONVEX FUNCTIONS AND SADDLE FUNCTIONS 

R. T. ROCKAFELLAR 

ABSTRACT. The theory of second-order epi-derivatives of extended-real-valued 
functions is applied to convex functions on ]K" and shown to be closely tied to 
proto-differentiation of the corresponding subgradient muitifunctions, as well 
as to second-order epi-differentiation of conjugate functions. An extension is 
then made to saddle functions, which by definition are convex in one argument 
and concave in another. For this case a concept of epi-hypo-differentiability is 
introduced. The saddle function results provide a foundation for the sensitivity 
analysis of primal and dual optimal solutions to general finite-dimensional prob-
lems in convex optimization, since such solutions are characterized as saddle-
points of a convex-concave Lagrangian function, or equivalently as subgradients 
of the saddle function conjugate to the Lagrangian. 

1. INTRODUCTION 

Generalized first derivatives of extended-real-valued functions have long been 
studied in nonsmooth analysis and from many points of view. They are essential 
in understanding the characterization of solutions to problems of optimization 
and also the possible rates of change that may be exhibited in the optimal values 
of such problems relative to perturbations. Generalized second derivatives are 
newer on the scene, and until recently little was known about them despite the 
potential for important applications. These applications are concerned with the 
sensitivity analysis of optimal solutions (minimizing or maximizing vectors) 
rather than merely optimal values. 

Convexity theory has provided the springboard for much of nonsmooth anal-
ysis, and not surprisingly this has been true as well for attempts at defining 
generalized second derivatives. One line of development was started in 1980 by 
Lemarechal and Nurminski [1], who defined approximate second derivatives of 
convex functions in terms of the e-subdifferential of convex analysis in [2, §23]. 
This line has been followed by Auslender [3] and explored in detail by Hiriart-
Urruty [5,6, 7, 8], Hiriart-Urruty and Seeger [9], Hiriart-Urruty, Strodiot, and 
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Hien Nguyen [10]. It has led to many interesting results, but unfortunately these 
seem limited in basic concept to the convex case and not readily extendable be-
yond. 

Another approach was initiated by Aubin in defining the second derivatives 
of a convex function f in terms of first derivatives of the subgradient multi-
function a f, the latter being expressed by the multifunction whose graph is, 
at a certain point, the tangent cone to the graph of a f in the sense of Clarke 
[11, 12]. This approach, which was applied by Aubin [13] to the sensitivity 
analysis of optimal solutions to dual pairs of problems in convex programming, 
was carried forward in the book of Aubin and Ekeland [14], which develops as 
well still other ideas for the generalized differentiation of multifunctions, i.e., 
set-valued mappings. 

Aubin's theory of second derivatives of convex functions in [13] has turned 
out to be much less "general" than was first imagined. It was shown in Rock-
afellar [15] that the Clarke tangent cone to the graph of a f is always a subspace 
in the case of a convex function f. The nondegeneracy assumption employed 
by Aubin in his applications to sensitivity analysis actually requires that this 
subspace, in a context we shall not try to explain here, be the graph of a lin-
ear transformation. This means that f must be in fact twice differentiable in 
the classical sense of having a second-order Taylor expansion at the point in 
question. 

The ideas connected with such expansions were explored in detail in [15]. 
This paper introduces "generalized" quadratic functions, which may be 
extended-real-valued, as giving second derivatives of convex functions at cer-
tain points of nonsmoothness. It uses the sub differential convergence theorem 
of Attouch [16; 17, Theorem 3.66], to demonstrate the relationship between 
such derivatives and the graphical derivatives of Aubin [13]. It further provides 
an alternative modern proof of the theorem of Alexandroff [18], according to 
which a finite convex function on an open convex set has a second-order Taylor 
expansion at almost every point. (See Dudley [19] for a proof based instead on 
the theory of distributions.) An infinite-dimensional version of this approach 
to second derivatives of convex functions in terms of generalized quadratic 
functions and Clarke tangent cones to the graph of a f has been provided by 
Ndoutoume [20]. 

Second derivatives of nonconvex functions have been developed in quite a 
different way by Auslender [21] and Chaney [22-27], using special upper and 
lower limits of certain second-order difference quotients. This theory deals with 
functions that are locally lipschitzian, thus in particular finite valued. Never-
theless it is applicable by means of penalty representations of constraints to 
the derivation of necessary and sufficient conditions for optimality in nonlinear 
programming, as shown in the papers in question. 

Another approach to generalized second derivatives has been followed in a 
series of papers of Ben-Tal and Zowe [28-30]. These authors, like Chaney, 
focus on finite-valued functions and rely on penalty representations to apply 
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their results to optimality conditions. Their derivatives are defined in terms 
of second-order limits taken along parabolic curves. Applications to marginal 
functions have been given by Seeger [31] and Shapiro [32]. Still other ideas of 
second derivatives that are of interest in optimization have been explored by 
Shapiro [33, 34], and by Cominetti and Correa [35]. 

Recently a theory of second derivatives which does not depend either on 
convexity or on finiteness of the functions involved has been set forth in our 
paper [36]. The definition in this case rests on epi-convergence of second-order 
difference quotients. The second derivatives so obtained are therefore called 
epi-derivatives. They are dual in a certain sense to parabolic derivatives that 
generalize the ones of Ben-Tal and Zowe mentioned above. The chief fact es-
tablished in [36] is that for a very broad class of extended-real-valued functions, 
which includes most of the functions commonly encountered in nonlinear pro-
gramming, such second-order epi-derivatives do exist and are given by usable 
formulas. We have worked from this fact in a follow-up paper [37] to show 
that optimality conditions can be developed in a "neo-classical" setting which 
provides new insights into matters of convergence. An extension of the class of 
functions covered in [36] has been achieved recently by Cominetti [48]. 

Our intention here is to return with these ideas of epi-derivatives to the con-
text of convex analysis. One reason for giving special attention to convex func-
tions is that, at present, there are no good tools that relate epi-convergence of 
nonconvex functions to graphical convergence of their subdifferential multifunc-
tions as does Attouch's theorem in the convex case. We wish to use Attouch's 
theorem and also the continuity of the Legendre-Fenchel transform for convex 
functions to explore various connections of epi-differentiation with graphical 
differentiation and duality. At the same time we aim at providing additional 
examples of second-order epi-differentiation, beyond the ones in [36]. 

Our agenda does not end with convex functions, however, but passes from 
such a framework to the more difficult study of second derivatives of saddle 
functions (convex-concave functions). Such functions are fundamental in con-
vex optimization because of their role as Lagrangians in the statement of saddle 
point conditions for optimality. The sensitivity analysis of saddle points, and 
therefore of solutions to primal and dual problems of optimization, is intimately 
tied with the understanding of generalized first derivatives of the subgradient 
multifunctions associated with Lagrangians. Such derivatives can in turn be 
expected to correspond to second derivatives of the Lagrangians themselves. 

Although we are unable within the limits of this paper to elaborate on the 
details of such connections with sensitivity analysis, we do lay a full founda-
tion for applications in that direction. Results of Attouch, Aze, and Wets [38] 
on epi-hypo-convergence of saddle functions are utilized in defining epi-hypo-
derivatives of such functions. This phase of theory may at first appear some-
what formidable to the reader. This is because of the unavoidable need, already 
well recognized in convex analysis, of treating saddle functions as elements of 
equivalence classes rather than just as individuals. 
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The importance of the potential applications justifies the effort of studying 
saddle functions, however, and in any case the end results are relatively sim-
ple in outline. They completely mirror the ones for purely convex functions 
and provide a rich array of additional examples of generalized second-order 
differentiation. 

We confine our treatment to the finite-dimensional case so as not to obscure 
the basic ideas with technical and notational complications over a multiplicity 
of topologies. 

2. EPI-DERIVATIVES OF CONVEX FUNCTIONS 

First- and second-order epi-derivatives of extended-real-valued functions, as 
defined in Rockafellar [36], require the concept of epi-convergence. Consider 
a family of functions rpt:]Rn -+ i:, indexed by a real parameter t > O. (i: 
denotes the extended real numbers.) Such a family is said to epi-converge to 
a function rp: ]Rn -+ i: if their epigraphs, as subsets of ]Rn+! , converge to the 
epigraph of rp in the Painleve-Kuratowski sense. 

Such set convergence can be characterized in many ways, which we will not 
attempt to review (see Salinetti and Wets [39], for instance.) Epi-convergence 
of rp t to rp can itself be shown to be equivalent to the relation 

(2.1 ) liminf inf rp/() = rp(~) = lim sup inf rpt(() , 
flO ¢' ->~ 110 ~->~ 

with mixed limits defined as in Rockafellar [40], namely 

(2.2) lim inf inf = lim [lim inf [ inf rp t (~')]] , 
flO ¢' ->~ elO 110 I¢' -~I::;e 

(2.3) lim sup inf = lim [lim sup [ inf rpt(~')] l. 
110 ~'->~ elO 110 It -~I::;e 

(We denote by 1·1 the euclidean norm.) 
Epi-convergence was first introduced by Wijsman [41, 42], although not un-

der that name. He looked at it only in the case of convex functions on ]Rn but 
showed that it was preserved under the Legendre-Fenchel transform. The nota-
tion was generalized appropriately to Banach spaces by Mosco [43] and it since 
has been developed extensively by many authors; here we defer to the recent 
text of Attouch [17]. 

Consider now a function f: ]Rn -+ i: and a point x, where f(x) is finite. 
As in [36], we say that f is epi-dijferentiable at x if the first-order difference 
quotient functions 

(2.4) rpt(~) = [J(x + t~) - f(x)]/t for t > 0 

epi-converge as t 1 0 to some function rp having rp(O) 1= -00. Then in place of 
rp(~) we write f' (~) and refer to f' as the (first-order) epi-derivative function x x 
for f at x. 
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For the corresponding second-order concept, we suppose f is epi-differenti-
able at x as above, and we fix also an auxiliary vector v E ]Rn . Then we look 
at the second-order difference quotient functions 

(2.5) qJt(¢) = [f(x + t¢) - f(x) - tv . ¢]/ 1t2 for t > O. 

If these epi-converge as t 1 0 to some function qJ having qJ(O) 1:- -00, we say 
that f is twice epi-differentiable at x relative to v, and we speak of v as being 
an epi-gradient of f at x. Then we write qJ(¢) as Ix'v(¢) and call this the 
second-order epi-derivative function for f at x relative to v. 

Some readers might not find the factor 1 in (2.5) to their liking, because of 
the way it pops up in certain formulas that will be encountered later. We include 
it, however, in order to have second-order epi-derivatives agree with ordinary 
second derivatives in cases where both exist, as with classical functions of a 
single variable. 

The basic properties of first- and second-order epi-derivatives of general func-
tions have been laid out in [36] along with many examples. We refer the reader 
to that paper and proceed here directly to the special properties in the convex 
case. 

Besides such epi-derivatives offunctions, we shall work with proto-derivatives 
of multifunctions, as developed in Rockafellar [44]. For a multifunction (set-
valued mapping) F:]Rn => ]Rm , this notion is defined in terms of a point x 
and an image v E F(x). Consider the difference quotient multifunctions 

(2.6) <I>t(¢) = [F(x + t¢) - v]/t for t > O. 

If the graph of <I>t as a subset of ]Rn x]Rm converges as t 1 0 to another subset of 
]Rn x]Rm in the Painleve-Kuratowski sense, we say F is proto-differentiable at x 
relative to v . The limit set is interpreted as the graph of another multifunction 
F;: ]Rn => ]Rm , and this is called the proto-derivative of F at x relative to 
v . For more background on this concept and its relationship to other forms of 
differentiation, the reader should turn to [44]. 

In the rest of this section, f will be a closed proper convex function on ]Rn , 

and x will be a point of domf, the set of points where f(x) < 00. As 
usual, the set of subgradients v of f at x will be denoted by af(x). It is 
to the multifunction a f: ]Rn =>]Rn that the notion of proto-differentiation will 
presently be applied. 

Theorem 2.1. For f to be (once) epi-differentiable at x, it is necessary and 
sufficient that a f(x) 1:- 0. Then f~ is the support function of a f(x), 

(2.7) .fx(¢)=sup{¢'VIVEaf(x)} forall¢, 

and Ix is therefore the closure of the ordinary directional derivative function 
r (x; .), defined by 

(2.8) r (x; ¢) = lim[f(x + t¢) - f(x)]/t. 
tLO 
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In particular, !'.x is a closed proper convex function which is positively homoge-
neous of degree one and has !'.x(0) = O. 
Proof. The lower semicontinuous hull of the convex function f (x;·) (which 
is the same as its closure in convex analysis, unless the value -00 is taken some-
where) is the function whose epigraph is the (closed) tangent cone to the convex 
set epif at the point (x, f(x)), as defined in convex analysis; see [2, §23]. This 
cone is known to coincide with both the contingent cone to epif at (x, f(x)) 
and the Clarke tangent cone to epif at (x, f(x)) by convexity; see Clarke 
[11, 12]. In general, however, as explained in [44], the epi-differentiability of 
f at x is equivalent to the coincidence of the contingent cone in question and 
the so-called intermediate cone to epif at (x, f(x)) (which lies between the 
contingent cone and the Clarke tangent cone), along with the property that the 
common cone does not include the "downward" pointing ray from (0, 0) (i.e., 
the value -00 is not taken at 0). This cone is then the epigraph of !'.x. 

Thus f is epi-differentiable at x if and only if the lower semicontinuous 
hull of !' (x; .) does not have the value -00 at 0 (which by convexity is true 
if and only if this function nowhere takes on -00). In this case the lower 
semicontinuous hull of !' (x: .) is the same function as !'.x, and it is also the 
same as the closure of the!, (x; .). From convex analysis it is known that the 
lower semicontinuous hull of f (x; .) fails to have the value -00 at 0 if and 
only if 8 f(x) i' 0, in which case it is the support function of 8 f(x). These 
facts justify all the assertions of the theorem. 0 

Theorem 2.2. For f to be twice epi-differentiable at x relative to a vector v, 
it is necessary and sufficient that v E 8 f(x) and that the multifunction 8 f 
be proto-differentiable at x relative to v. Then the second-order epi-derivative 
function !'.x' v is a closed proper convex function which is positively homogeneous 
of degree t~o and satisfies 

(2.9) !'.x',v(~)~O forall~, with!'.x',v(O) =0. 

Moreover the subdifferential of ! !'.x', v is the proto-derivative of 8 f at x relative 
to v: 

(2.10) 801:' v)(~) = (8 f)~ v(~) for all~. . , , 

Proof. The necessity of having v E 8 f(x) follows from [36, Proposition 2.8] 
in conjunction with Theorem 2.1. The fact that !'.x' v is closed, proper, and 
positively homogeneous of degree two is covered by [36, Proposition 2.7]. The 
nonnegativity in (2.9) follows from the nonnegativity of the difference quo-
tients ({Jt in (2.5) when v E 8f(x). These are, of course, closed proper convex 
functions of ~ having ({Jt(O) = O. Their limit !'.x', v ' when it exists, is neces-
sarily convex because convexity is preserved under epi-convergence. (A limit of 
convex sets is convex.) 

The rest of our argument is based on the theorem of Attouch [16]. According 
to this theorem, a sequence of closed proper convex functions ({Jk converges as 
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k ---t 00 to a closed proper convex function ({J if and only if the graph of 0 ({Jk 
converges to the graph of 0({J in the Painleve-Kuratowski sense and, besides 
this, there is a point ~ and vector 1'{ E 0({J(~) such that for some sequences 
~k ---t ~ and 1'{k ---t 1'{ with 1'{k E o({J(~k) one has ({Jk(~k) ---t ({J(~). This theorem 
can be applied equally well, with the obvious minor changes in statement, to a 
family ({Jt converging to ({J. We need only observe now that for the functions ({Jt 
in (2.5) the fact that ({Jt(O) = 0 takes care of the assumption about convergence 
of function values. Thus in our context the functions ({Jt epi-converge if and 
only if the graphs of their subdifferentials converge as sets. 

Actually we want to apply this not to ({Jt but to -!({Jt' because 
(2.11) o(-!({Jt)(~)=[of(x+t~)-v]/t 

from (2.5). Our conclusion is that the functions -!({Jt epi-converge to a func-
tion -! lx' v if and only if the multifunctions in (2.11) converge graphically to a 
multifun~tion (of)~,v' in which case the latter is the sub differential o(-!Ix',v)' 
This is what we had to prove. 0 

Although the epi-convergence that defines lx' v must in general be expressed 
in terms of the limits in (2.1) for the second-order difference quotients (2.5), 
there is a situation worth recording where simple pointwise convergence suffices. 
Proposition 2.3. Suppose that the second-order difference quotients in (2.5) con-
verge pointwise on some nonempty open set C to finite values, but pointwise to 00 

outside of the closure of C. Then lx' v exists and one has C = int(domlx' v), 
Conversely, if 1x',11 exists and int( do'm lx', v) is nonempty then this property of 
convergence holds with respect to C = int(dom lx', v) . 
Proof. This merely invokes a general criterion of Wets [45] for the reduction of 
epi-convergence to pointwise convergence in the case of convex functions. 0 

Duality is addressed next. We recall that for the closed proper function f* 
which is conjugate to f in the sense of the Legendre-Fenchel transform, the 
subdifferential multifunction 0 f* is the inverse of of; cf. [2, §23]. 
Theorem 2.4. The function f is twice epi-differentiable at x relative to the vector 
v E 0 f(x) if and only if its conjugate f* is twice epi-differentiable at v relative 
to the vector x E 0 f* (v). Then the functions -! Ix', v and -! fv*:~ are conjugate 
to each other. 
Proof. We rely on Theorem 2.2. The existence of (of)' 1 is equivalent to that x, } 
of (0 f*):, x' and indeed these two multifunctions are just inverse to each other. 
This is im'mediate from the fact that of and 0 f* are inverse to each other. 
Theorem 2.2 tells us then that /.' exists if and only if 11)*" exists. Further, it x,v ,x 
tells us that in this case the multifunctions 0 ( -! lx' v) and 0 ( -! fv*'~) are inverse 
to each other. " 

A closed proper convex function is, however, uniquely determined by its 
subdifferential multifunction up to an additive constant [2, Theorem 24.3]. 
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Therefore 1fv*:~ can differ from the conjugate of tfx',v by an additive constant 
at most. But both of the functions in question vanish at the origin. It follows 
that the additive constant must be zero, because the conjugate of a nonnegative 
function that vanishes at the origin is always another nonnegative function that 
vanishes at the origin. 0 

The foregoing result can be placed in a "global" perspective by means of the 
following terminology. 

Definition 2.5. The closed proper convex function f will be called essentially 
twice epi-differentiable if at every point x where f) f(x) ::f. 0 (which implies 
f(x) finite), f is twice epi-differentiable relative to every v E f) f(x). It will 
simply be called twice epi-differentiable if, in addition, f) f(x) ::f. 0 at every x 
where f(x) is finite. 

This terminology is consistent with the facts in Theorem 2.2. 

Definition 2.6. A multifunction F: ]Rn =}]Rm will be called proto-differentiable 
if at every x where F(x) ::f. 0, F is proto-differentiable relative to every 
vEF(x). 

Theorem 2.7. The following properties are equivalent to each other: 
(a) f is essentially twice epi-differentiable; 
(b) f* is essentially twice epi-differentiable; 
(c) f) f is proto-differentiable; 
(d) f) f* is proto-differentiable. 

Proof. Combine Theorems 2.2 and 2.4. 0 

3. EXAMPLES OF TWICE EPI-DIFFERENTIABLE CONVEX FUNCTIONS 

We turn now to the identification of some classes of convex functions that do 
exhibit twice epi-differentiability. Many examples can first of all be derived from 
the results of our earlier paper [36] by taking special advantage of convexity. 
The following concepts will be needed. 

Definition 3.1. A function g: ]Rd --+ i' is piecewise linear-quadratic if its effec-
tive domain D = {u E ]Rd I g( u) < oo} can be expressed as the union of finitely 
many polyhedral convex sets, relative to each of which g is at most quadratic. 

Theorem 3.2. If f: ]Rn --+ i' has the form 
(3.1 ) f(x) = g(Ax + a) 

for some A E ]Rmxn, a E ]Rn , and function g:]Rd --+ ]R such that g is con-
vex and piecewise linear-quadratic, then f is not only convex but twice epi-
differentiable. 
Proof. It is obvious that f is convex. In fact f is itself piecewise linear-
quadratic. Hence by [36, Theorem 3.1], f is twice epi-differentiable at every 
point of its effective domain. 0 
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Corollary 3.3. If f: Rn ---> i: is a polyhedral convex function, or in particular if 
f is the indicator of a polyhedral convex set, then f is twice epi-differentiable. 
Proof. For convex functions, polyhedrality as defined in convex analysis [2, § 19] 
coincides with piecewise linearity in the sense of Definition 3.1. We therefore 
have the case of Theorem 3.2 where A = I and a = O. 0 

Theorem 3.4. Suppose that f: Rn ---> i: has the form 

(3.2) f(x) = g(G(x)) with G(x) = (G 1 (x), ... , Gd(x)) , 

where g: Rd ---> i: is convex and piecewise linear-quadratic and the notation is 
chosen so that the component functions Gk : Rn ---> R are convex of class \i§"2 
for k = 1, ... , p, but affine for k = p + 1, ... , d. Assume that g(u) = 
g(u 1 , ••• ,ud) is nondecreasing with respect to the variables u1 ' ••• , up' and 
that there exist x ERn and U E Rd with g(u) < 00 such that 

Gk(x) < Uk for k = 1, ... ,p, 
= Uk for k = p + 1 , ... , d. 

(3.3) 

Then f is twice epi-di./ferentiable. 
Proof. The convexity of f is easy to verify from the definition of convexity. 
Our line of argument for the rest of the theorem will be to reduce the situation to 
one where the "basic constraint qualification" of [36, Definition 4.1] is satisfied 
and then draw the conclusion of twice epi-differentiability from [36, Theorem 
4.5], which treats functions of the form (3.2) under hypotheses not involving 
convexity. 

Introduce for the affine functions G k' k = p + 1, ... , d, the notation 
Gk(x) = ckx + Yk with the indices chosen so that cp+ 1 "'" cq is a maxi-
mal linearly independent subset of the vectors cp+ 1 ' ••• ,cd (for some q ~ d). 
Then there exist coefficients cxk / and Pk such that for all x ERn one has 

Let 

q 

Gk(x) = L cxk/G/(x) + Pk for k = q + 1, ... , q. 
/=p+l 

g(u 1 , ... , uq) = g (u 1 , ••• , uq, t cxq+1 ./u/ + Pq+ 1 , ••• , t cxd/u/ + Pd) , 
/=1 /=1 

G(x) = (G 1 (x), ... , Gq(x)). 

Then g is another piecewise linear-quadratic convex function and f(x) = 
g(G(x)). Moreover the hypotheses of the theorem are satisfied for this rep-
resentation of f as well as they were for the original one, but with the added 
provision that the gradients of the constraint functions designated as affine, 
namely the functions Gp+ 1"'" Gq are now linearly independent. In view 
of the possibility of this reformulation, we can proceed henceforth under the 
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assumption that the functions G p+ I ' ... , G d themselves have linearly indepen-
dent gradients. 

Consider now an arbitrary point x where f(x) is finite, or in other words 
such that the vector G(x) belongs to the set D = {u E]Rd I g(u) < oo}, which 
is a polyhedron by Definition 3.1. Let Y = (Y1 ' ••• , Yd) be any normal vector 
to D at G(x) in the sense that 

(3.4) y. (u - G(x)) ~ 0 for every u ED. 

If we can show that 
d 

(3.5) LYkVGk(X)=O implies y=(O, ... ,O), 
k=l 

this will mean that the basic constraint qualification of [36, Definition 4.1] is 
satisfied. Then by [36, Theorem 4.5], f will have a f(x) =j:. 0 and be twice epi-
differentiable at x relative to every v E a f( x) , which is our desired conclusion. 

The assumption that g is nondecreasing in the variables u1 ' ••• , up entails 
the property that whenever u E D and u' is a vector in ]Rd satisfying 

, , 
Uk ~ Uk for k = I , ... , p, and Uk = Uk for k = p + I , ... , d, 

then u' ED. From this and (3.4) it follows that 

Yk ~ 0 for k = I, ... , p. 

The function h(x) = y. G(x) = '£~=l YkGk(x) is therefore convex. Unless 
actually 

(3.6) Yk = 0 for k = I, ... , p, 

condition (3.4) as applied to the vector u in (3.3) would yield y. (G(x) - G(x)) 
< 0, or in other words that h(x) < h(x). This would be incompatible with the 
equation in (3.5), which says that V h(x) = 0 and consequently by the convexity 
of h that x furnishes the global minimum of h on ]Rn. The equation in 
(3.6) thus necessitates (3.7) and reduces to '£~=P+I Ykck = 0, where ck is the 
(constant) gradient of the affine function G k for k = p + I , ... , d . But these 
gradient vectors are supposed to be linearly independent. Therefore h = 0 for 
k = p + I, ... , d in addition to (3.6). We conclude that the implication (3.5) 
is valid, which is all we needed to establish. 0 

Corollary 3.5. If f is of anyone of the following types, then f is a closed proper 
convex function that is twice epi-differentiable. 

(a) f = max{gl ' ... , gr} on ]Rn, where the functions gl' ... , gr are con-
vex and of class %,2 on ]Rn . 

(b) f = Jc ' the indicator of a nonempty set C C ]Rn, where C consists of 
the points satisfying a constraint system of the form 

x E X and J;(x) ~ 0 for i = I, ... , s, 
= 0 for i = s + 1 , ... , m , 

(3.7) 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SECOND DERIVATIVES OF CONVEX FUNCTIONS AND SADDLE FUNCTIONS 61 

with X a polyhedron, 1; a convex function of class ~2 for i = 1 , ... , 
s, and 1; affine for i = s + 1 , ... , m, under the assumption that there 
exists an x E C satisfying 1;(x) < 0 for every i E [1, s] for which 1; 
is not affine. 

(c) f = fo + Jc ' where C is a set of the type in (b) and fa is a convex 
function of class ~2, or more generally a max of finitely many such 
functions as in (a). 

Proof. The general case of (c) subsumes (a) and (b), so we can concentrate on 
it exclusively. We define 

(3.8) G(x) = (gl(x), ... , gr(x) , fl(x) , ... , fm(x) , ll(x), ... , In(x)) , 

where 

and 
lj(x) = Xj (the jth coordinate of x), 

if (u r+I ' ••• , ur+s) ~ 0, 
if (ur+s+ 1 ' ••• , ur+m) = 0, 
if (ur+m+1 ' ••• , ur+m+J EX, 
otherwise. 

Then f(x) = g(G(x)). Obviously g is a polyhedral convex function, hence 
piecewise linear, and g is nondecreasing in the variables u l ' ••• , ur+s ' The 
assumption about a point x gives condition (3.3) in terms of the component 
functions in (3.8). The hypothesis of Theorem 3.4 is therefore fulfilled. 0 

Remark 3.6. Actual formulas for the second-order epi-derivatives in Theorems 
3.3 and 3.4 carry over by our proofs from the corresponding ones given in the 
nonconvex setting in [36, Theorems 3.1 and 4.5]. In the case of Corollary 3.5, 
the details as worked out in [36] give the following. Suppose that 

(3.9) 

as in (c), and let x E C. Let K(x) be the set of indices k E [1, r] for which 
the max in (3.9) is attained, and let J(x) be the set of indices i E [1, s] for 
which 1;(x) = 0 (the active inequality indices). Let M(x) denote the set of all 
multiplier vectors (z, y) = (ZI ' •.. , zr' YI' ... , Ym) in JR.r x JR.m such that 

Then 

(3.10) 

Zk ~ 0 for k E K(x), 

Yi~O foriEJ(x), 

Z k = 0 otherwise; 
k=1 

Yi=O forotheriE[1,s]. 

v E () f(x) ¢> :J(z , y) E M(x) 
r m 

with v - L zk \7gk(x) - L Yi\7 1;(x) E Nx(x), 
k=! i=! 
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where Nx(x) is the normal cone to X at x. Furthermore, in terms of the 
polyhedral cone 

3(x) = {~E Tx(x) I \7gk(X)'~ ~ 0 for all k E K(x), 
\7J;(x)·~ ~ 0 for all i E I(x), 

\7 J;(x) . ~ = 0 for i = s + 1, ... , m}, 

one has for any v as in (3.10) and the corresponding set Mv (x) of multiplier 
vectors (z, y) appearing in (3.10) that 

1 max ~ . [t Zk \72 gk(X) + t Yi \72 J;(X)] ~ < 00 
r" ): = (z ,Y)EMv(x) k=l i=l 

(3.11) Jx v(") h ): -() , wen .. E.::. x , 
00 when ~ ff. 3(x). 

Theorem 3.7. Let f be a closed proper convex function on IRn , and let rp be a 
function constructed from f in either of the following ways. 

(a) rp = f + g, where g is a convex function of class !(j2 on IRn; 
(b) rp = fOg (infimal convolution), where g is the conjugate of a convex 

function of class !(j2 on IRn. 

Then rp is a closed proper convex function, and rp is essentially twice epi-
differentiable if and only if f is essentially twice epi-differentiable. 
Proof. Case (a) merely extends [36, Proposition 2.10] to the terminology of 
Definition 2.5. The sum of a closed proper convex function and a finite convex 
function is well known to be a closed proper convex function. Case (b) follows 
from Theorem 2.4 by duality with (a): one has fOh* = (f* + h)* by [2, 
Theorem 16.4] when h is a finite convex function. D 

Corollary 3.8. Let f be a closed proper convex function on IRn and let l (for 
). > 0) be the Moreau- Yosida approximate given by 

l(x) = ~i~ {f(W) + 21). Iw - X12} . 

Then f is essentially twice epi-differentiable if and only if l is twice epi-
differentiable. 
Proof. Apply case (b) of Theorem 3.7 with g(x) = (1/2).)lxI 2 . D 

Corollary 3.9. Let C be a nonempty closed convex set in IRn. Let d~(x) = 
dist2(x, C) and let Pc(x) be the projection of x on C (nearest point mapping). 
Then the following properties are equivalent to each other: 

(a) the indicator c5c is twice epi-differentiable; 
(b) the convex function d~ is twice epi-differentiable; 
(c) the projection mapping Pc is proto-differentiable. 
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Proof. For j = Jc we have d~ = l for A = -! . The equivalence between (a) 
and (b) is therefore a special case of the equivalence in Corollary 3.8. The equiv-
alence between (b) and (c) follows from Theorem 2.4 because Pc = -!\7[d~]. 0 

Corollary 3.9 can be applied in particular, of course, to the vast class of 
convex sets C covered by Corollary 3.5(b). 

4. SADDLE FUNCTIONS AND EPI/HYPO-CONVERGENCE 

A function K: ]Rn x ]Rm ~ i: is a saddle junction if K(x, y) is convex in x 
and concave in y. The convention that convexity occurs in the first argument 
and concavity in the second is of course arbitrary, but we shall rely on this 
particular asymmetry to keep straight a number of definitions. Thus for any 
function K:]Rn x ]Rm ~ i:, whether a saddle function or not, we define the 
effective domain of K by 

(4.1) domK = dom, K x dom2 K = {x I K(x, .) > -oo} x {y I K(., y) < oo} 
and say that K is proper when this is nonempty. Furthermore, we denote by 
cl~ K the function obtained by taking the (convex) closure of K in the first 
argument: for each y, the function (cl~ K) (. , y) is the greatest closed convex 
function majorized by K(·, y) , i.e., the biconjugate of K(·, y). (Recall that 
in convex analysis, a convex function is closed either if it is proper and lower 
semicontinuous, or if it is the constant function 00 or the constant function 
-00.) In parallel fashion, we denote by cl; K the function obtained by taking 
the (concave) closure of K in the second argument. 

Two saddle functions K and L are called equivalent if cl; K = cl; Land 
cl; K = cl; L. A saddle function K is said to be closed if K is equivalent to 
cl~ K and cl; K . This definition of closedness stems from the fact that the class 
of saddle functions K satisfying K = cl~ K = cl; K is too narrow. It can be 
shown, for instance, that starting from an arbitrary function K: ]Rn x ]Rm ~ i:, 
the functions cl; cl; K and cl; cl; K will always be closed saddle functions, and 
if K is itself a saddle function and proper, then they will be equivalent and 
only depend on the equivalence class containing K. In this sense, therefore, 
a closure operation exists for saddle functions K even though cl~ cl; K and 
cl; cl~ K generally do not coincide. 

The theory of equivalence classes of closed saddle functions on ]Rn x ]Rm 
was first developed in [46]; see also [2, §§33-37]. It is deeply connected with 
minimax theorems and the study of Lagrange multipliers and duality in convex 
optimization. Each equivalence class is actually an interval consisting of all 
the saddle functions K satisfying K :S K :S K , where K and K are saddle 
functions satisfying 
( 4.2) cl; K = K and cl~ K = K. 
We sometimes emphasize this fact by writing [K, K] for the equivalence class. 

All the saddle functions K in a closed, proper equivalence class [K, K] 
have the same effective domain dom K , where they are all finite. Their values 
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agree when x E ri( dom l K) or when y E ri( dom2 K). They also have the same 
subgradients, which are defined by 

oK(x, y) = 0lK(x, y) x 02K(X, y) 

(4.3) ={(v,u)lthefunctionKv,u(~,Yf)=K(~,Yf)-v.~-u,Yf 

has a saddle point at (~ , Yf) = (x, y)}, 
where 0lK(x, y) is the set of subgradients of K(·, y) at x, and 02K(X, y) is 
the set of subgradients of K(x, .) at y. 

Later, when we come to the extension to saddle functions of the results in 
§§2 and 3, we shall be involved very strongly with several fundamental rela-
tions of conjugacy. First there is the concept of conjugacy for saddle functions 
themselves. Given any closed proper saddle function K, one defines 

(4.4) K*(v, u) = infsup{v· x + U· y - K(x, y)}, 
y x 

(4.5) K*(v, u) = supinf{v· x + U· y - K(x, y)}. 
x Y 

These are closed proper saddle functions which are equivalent to each other and 
satisfy 

(4.6) 

Moreover they depend only on the equivalence class [K, K] that contains K. 
Thus [K*, K*] is an equivalence class of closed proper saddle functions; it 

is said to be conjugate to [K, K]. For any saddle function K* in the class 
[K* ,K*] one has 

(4.7) K(x, y) = infsup{v· x + U· Y - K*(v, u)}, 
u 11 

(4.8) K(x, y) = supinf{v· x + U· Y - K*(v, u)}, 
11 X 

so that the class [K, K] is in turn conjugate to [K*, K*]. Furthermore, one 
has 

( 4.9) (v, u) E oK(x, y) ¢} (x, y) E oK*(v, u). 

For any closed proper saddle function K, the partial conjugate functions F 
and G defined by 

(4.10) 

( 4.11 ) 

F(x, u) = sup{K(x, y) - U· y}, 
y 

G(v, y) = inf{K(x, y) - V· x} 
x 

are called the parents of K. They depend only on the equivalence class [K, K] 
containing K, and indeed this class can be recovered from its parents by the 
formulas 

( 4.12) 

( 4.13) 

K(x, y) = inf{F(x, y) + U· y}, 
u 

K(x, y) = sup{G(v, y) + v· x}. 
11 
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From this it is clear that 

(4.14 ) 

( 4.15) 

G(v, y) = inf{F(x, u) - v· x + u· y} = -F*(v, -y), 
x.u 

F(x, u) = sup{G(v, y) - U· Y + v ·x} = -G*(-x, u). 
v,y 

Indeed, F is a closed proper convex function on ]Rn x]Rm and G is a closed 
proper concave function on ]Rn x ]Rm. Moreover, for any such F and G re-
lated by (4.14)-(4.15), the formulas (4.12) and (4.13) determine an equivalence 
class [K, K]. Thus there is a three-way one-to-one correspondence between 
the closed proper convex functions F on ]Rn x ]Rm , the closed proper concave 
functions G on ]Rn x ]Rm , and the equivalence classes of closed proper saddle 
functions K on ]Rn x ]Rm . Under this correspondence one has 

( 4.16) (v, u) E 8K(x, y) ? (v, -y) E 8F(x, u) ? (-x, u) E 8G(v, y). 

Let us turn now to the notions of convergence that fit with this setting. For a 
family of functions Ft for t > 0 we can consider epi-convergence to a function 
F as t 1 0, as in §2. Quite similarly there is a notion of hypo-convergence of a 
family of functions Gt to a function G. The latter merely involves interchang-
ing the roles of "inf' and "sup" in the definition given for epi-convergence. 
When the functions Ft and F are closed proper convex, and Gt and G are 
the corresponding closed proper concave functions under (4.9), (4.10), these 
notions of convergence are equivalent to each other by the well-known theorem 
of Wijsman [42] on the continuity of the Legendre-Fenchel transform. 

In view of the three-way correspondence mentioned above, there must be an 
equivalent notion of convergence for the corresponding saddle function classes 
[Kt' K t] and [K, K], but what is it? An answer has been provided by Attouch, 
Aze, and Wets [38] in a general setting of Banach spaces. Here we specialize 
and modify their result so as to present the answer in a somewhat simpler and 
sharper form which is more convenient for the case at hand. 

Definition. A family of closed proper saddle functions K t for t > 0 will be 
called modulated as t 1 0 if for some p ~ 0 sufficiently large and r > 0 
sufficiently small, one has for all t E (0, r) that 

(4.17) 

( 4.18) 

inf Kt(x, y) :S p(1 + Iyl) for all y, 
Ixlsp 
sup Kt(x, y) ~ -p(l + Ixl) for all x. 
Iylsp 

Such a family will be said to epi/hypo-converge (in the modulated sense) to a 
closed proper saddle function K if it is modulated as t 1 0 and satisfies 

( 4.19) limsup inf Kt(x',y'):SK(x,y), 
/ __ 1' x'--+X 
uo 

(4.20) lim inf sup Kt(x' , y') ~ K(x, y). 
.' -\ v'--.v no - . 
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Note. For simplicity in this paper, when we use the term epi/hypo-convergence we 
shall always mean epi/hypo-convergence in the modulated sense, as just defined. 
This contrasts other senses of epi/hypo-convergence described in [38] and [47]. 

Observe that this property of convergence is really one of equivalence classes 
rather than of individual functions. The same is true of the modulation property 
by itself. 

Observe further that the modulation property is satisfied trivially in the spe-
cial case where the functions K t all have a saddle point at (0, 0) with saddle 
value Kt(O, 0) = O. Then one can simply take p = O. This is in fact the case 
that will occupy us in our subsequent work with second derivatives. 

The following theorem ensures in particular that for modulated families K t 
there is at most one epi/hypo-limit K up to equivalence. 

Theorem 4.1. Let Kt for t > 0 and K be closed proper saddle functions with 
convex parents Ft and F, and concave parents Gt and G. Then the following 
are equivalent: 

(a) Kt epi/hypo-converges to K as t 1 0, 
(b) Gt hypo-converges to G as t 1 0, 
(c) Ft epi-converges to F as t 1 O. 

Proof. Only a modest addition to the arguments of Attouch, Aze, and Wets [38, 
Theorem 3.1] will be needed. As a preliminary, however, we must show that 
property (4.17) in the definition of "modulated" is equivalent (for p sufficiently 
large) to 

(4.21 ) min F;(x, u):::; p, 
ixi:S:p, iui:S:p 

whereas (4.18) is equivalent to 

( 4.22) max Gt(v, y) :::; -p. 
ivi:S:p, iyi:S:p 

Clearly (4.17) can be written in the form 

(4.23) 

with 

-p sup inf K t (x, y) :::; p, 
y x 

-p { Kt(x, y) - plyl if Ixl :::; p, 
K t (x, y) = 00 if Ixl > p. 

For p sufficiently large, K~ is a closed proper saddle function with dom l K~ 
bounded. For such a function we have 

-p -p sup inf K t (x, y) = min sup K t (x, y) 
y x x y 

by [2, Corollary 37.3.1]. Thus (4.23) is equivalent (for p sufficiently large) to 

(4.24) p ~ min sup{Kt(x, y) - plyl}. 
ixi:Sp y 
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The inner supremum in (4.24) can be written by Fenchel's duality theorem [2, 
Theorem 31.1] and the conjugacy relations (4.10), (4.12) between Kt(x; .) and 
Ft(x, .) as 

inf Ft(x, u). 
lul::;p 

Substituting this into (4.24) we get the desired inequality (4.21). The proof that 
(4.18) is equivalent to (4.22) runs along similar lines-or one can just invoke 
duality. 

Now let K and K denote the functions on the left in (4.19) and (4.20), 
so that these two inequalities, which characterize epi/hypo-convergence, can be 
written as 

( 4.25) K ~ K and K ~ K. 

What Attouch, Aze, and Wets state in effect in [38, Theorem 3.1] is that if 
either (4.21) or (4.22) hold for 0 < t < r (where r is sufficiently small and p 
sufficiently large), then (b) and (c) are equivalent to 

( 4.26) 

The equivalence of (b) with (c) was already known to be true even without such 
assumptions, and indeed it is obvious that (b) implies (4.21) and (c) implies 
(4.22). The only real issue then in deriving the present version of the result is 
whether, under both of these assumptions, (4.25) is equivalent to (4.26). 

Certainly (4.25) does imply (4.26) by (4.2). The pattern of argument used 
in [38], on which we shall rely here as well, consists in showing first that the 
inequalities 

lim sup inf Ft(x',u')~F(x,u), 
110 (x', u')-+(x, u) 

liminf sup Gt(v', y') ~ G(v, y), 
110 (v' ,y')-+(v ,y) 

which follow from (b) and (c), imply (4.26). Actually the proof that is furnished 
for [38, Theorem 3.1] shows that they imply the stronger condition (4.25). The 
remaining part of the argument in [38] is to verify that (4.26) yields the in-
equalities 

lim inf , fnf ~(x' , u') ~ F(x, u), 
ILO (x ,u )-+(x,u) 

lim sup sup Gt(v' , y') ~ G(v, y), 
110 (v' ,y')-+(v ,y) 

which are known to imply (b) and (c) under either of the assumptions (4.21) 
or (4.22). This pattern thus in fact yields a circle of implications proving that 
(4.25) and (4.26) are equivalent, as required. D 

From Theorem 4.1, we can derive the continuity of the conjugacy correspon-
dence under epi/hypo-convergence. 
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Theorem 4.2. For closed proper saddle functions K, and K having conjugates 
K; and K* , the following are equivalent: 

(a) K, epi /hypo-converges to K as t 1 0 ; 
(b) K,* epi/hypo-converges to K* as t 1 0 . 

Proof. By writing (4.10) and (4.11) in the form 
(4.27) -F(x, u) = inf{u· y - K(x, y)}, 

y 

(4.28) -G(v, y) = sup{v· x - K(x, y)}, 
x 

we obtain from (4.4) and (4.5) that 
(4.29) K*(v,u)=inf{x.v-G(v,y)}, 

y 

( 4.30) K*(v, u) = sup{y· u - F(x, u)}. 
x 

The functions -G and -F thus serve as the convex and concave parents of 
K*. Obviously F, epi-converges to F if and only if - Ft hypo-converges to 
- F,. By Theorem 4.1, the first property is equivalent to the present property 
(a), while the second is equivalent to the present (b). 0 

The next theorem offers a small improvement over the result of Attouch, Aze, 
and Wets [38, Theorem 3.6] on the graphical convergence of subdifferentials of 
saddle functions. The improvement consists in translating the "normalizing 
condition" on function values into the saddle function context. 

Theorem 4.3. Let K, and K be closed proper saddle functions with convex par-
ents F, and F and concave parents G, and G, as well as conjugates K,* and 
K*. Then the following conditions are equivalent to the ones in Theorem 4.1 and 
Corollary 4.2. 

(a) 8 K, converges graphically to 8 K as t 1 0, and one can find x, -+ 

x, y, -+ y, u, -+ u, v, -+ v such that (v" u,) E 8K,(x" Yt) and 
Kt(xt , Yt) -+ K(x, y) ; 

(b) 8 Ft converges graphically to 8 F as t 1 0 and one can find x t -+ x , 
Yt -+ y, ut -+ U, vt -+ v, such that (Vt' -Yt) E 8Ft(xt , ut) and 
F/x" ut) -+ F(x, u); 

(c) 8 G, converges graphically to 8 G as t 1 0, and one can find x t -+ x , 
Yt -+ y, ut -+ U, vt -+ v, such that (-Xt' ut) E 8GI(vt , Yt) and 
Gt(v" Yt) -+ G(v, y) ; 

(d) 8 Kt* converges graphically to 8 K* as t 1 0, and one can find x t -+ 

x, Yt-+ y , ut-+u, vt-+v such that (Xt 'Yt)E8Kt*(vt ,ut ) and 
Kt*(vt' ut) -+ K*(v, u). 

Proof. From (4.16) we have 

(v" ut) E 8K,(xt , Yt) ¢:} (Vt' -Yt) E 8F;(Xt' ut) ¢:} (-xt , ut ) E 8G/vt , Yt)' 
From (4.9) we also have 

(XI' Yt) E 8Kt*(vt' u,) ¢:} (v t ' ut) E 8Kt(xt , Yt)' 
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These equivalent conditions imply by the conjugacy relations that 

Ft(xt , ut) + ut . Yt = Kt(xt , Yt) = Gt(Vt , Yt) + vt . x t ' 

Kt*(vt' ut) = vt ' XI + ut ' Yt - Kt(xt , yt)· 

Such equations establish that (a), (b), (c), and (d) of the present theorem are 
equivalent to each other. By the theorem of Attouch [16], (b) of the present 
theorem is equivalent to (b) of Theorem 4.1, and this gives us our result. 0 

5. EPI/HYPO-DERIVATIVES OF SADDLE FUNCTIONS 

Let K be a closed proper saddle function on ]Rn x]Rm with convex and 
concave parents F and G as above, and let (x, y) be a point of domK. We 
define K to be epi/hypo-dijferentiable at (x, y) if the difference quotients 

(5.1) kt(~' YJ) = [K(x + t~, Y + tYJ) - K(x, y)]/t for t > 0, 

which are closed proper saddle functions, epi/hypo-converge (as defined in §4) 
to a closed proper saddle function k. Then in place of k(~, YJ) we write 
K~ ,y (~ , YJ) , bearing in mind that the symbol K~, y only represents an element of 
an equivalence class of saddle functions, i.e., is only defined up to equivalence. -, , 
The upper and lower elements of the class are denoted by K x, y and K x, y • 

If K is epi/hypo-differentiable at (x, y) in this sense, we consider further, 
for any vector pair (v, u), the second-order difference quotients 

(5.2) kt(~' YJ) = [K(x + t~, Y + tYJ) - K(x, y) - tv·~ - tu· YJ]/~t2 for t > O. 

Again, these are closed proper saddle functions. If they epi/hypo-converge to 
a closed proper saddle function k as t 1 0, we say that K is twice epi/hypo-
differentiable at (x, y) relative to (v, u). The function k is denoted then by K:, y; u, v ' which thus merely denotes an arbitrary member of a certain equiva-
lence class of closed proper saddle functions. The upper and lower elements of 
h' I . -/I d /I t IS C ass are wntten as KX,y;U,v an KX,y;U,v' 

It may not be obvious that these concepts really depend only on the equiva-
lence class containing K, but thIS is one of the consequences of Theorems 5.1 
and 5.2 below. 

It is worth noting that in the second-derivative case (5.2) the difference quo-
tient satisfies kt(O, 0) = 0 for all t. Thus in this case kt is certainly modulated 
as t 1 0 , and the question of epi/hypo-convergence of k t to k revolves simply 
around the inequalities 

lim sup inf [K(x + t~', Y + tYJ') - K(x, y)]/ ~t2 s k(~ , YJ), 
~'_~ ¢'--->~ 

1)0 

lim i,nf ~nf [K(x + t(, y + tYJ') - K(x, y)]/~t2 ~ k(~, YJ). 
< -< 'I --->'1 

1)0 
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Theorem 5.1. For K to be epi/hypo-dijferentiable at (x, y), it is necessary and 
sufficient that 8K(x, y) -:j; 0. Then 

(5.3) 

whenever (~, 11) is such that the" sup" is not 00, or the inf is not -00. (If 
00 - 00 = 00 is used in this formula for (~, 11) such that the" sup" is 00 and 
the" inf" is -00, one gets K~ . If 00 - 00 = -00 is used instead, one gets ,y 

K~, y' In this sense, the formula covers the entire equivalence class.) 
Proof. Taking k( to be the function in (5.1), we demonstrate first that k( is 
modulated as t 1 0 if and only if 8K(x, y) -:j; 0. Suppose, to begin with, that 
8K(x, y) -:j; 0; let (v, u) E 8K(x, y). By (4.3) we have 

K(x + t~ , y) 2: K(x, y) - t~ . v for all ~ , 
K(x, y + tl1)::; K(x, y) - tl1' u for all 11, 

so that for P = max{lul, Ivl} we have 

kt(~' 0) 2: -~ . v 2: -pl~1 for all ~, 
k/O, 11) ::; -11' u ::; -pll1l for all 11. 

Then in particular the convex function kl, 0) is proper, so that the function 
kl, 0) = cl~ k(·, 0) is just the lower semicontinuous hull of kt (·, 0) and sat-
isfies kt(~' 0) 2: -pl~l. Similarly k)O, 11) ::; pll1l. Trivially the definition of 
k t being modulated as t lOis then satisfied: 

inf kl(~' 11) ::; p(l + 1111) for all 11 , 
1':I:Sp 

sup kt(~' 11) 2: p(l + I~I) for all ~. 
1'II:Sp 

Conversely, suppose that k( is modulated as t 1 0 and consider the parents 
of kt' which are the functions 

(5.4) J;(~, u) = sup{kt(~' 11) - 11' u} = [F(x + t~, u) + y. u - K(x, y)]/t, 
'I 

(5.5) gt(v, 11) = inf{kt(~' 11) - ~. v} = [G(v, y + tl1) + X· v - K(x, y)]/t . .: 
By the argument given at the beginning of the proof of Theorem 4.1, the modu-
lation property implies for p > 0 sufficiently large and r > 0 sufficiently small 
that 

(5.6) 

(5.7) 

min J; (~ , u) ::; p when 0 < t < r , 
1':I:Sp,lul:Sp 

max gt(v, 11) 2: -p when 0 < t < r. 
Ivl:Sp.I'II:Sp 

For any sequence t, 1 0, there exist by (5.6) sequences {~,} and {u,} with 
I~,I ::; p and lu,l::; p such that 

F(x + t,~" u,) ::; tiP + K(x, y) - y. u,. 
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Passing to subsequences if necessary, we can suppose that ui converges to some 
u. Then 

F(x, u) ~ K(x, y) - y. u, 

and inasmuch as 
F(x, u) = sup{K(x, y') - y' . u} 

y' 

we are able to conclude that 

K(x, y') ~ K(x, y) + U· (y' - y) for all y' , 

which means that u E 82K(x, y). In a similar way, (5.7) yields the existence 
of some v such that v E 8 t K(x, y). Thus 8K(x, y) i= 0, as claimed. 

Concentrating now on the case where 8K(x, y) i= 0, we work toward the 
derivative formula (5.3). Consider the functions 

8 t (~) = lim[K(x+t~, y)-K(x, y)]/t, 82 (11) = lim[K(x, y+tl1)-K(x, y)]/t. 
flO 110 

The first limit is monotone decreasing, and the second is monotone increasing. 
We know from convex analysis that 8 t is a positively homogeneous, proper 
convex function whose (convex) closure is 

( 5.8) fl. t (~) = sup ~ . v . 
VEDIK(x ,y) 

whereas 82 is a positively homogeneous, proper concave function whose (con-
cave) closure is 

( 5.9) 

An equivalence class of closed, proper saddle functions is therefore given by the 
interval [k, k] , where 

k(~, 11) = fl. t (~) + e2 (11) with 00 - 00 = 00, 

k(~ , 11) = fl. t (~) + 82 (11) with 00 - 00 = -00. 

We want to show for k in this class that kt epi/hypo-converges to k. 
The parent functions for k are 

(5.10) 

(5.11 ) 

It will be proved that 

f(~, u) = fl. t (~) + c5(u I 82K(x, y)), 

g(v, 11) = e2 (11) - c5(v I 8 tK(x, y)). 

(5.12) lim sup inf J;((,u')~f(~,u), 
t 10 ((, u')-+(~, u) 

(5.13) liminf sup gt(v', 11') ~ g(v, 11). 
t 10 (Vi , ~')-+(v,~) 

Because of the usual relations between convex and concave parents, in (4.14) 
and (4.15), the inequality (5.13) is equally well written as 

(5.14 ) limsup I inf J;*(v',I1')~f*(v,I1). 
flO (11 , ~ )-+(1I,~) 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



72 R. T. ROCKAFELLAR 

From (5.12) and (5.14) it will follow that 1; epi-converges to f as t 1 0 (cf. 
[38]), and consequently by Theorem 4.1 that k t epi/hypo-converges to k as 
t 1 O. This will finish the proof of the theorem. 

By duality we need only prove (5.12), and for this it will suffice to establish 
that 

(5.15) lim sup ,~nf 1;(( , u') :S ~1 (~) when u E 02K (X, y). 
t10 (x ,u )-+(~, u) 

The condition U E 02K(X, y) gives F(x, u) = K(x, y) - u . y (in particular 
F(x, u) must thus be finite) and allows us to express 

(5.16) 1;((, u') = [F(x + t~', u') - F(x, u) + y. (u' - u)]/t. 

With such a u fixed from now on, we denote by qJ(~) the left side of (5.15), 
so that 

(5.17) qJ(~) = lim [lim sup [ J?in 1;((, U,)]]. 
e10 110 I" -,I S, 

lu -ul::::;t: 

The function qJ is lower semicontinuous, in particular. Our aim is to demon-
strate that qJ :S ~1 • 

From (5.17) we see that for every vector wE]Rm it is true that 

Therefore 

(5.18) 

qJ(~) :S lim [lim sup[1;(~ , u + tW)]] 
e10 110 

= lim sup[F(x + f~, u + fW) - F(x , y) + ty· w]/t 
110 

= F' (x, y; ~ , w) + y . w. 

qJ(~):S inf{F'(x, u;~, w)+y·w}. 
w 

The infimum here is a function qJo(~) which is convex and positively homoge-
neous in ~, with qJo(O) < 00. This is because F' (x, u; ~, w) is convex and 
positively homogeneous in (~, w) , with F' (x, u; 0, 0) = O. If we can prove 
that 

(5.19) ~1 (~) = lim inf qJo(~'), 
t-+~ 

we will know from the inequality qJ :S qJo in (5.18) and the lower semi continuity 
of qJ that qJ :S ~1 ' as desired. 

Because qJo is convex and positively homogeneous with qJo(O) < 00 , the right 
side of (5.19) is the support function of the set 

C = {v I v . ~ :S qJo(~) for all ~} 

[2, Corollary 13.2.1], if C -=I- 0. Thus with (5.8) in view, we have brought our 
task down to showing that C = °1 K(x, y) . 
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Since qJo(~) denotes the right side of (5.18), we have VEe if and only if 

v . ~ - y. w ~ F' (x, u; ~,w) for all ~, w. 

This inequality means that (v, -y) E 8F(x, u). But the latter is equivalent by 
(4.16) to having v E 8,K(x, y) and u E 82K(x, y). We chose u as an element 
of 82K(x, y), so it is indeed true that VEe if and only if v E 8,K(x, y). 
The proof of Theorem 5.1 is now complete. 0 

Theorem 5.2. The following conditions are equivalent and necessitate having 
(v, u) E 8K(x, y): 

(a) K is twice epi/hypo-differentiable at (x, y) relative to (v, u); 
(b) F is twice epi-differentiable at (x, u) relative to (v, -y); 
(c) G is twice hypo-differentiable at (v, y) relative to (-x, u) . 

When these conditions hold, the epi-hypo-derivative K:, y ; v, u is a closed proper 
saddle function which is positively homogeneous of degree two and has a saddle 
point at (0, 0) : 

U 2 U 
(5.20) KX,y;v,u(A~, A'1) = A KX,y;v,u(~' '1) for A> 0, 

K:,y;v,n(O, 0) = 0, 
U >u >u fi (5.21) KX,y;v,u(~' 0) _ KX,y;v,u(O, 0) _ Kx,y;v,n(O, '1) or all~, '1. 

Moreover the convex parent of !K:,y; V,u is !F;', u;v, _y' and the concave parent 
, 'Gu 
lS 2: v, y; -x, v ' 

Proof. For each t > ° the function kt in (5.2) gives 

(5.22) !kt(~' '1) = [K(x + t~, Y + t'1) - K(x, y) - t~· v - t'1' u]/t2. 

The convex parent of this saddle function !kt is readily calculated to be !.t;, 
where 

(5.23) .t;(~, w) = [F(x + t~, utw) - (K(x, y) - y. u) - t~ . v + tw. y];!t2. 

At the same time, the concave parent is ! gt ' where 

(5.24) gt(C '1) = [G(v + tC Y -+- t'1) - (K(x, y) - X· v) + t(· x - t'1' U];!t2. 

By Theorem 4.1, !k( epi/hypo-converges to a closed proper saddle function 
!k if and only if .t; epi-converges to f, or equivalently gt hypo-converges to 
g , where f and g denote the functions giving ! f and ! g as the convex and 
concave parents of !k. To obtain our result, except for (5.20) and (5.21), we 
simply have to verify that under these circumstances one must have 

( 5.25) K(x,y)-y·u=F(x,u) and K(x,y)-x·v=G(v,y), 

so that 

(5.26) .t;(~, w) = [F(x + t~, u + tw) - F(x, u) - t(~, w) . (v, -y)]/ !t2 , 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



74 R. T. ROCKAFELLAR 

( 5.27) gt(( , Y/) = [G(V + t(, y + ty/) - G(V, y) - t((, Y/) . (-X, V)]/1 t2 . 

In particular it will follow that (V, U) E 8K(x, y), since the equations in (5.23) 
are equivalent respectively by the parenting formulas (4.10) and (4.11) to u E 
82K(x, y) and v E 8,K(x, y). The epi-limit of 1; and hypo-limit of gt' if 

. " " any, wlll have to be Fx,U;V,-y and Gv,y;-x,u' 
Suppose 1; epi-converges to a function f =J:. 00. Then in particular there will 

exist sequences ti 1 0, ~i converging to some ~, and Wi converging to some 
W , and a value p > 0, such that 

1; (~i ' w) ~ p for all i. 
I 

From the definition (5.23) of 1; we get 

F(x + ti~i' U + tiWi) ~ (K(x, y) - y. u) + ti(~iV - wiy) + !t~ p, 

and by taking the "lim inf' on both sides as i -+ 00 we obtain 

F(x, u) ~ K(x, y) - y. u. 

The opposite inequality always holds by (4.10), so the first equation in (5.25) 
has been established as valid. The second equation may be proved in a dual 
manner, starting from the assumption that gt hypo-converges to a function 
g =J:. -00. 

We are left with verifying (5.20) and (5.21). These follow from the partial 
conjugacy between !K;,y;V,U and its convex parent F;',U;v,-y' The latter is 
known from Theorem 2.2 to be positively homogeneous of degree two and to 
have minimum value 0 at (0, 0). 0 

Theorem 5.3. The following conditions are equivalent: 
(a) K is twice epi/hypo-differentiable at (x, y) relative to (v, u); 
(b) K* is twice epi/hypo-differentiable at (v, u) relative to (x, y). 

When these conditions hold, the saddle functions ! K;, y ; v, u and ! Kl:~' u; x, yare 
conjugate to each other. 
Proof. This follows at once from Theorem 5.2 and the fact that the convex 
and concave parents of K* are given by -G and -F, respectively. That was 
shown in the proof of Theorem 4.2. 0 

Theorem 5.4. The following conditions are equivalent to each other: 
(a) 8K is proto-differentiable at (x, y) relative to (v, u), and ((, w) E 

(8K)~,y;V,u(~' Y/); 
(b) 8F is proto-differentiable at (x, u) relative to (v, -y), and ((, -Y/) E 

(8F)~'U;I',_y(~, w); 
(c) 8G is proto-differentiable at (v, y) relative to (-x, u), and (-~, w) E 

(8G);"y;_x.u((' Y/); 
(d) 8K* is proto-differentiable at (v, u) relative to (x, y), and (~, Y/) E 

(8K*(u;x .y((' w). 
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Proof. The equivalences (4.9) and (4.16) tell all. They give us 

((, w) E [oK(x + t~, Y + trO - (v, u)]/t 
¢:} ((, -17) E [oF(x + t~, u + tw) - (v, -y)]/t 
¢:} (-~, w) E [oG(v + t(, y + t17) - (-x, u)]/t 
¢:} (~, 17) E [oK*(v + t(, u + tw) - (x, y)]/t, 

and everything then follows. D 

Theorem 5.5. The following conditions are equivalent and result in the formula 
( l.KI! - ' . o 2 X,y;v,J - (oK)x,y;v,n' 

(a) K is twice epi/hypo-di./ferentiable at (x, y) relative to (v, u); 
(b) oK is proto-di./ferentiable at (x, y) relative to (v, u) . 

Proof. Aplying Theorem 2.2 to F , we get the equivalence of the proto-differen-
tiability in Theorem 5.4(b) with the twice epi-differentiability in Theorem 5.2(b). 
We also get 

( 5.28) I" ) )' o('2Fx ,u;v, -y = (oF x ,u;v, _yO 

B IF" . h f I K" b Th 5 2 ecause '2 X,u;v,-y IS t e convex parent 0 '2 X,y;V,u y eo rem ., we 
have also by the general relations (4.16), specialized to these second-derivative 
functions, that 

(5.29) ((, w) E o(iKx,y;v,uK")(~, 17) +-+ ((, -17) E o(i}~',u;V,-y)(~, w). 

The combination of (5.28) and (5.29) with the equivalence between the deriva-
tive relations in conditions (a) and (b) of Theorem 5.4 yields our conclusion. D 
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