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SUMMARY 
We have formulated a new waveform-analysis procedure to recover phase and 
amplitude information frorn individual seismograms that makes use of the ability to 
compute complete seismograms from realistic earth models. The basic tool is the 
isolation filter, a composite waveform constructed to select data from a desirable 
portion of the seismogram. When the cross-correlation between this synthetic 
waveform and an observed seismogram is localized in the time domain by 
windowing and in the frequency domain by narrow-band filtering, the resulting 
cross-correlagram can be approximated by a five-parameter Gaussian wavelet. One 
of these five parameters is the bandwidth of the correlagram, specified by the 
narrow-band filter; the other four define a set of time-like, frequency-dependent 
quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ br, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: x  = q,  p, a,  g}, which are functionals of earth structure. bt, is the 
differential phase delay and at, is the differential group delay of the observed 
waveform relative to the synthetic, and bt, and 6t, are the corresponding 
frequency-dependent amplitude parameters. We have developed a procedure for 
measuring the four generalized seismological data functionals by fitting a Gaussian 
wavelet to the windowed, filtered cross-correlagram. To relate the GSDFs to earth 
structure, we apply corrections to the differential times for the effects of windowing 
and filtering. Solving a linear system of four equations in four unknowns yields a set 
of differential dispersion parameters { bz, : x  = q, p, a, g}. Formulae expressing the 
perturbations of the GSDFs in terms of the perturbations to the dispersion 
parameters for the individual component waveforms, including all interference 
effects, have been derived. Under a set of approximations valid for a large class of 
isolation filters, these can be simplified to yield easily computed expressions for the 
FrCchet kernels of the 6 ~ ~ ’ s .  The calculation of these FrCchet kernels requires no 
high-frequency approximations, and it can be extended to the investigation 
three-dimensional earth structure. 

Key words: isolation filter, seismograms, structural inverse problem, waveform 
analysis. 

1 INTRODUCTION dynamical implications of upper mantle anisotropy, the . .  ~~ 

boundary layer structure of the core-mantle interface, and 
the long-standing controversy regarding chemical stratifica- 
tion in the mid-mantle transition zone. Although progress 

existing methodologies to the growing catalogue of digitally 
recorded seismograms, it can be accelerated by improving 
the quality, as well as the quantity, of data available for the 
structural inverse problem. 

The purpose of this paper is to introduce a waveform 
analysis procedure that can isolate new types of phase and 
amplitude information from individual seismograms. We 

A major focus of seismological research concerns the 
development of for extracting information from 
seismograms and using this information to construct earth 

lished over the last decade or so have allowed seismologists 
to investigate the three-dimensional structural variations 
associated with mantle and dynamics (e.g., Dziewonski 
& Woodhouse 1987; Jordan, Lerner-Lam & Creager 
1989). Despite some notable achievements, there is still no 
consensus on a number of critical issues, including the 

models-the structural inverse problem, Methods estab- certainly continue to be by the Of 

* Now at: Seismographic Station, UC Berkeley, Berkeley, CA 
94720, USA. 

motivate the analysis by discussing some general aspects Of 

structural inverse problems, and we illustrate some of the 

363 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
1
1
/2

/3
6
3
/7

5
3
8
5
3
 b

y
 g

u
e
s
t o

n
 2

5
 A

u
g
u
s
t 2

0
2
2



364 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. S.  Gee and T. H .  Jordan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
advantages of the proposed methodology by applying it to a 
simple but interesting observational problem taken from a 
previous study of upper mantle anisotropy. We then derive 
the basic theory of generalized seismological data 
functionals, including the first-order perturbation theory 
needed to set up structural inverse problems. Later papers 
will discuss general methods for the construction of 
isolation filters and will apply the theory to various 
observational problems. 

2 A PRACTICAL PHILOSOPHY FOR 
STRUCTURAL INVERSE PROBLEMS 

We can represent a seismogram zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ( t )  as a sum over 
waveforms ( u n ( t ) : n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 , 2 , .  . . }, 

where a particular element un(t) may be a body-wave pulse, 
a travelling-mode wave train, or any other convenient 
representation. Each waveform un( t )  is described by a 
series of kinematical and dynamical properties-traveltime, 
amplitude, dispersion, etc.-which are functions of the 
seismic source, the recording instrument, and the path 
travelled by the particular wave group. The classical 
approach in structural seismology is to separate the process 
of estimating waveform properties from the process of 
inverting for model parameters (Fig. 1). Discrete body-wave 
pulses are identified and their traveltimes and amplitudes 
are measured; surface-wave groups are isolated and their 
dispersion and attenuation properties are determined. These 
data are then inverted for an earth model whose 
parametrization is sufficiently complete to explain the 
observed variations. If a good starting model is available, 
the latter step may be accomplished using a perturbation 
theory based on the variational principles of Fermat and 
Rayleigh. 

One problem with this approach is interference by other 
arrivals. Indeed, portions of the seismogram where many 
wave groups arrive simultaneously cannot generally be 
resolved into either individual body waves or surface waves, 
and measurement schemes that rely on waveform isolation 
may not produce reliable results. Techniques based on 
frequency-wavenumber filtering have been used to separate 

Data 
Functionals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f l p [  Travel T imes ],m 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 'Classical' methodology separates the problem of 
determining earth structure into two parts: the measurement of 
well-defined data functionals, such as body-wave traveltimes and 
surface-wave dispersion, and the inversion of these data for earth 
models. 

Earth Models 

T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Synthetics I 

L I 

Figure 2. Waveform-inversion techniques build on current knowl- 
edge of earth structure through the construction of synthetic 
seismograms. The difference between the observed and synthetic 
seismograms is inverted directly for model perturbations. 

interfering groups of body waves (e.g. Capon 1969; Julian, 
Davies & Sheppard 1972; Vinnik 1977) and surface waves 
(e.g. Nolet 1977; Cara 1979), but they generally require the 
heavy processing of signals from arrays of seismometers not 
common in global studies of earth structure. Moreover, 
their ability to resolve individual components is always 
finite, and the bias due to residual interference is sometimes 
difficult to assess. 

Many of these difficulties can be avoided by inverting the 
complete seismogram directly for earth structure (Fig. 2). In 
the ideal situation when the entire wavefield is recorded by a 
spatially dense set of receivers from a spatially dense set of 
sources, non-linear image-reconstruction techniques can be 
applied to recover an image of the three-dimensional 
structure (Tarantola 1986). Although the collection of these 
sorts of ideal data sets can be approached in exploration 
seismology, where the effort and resources concentrated on 
imaging small volumes of the earth are high, the data sets 
available to global seismology are limited by the distribution 
of large-magnitude sources, primarily earthquakes, and the 
sparse distribution of stations, especially those with 
high-quality, digitally recording seismometers. In this 
situation, non-linear constructive methods cannot be applied 
because of the undersampling, and the manifold of models 
consistent with the data can have a very complex structure 
with many local minima. Global optimization methods such 
as simulated annealing (Rothman 1985) or genetic 
algorithms (Scales, Smith & Fischer 1991) are potentially 
useful for investigating this manifold, but the available 
codes are still primitive and can be immensely costly. In 
practice, therefore, the most feasible approach is based on 
the gradient method, which requires the problem to be 
linearized by assuming the solution is in some sense close to 
a chosen reference earth model. 

Theoretical and computational advances over the last two 
decades now permit the routine calculation of synthetic 
seismograms S( t )  using a variety of waveform repre- 
sentations. As in the case of equation ( l ) ,  a seismogram 
computed from a reference earth model m can be written as 
a sum over synthetic waveforms { E n ( [ ) } ,  

although N, the number of elements in the sum, is 
necessarily finite. Synthetic seismograms can accurately 
model wave propagation through realistic earth structures, 
as well as source and instrument effects. Most waveform 
inversion algorithms (Mellman 1980; Dziewonski & Steim 
1982; Woodhouse & Dziewonski 1984; Tanimoto 1984, 
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1987) subtract synthetic seismograms from the observed 
time series to form differential seismograms that are then 
inverted for a structural perturbation using first-order 
perturbation theory. The linearized inverse problem thus 
takes the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= as, ( 3 )  

where 6s is a vector containing the differential time series, 
6m is the model perturbation, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG is a matrix of partial 
derivatives. 

Among the drawbacks of waveform inversion are its 
generality and ‘black box’ character, which make it difficult 
to deal with the uneven distribution of structural 
information on real Seismograms. Consider, for example, 
the differences between phase and amplitude observations. 
The phase data contained in traveltime measurements are 
robust, because the variational principles imply that their 
first-order variations depend only on the zeroth-order 
wavefields; in particular, rules can be constructed on how 
linear averages of phase data are, to first-order, related to 
linear averages of the model parameters (Jordan 1980). 
Similar averaging rules are generally not available for 
amplitude data, which can be very sensitive to minor 
features in the earth that are impractical to include in model 
parametrizations. The long-standing recognition of this 
distinction explains why seismologists who study earth 
structure have concentrated on the measurement of 
traveltimes or equivalent parameters, such as surface-wave 
phase velocities and normal-mode eigenfrequencies. 

In simple waveform-inversion algorithms, however, 

information, and it is usually not possible to assess the 
contributions of specific features on the seismograms to 
particular aspects of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[lit: rcbuitiiig iiiucltii, I r I a a r r l g  11 ~ I ~ I U  1” 

evaluate the resolving power of the data set and to identify 
the robust features of the solution. Moreover, the results 
can be sensitive to  how the data are weighted. Because the 
modelling assumptions are inadequate to describe many of 
the wave arrivals-most of the noise is 3ignaLgenerated’- 
the statistical properties of the noise (e.g. its correlation 
structure) are not known, and any data weighting scheme is 
highly subjective. Finally, owing to the harmonic nature of 
band-limited signals and the possibility of cycle-skipping 
errors, the assessment of how well a synthetic matches an 
observed seismogram is ambiguous, making the inverse 
problem for differential seismograms highly non-linear. 
Waveform-inversion schemes tend to lock into spurious 
local minima if the starting model is not very close to the 
actual earth. Consequently, one of the purported ad- 
vantages of waveform inversion, fully automated analysis, is 
largely illusory. 

Seismologists now recognize that waveform inversion is 
no panacea and have begun to formulate more sophisticated 
approaches for extracting information from the seismogram. 
Recent examples include Cara & LCvCque’s (1987) method 
to invert wave group envelopes, Nolet’s (1990) partitioned 
waveform inversion, and Luo & Schuster’s (1991a) inversion 
of ‘skeletalized’ data. One strategy, closely related to the 
approach adopted here, has been developed for travelling 
modes by Lerner-Lam & Jordan (1983). They have posed 
the linearized inverse problem in terms of the difference 
between the observed cross-correlation function, or 

arnplitudc information gets scramhled tngether with phnqe 

cross-correlagram, Cms(t) = i i , ( t )  @ s ( t ) ,  and the model- 
predicted cross-correlagram, C,,(t) = ii,,,(t) @ S ( t ) ,  where 
i lm( f )  is the synthetic for the rnth mode. This type of 
waveform inversion has the merit that a set of mode 
branches can be chosen to emphasize information on the 
seismogram of particular significance to the inverse problem 
at hand. Since the information about the differential 
dispersion of the mth mode is concentrated near the peak of 
its cross-correlagram, where the signal-to-noise ratio (SNR) 
is typically the highest, windowing is effective in isolating 
this information from other signals. Because a number 
cross-correlagrams can be constructed from a given 
seismogram. it is easy to implement differential weighting 
schemes (e.g. downweighting the high-amplitude surface 
waves) to improve the resolution and variance of the model 
parameters (Lerner-Lam & Jordan 1983, 1987; Gee, 
Lerner-Lam & Jordan 1985). 

The waveform-analysis procedure formulated in this 
paper departs from the method of Lerner-Lam & Jordan 
(1983) by employing the cross-correlation of synthetics with 
observed seismograms to measure and interpret frequency- 
dependent traveltimes and related data functionals (Fig. 3), 
rather than inverting differential cross-correlagrams directly 
for earth structure. It is closely related to the ‘wave- 
equation traveltime inversion’ recently discussed by Luo & 
Schuster (1991a,b), which also formulates traveltime 
functionals in terms of cross-correlagrams. Whereas Luo 
and Schuster’s technique considers a single traveltime 
defined by the correlagram peak, ours extracts a more 
complete set of information from each correlagram. To 
define the correlagram. we employ a type of synthetic 
seismogram we call an isolation filter. 

An isolation filter, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( t ) ,  is a weighted sum of wave groups 

- 

-7..cL-&--‘4 c--... ~ rPF-rc-cr c=..,k -‘,deI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fw = c n;,(t) * C”(f). (4) 
n = l  

The asterisk denotes convolution of the nth synthetic wave 
group r7, with an arbitrary filter m,,. Examples of isolation 

p J - v  LWl 
Figure 3. The methodology discussed in this paper combines the 
advantages of the classical approach with those of waveform 
inversion. Synthetic seismograms constructed from a reference 
earth model are used to  extract ‘generalized data functionals’ from a 
selected wave group at a particular frequency, and these data are 
subsequently inverted for a improved earth model. The 
measurement process and the formulation of Frkchet kernels 
account for wave effects such as caustic phase shifts, dispersion, 
diffraction, and interference by other wave groups. 
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filters include individual body-wave arrivals such as S-waves, 
dispersed wave trains such as the fundamental-mode Love 
and Rayleigh waves, and general sums over travelling modes 
constructed to represent complex wave groups, such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASa. 
In fact, isolation filters need not correspond to any 
particular waveform in the standard taxonomy of seismic 
phases; for example, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, may be chosen so that f samples 
a particular r e g i o n 4 . g .  the mid-mantle transition zone, 
D", or even the inner core-in some specified way. 

To process an observed seismogram using a particular 
isolation filter, we apply two basic operations to the 
cross-correlagram Cfs(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f ( t )  8 s ( t ) .  The first localizes the 
signal in the time domain by zeroing C,,(t) outside of a finite 
window centred at the peak of the cross-correlagram. The 
second localizes the signal in the frequency domain by 
narrow-band filtering the windowed cross-correlagram about 
a set of reference frequencies {q}. The parameters 
controlling the time-domain and frequency-domain localiza- 
tions can always be chosen such that the output of these 
operations is well approximated by a Gaussian wavelet; i.e. 
as a monochromatic carrier modulated by a Gaussian 
envelope. We show that, when this approximation is 
enforced, the wavelet depends upon only four functionals 
of earth structure, two amplitude and two phase 
parameters. These four observables define the generalized 
seismological data functionals. The theory allows us to 
characterize these observables as well-defined functionals of 
earth structure; in particular, it yields FrCchet kernels that 
can be employed in linearized inversion for earth models. 
For simplicity, we shall present explicit expressions of these 
functional derivatives for only a one-dimensional, radially 
stratified model. Their generalization to two and three 
dimensions via the Born approximation (Woodhouse 1983; 
Tromp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dahlen 1990) is straightforward. 

The inversion of the generalized data for earth structure is 
thus separated from their measurement, as in the classical 
methodology of Fig. 1, permitting 'hands-on' assessments of 
the data quality and model robustness. Furthermore, the 
measurement procedure in the first step of Fig. 3 is much 
less susceptible to the cycle-skipping errors that often plague 
waveform inversion, and the inverse problem in the second 
step requires only the linearization of the relationship 
between the model and functional differentials, not between 
the model and differential seismograms. 

3 AN EXAMPLE APPLICATION: 
OBSERVATIONS OF Sa FOR A EURASIAN 
PATH 

While the concepts underlying the theory are simple, its 
mathematical details are rather complex. We fix some of the 
ideas and notation by illustrating, cookbook style, the 
application of the analysis procedures to an observational 
example. The seismograms are from a deep-focus Sea of 
Okhotsk earthquake (01 Feb 84, h = 581 km) recorded at 
the Global Digital Seismic Network (GDSN) station G R F O  
(A=74.3"). Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 plots the data s ( t )  for the long-period 
vertical (LPZ) and transverse (LPT) components between 
18 and 34 min after the origin time and compares them with 
the synthetics S( t )  computed for the EU2 model of 
Lerner-Lam & Jordan (1987). All time series have been 
low-pass filtered with an upper cut-off at  50mHz. The 
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Figure 4. f ( r ) ,  f(r), and s ( r )  for an earthquake source in the Sea of 
Okhotsk (02/01/84, h = 581 km) recorded at the Global Digital 
Seismic Network station GRFO (A = 74.3"). The rotated and 
filtered seismograms for the vertical (LPZ) and transverse (LFT) 
components are plotted with the isolation filters and the complete 
synthetic seismograms calculated by normal-mode summation from 
model EU2 (Lerner-Lam & Jordan 1987) appended to a PREM 
lower mantle (Dziewonski & Anderson 1981). The waveforms 
represented by f ( t )  comprise multiply reflected S phases and their 
near-surface interactions and are referred to as 'Sa' on both 
componen ts. 

agreement between the data and synthetics is good for the 
various body waves having turning points in the lower 
mantle, i.e. from direct S up to and including SSS, but is 
less favourable for the large Sa wave groups coming in after 
29 min, which contain energy propagating primarily through 
the upper mantle. At this distance, Sa can be represented 
as a superposition of multiply reflected body waves, 
including triplicated SSSS and, on the vertical component, 
various P-SV interconversions, or as a superposition of 
higher modes, primarily the first through sixth Love and 
Rayleigh overtones (Caloi 1953; BHth & Lopez-Arroyo 
1963; Brune 1964; Schwab, Kausel & Knopoff 1974; Cara 
1976). 

A close examination of Fig. 4 reveals an apparent 
inconsistency in the traveltimes of Sa: the observed 
waveform arrives earlier with respect to the synthetic on the 
transverse-component than on the vertical-component. We 
have used this and other observations as evidence for strong 
shearwave splitting due to radial anisotropy in the 
uppermost mantle beneath Eurasia (Gee & Jordan 1988). 
Given the complexities in the wave interactions that produce 
these seismograms, however, it is possible that this apparent 
splitting is due to the different ways that the SH and P-SV 
waveforms sample an isotropic upper mantle structure. If 
EU2 does not properly represent this structure, then 
differences of the sort illustrated in Fig. 4 might occur 
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Generalized seismological data functionals 367 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
without any anisotropy. The theory presented in this paper 
allows a uniform methodology to be applied to multicom- 
ponent data sets and is particularly well suited to resolving 
this kind of analysis problem. We shall carry out a 
step-by-step application of our techniques to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASa data in 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, beginning with the construction of isolation filters 
and proceeding through the measurement and interpretation 
of the frequency-dependent traveltimes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1 Construction of the isolation filters 

The isolation filters for this problem are synthetic 
seismograms of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASa phase on the transverse and vertical 
components. The seismograms are represented as sums over 
travelling modes, so that fi, ,(t) in equation (4) is the 
synthetic for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n - 1)th Love or Rayleigh overtone (i.e. 
n = 1 is the fundamental mode). These mode-branch 
seismograms are computed using the Harvard centroid- 
moment tensor (CMT) mechanism (Dziewonski, Franzen & 
Woodhouse 1984). The synthesis is done in the frequency 
domain by setting the weights (u,(w) proportional to a 
Gaussian function whose argument varies as the difference 
of the group delay computed for G,,(w) with respect to some 
reference arrival time r,yu. We adopt the value 
t,, = 31.5 min, which corresponds to a group velocity of 
4.36 km s- ' ,  and select the half-width of the Gaussian to 
restrict contributions to an effective group-velocity window 
of 4.2-4.5 km s- ' .  In performing this calculation, we must 
add the group delays of the source and instrument to the 
group traveltime. The inverse Fourier transform then yields 
time series corresponding to a stationary, phase-like 
approximation to Sa. As seen in Fig. 4, the transverse- 
component isolation filter computed by this algorithm 
comprises a single pulse similar to the Sa arrival on the 

complete synthetic, while the vertical-component isolation 
filter contains some additional energy associated with 
shear-coupled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPL modes propagating in the crustal 
waveguide, which arrive prior to Sa. Although it is possible 
to formulate a P-SV isolation filter that selectively 
eliminates the PL modes, and thus provides a sampling of 
upper mantle structure more equivalent t o  the SH isolation 
filter, we have not attempted to do  so for this exercise, since 
one of our goals is to illustrate how the theory accounts for 
the complexities of P-SV mode coupling. 

3.2 Computation of the cross-correlagrams 

Because the earth model is an inaccurate description of the 
structure along this particular path, the Sa synthetics do  not 
match the data. The information about these differences 
can be concentrated by forming the cross-correlation of 
the isolation filter with the observed seismogram, 
C/,(t) =f( t )  @ s ( t ) ,  shown in Fig. 5(a). The amplitude 
spectrum of Cfs(t), denoted lCfs(w)l, where w is angular 
frequency, is bandlimited by the GDSN instrument response 
and the low-pass filter applied to the seismograms. If the 
synthetic properly models these filters, then this amplitude 
spectrum will approximate the autocorrelation spectrum 
CAW) =f*(w)f(w), which we parametrize by a frequency 
centroid GC and half-bandwidth GC. For the SH isolation 
filters in Fig. 4, a Gaussian approximation to CAW) yields 
15,/2n = 28.4 millihertz (mHz) and 6-,/2n = 8.1 mHz. [NB. 
Throughout this paper, tildes will be placed over functions 
derived by cross-correlating the isolation filter with any 
synthetic seismogram, including f ( r )  itself, and over the 
spectral parameters derived from them.] 

Cdt) is, by definition, an even function, whereas Cr.(t) is 
asymmetric and displaced from zero lag by the phase 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200 ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 0 100 200 
Lag Time ( s )  

-200 -100 0 100 200 
Lag Time (s) 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Illustration of the analysis procedures for the vertical (left) and transverse (right) components of the Su example. (a) The 
cross-correlation function Cfs(f). (b) The windowed correlation WCfT(f). (c) The filtered and windowed correlation F;WCfs(t) for four filters 
with the analytic correlation functions obtained from minimizing equation (7) (dotted lines). 
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difference between the data and the synthetic. The direct 
measurement of this phase difference is the basis for a class 
of digital processing techniques commonly applied in the 
study of fundamental-mode dispersion, most notably the 
residual dispersion method of Dziewonski, Mills zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Bloch 
(1972) and the phase-matched filtering method of Herrin & 
Goforth (1977). In our example, the peak of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACr.(t) occurs at 
a lag-time that is about 6 s  more negative on the transverse 
component than on the vertical component, consistent with 
the traveltime differences observed directly on the time 
series. It can be shown that the peak shift is an estimate of 
the differential phase delay between the data and synthetic 
at the centre frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO,, provided 6; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( L % J C ~ ~ ) ~  << 1 
(Jordan 1980). For the data in Fig. 5(a), this squared ratio 
equals 0.08, so that the approximation is justified. 

3.3 Time-domain localization by windowing 

Near zero lag the cross-correlagrams are dominated by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Su phase, but at larger lag-times they exhibit complexities 
associated with other wave groups. TO reduce the influence 
of these interfering arrivals on our measurements, we 
localize the signal in the time domain by multiplying Cfis(t) 

by a windowing function W ( t )  that is non-zero only over 
some interval of total length T,. The windowed 
cross-correlagrams, WC,,(t) = W(t)Cfs( t ) ,  displayed in Fig. 
5(b), were computed using 140 s Hanning tapers centred at 
the peak of Crs(t). A squared-cosine window of this length 
has a Fourier transform with a corner frequency 
aJ2n i= 0.72/Tw = 5.2 mHz. By localizing the signal in the 
time domain, it acts to increase the effective half-bandwidth 
from GC/2n = 8.1 mHz to approximately (a: + L%f)*’*/2n = 
9.6mHz. 

In most applications of the residual dispersion technique 
to surface waves, the phase spectrum of a cross-correlagram 
is interpreted in terms of the dispersion of a single (e.g. 
fundamental) mode, which requires that the interference 
from modes not included in the phase-matched filter be 
small. Windowing in the time domain is commonly 
employed to suppress the distortion of the phase spectrum 
by extraneous signals (Herrin & Goforth 1977). The theory 
presented here also uses windowing to achieve time-domain 
localization, but this tapering operation need not completely 
eliminate the interference of arrivals excluded from f, since 
we shall account for such interference effects in the 
interpretation of the data. This aspect of the theory is a 
major advantage of our technique over standard residual- 
dispersion methods. 

3.4 Frequency-domain localization by narrow-band 
filtering 

The next step in our analysis scheme is to localize the signal 
in the frequency domain by convolving the windowed 
cross-correlagram with a set of narrow-band filters, 
{F;WCfs(t) = F;.(t) * [W(t)C,,(t)] : i = 1, 2, . . . , I}. We typi- 
cally use zero-phase filters with approximately Gaussian 
spectra of the form E ( w )  -exp [-(lo1 - ~ , ) ~ / 2 ~ 3 ,  where 
the ratio of the half-bandwidths a, to the centre frequencies 
w, are chosen to be much less than unity. The solid lines in 
Fig. 5(c) show the Sa results for a,/w, = 0.1 at  four centre 
frequencies: w,/2n = 45, 35, 25, and 15 mHz. 

The key to our theoretical treatment is the realization that 
each of the narrow-band waveforms produced by this 
sequence of operations is well approximated by a function 
g(t) which is the product of Gaussian envelope and a 
harmonic carrier: 

I.;WCfx(t) =g(t)  = A Ga [a,(t - tr)] cos [w,(t - t,)]. 

e-x*/2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) 

Here Ga(x) denotes the unnormalized Gaussian function 
. As discussed in Appendix A ,  such waveforms are 

called five-parameter Gaussian wavelets. In the vicinity of 
the carrier frequency w,>O, the Fourier spectrum of the 
Gaussian wavelet is 

where the approximation ignores the spectral peak centred 
at  -us. A Gaussian wavelet’s amplitude spectrum Ig(o)l is 
thus characterized by three parameters, a positive scale 
factor A ,  a centre frequency w,, and a half-bandwidth a,; 
and its phase spectrum @ ( w )  is characterized by two 
parameters, a phase delay t , =  GS/ws and a group delay 
t ,  = (d@/dw), .  

3.5 Definition and estimation of generalized data 

The five parameters in the Gaussian-wavelet model are 
estimated by fitting the time-domain expression (5) to the 
filtered, windowed cross-correlagram using a weighted 
least-squares method. We seek a wavelet g( t )  that best 
approximates the correlagram F;.WCf, ( I )  in the vicinity of its 
peak, which occurs at some lag-time ti. This is achieved by 
minimizing the quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I_:. [e wc,,(t) - g(t)l2e--y2(r-rI)* dt 

1-9. g2(t)e-y2‘f- h ) *  dt 
x 2  = (7) 

where y is an angular frequency which scales a Gaussian 
weighting function centred at ti. It can be shown that this 
procedure is equivalent to matching the low-order moments 
of the real-valued spectrum F;WCf,(w) to those of the 
Gaussian spectrum given by (6). In applying this 
waveform-fitting procedure to the Su example, we have 
chosen y =  a,, so that any variations in F;WC&(r) at 
lag-times larger than the envelope half-width of g(t) are 
downweighted substantially in the error measure. Fig. 5(c) 
superimposes the five-parameter model obtained from the 
minimization (dotted lines) on the observed cross- 
correlagrams (solid lines). The agreement is excellent where 
the amplitudes are large, with only small differences evident 
on the flanks of the cross-correlagrams. In this example (as 
in most cases), a well-defined global minimum is obtained. 

The interpretation of the wavelet parameters is 
particularly straightforward when three conditions are 
satisfied: (1) other arrivals do  not interfere with the 
waveform f ( t ) ;  (2) the spectrum of F; is much narrower than 
that of WCfs; and (3) wi is not too far removed from Gc. 

Then, w,  i= wi and a, = o,, and it follows that t ,  and tg  will 
equal the differential dispersion of the data relative to the 
synthetic at w,, and A will measure their amplitude ratio. 
The requisite conditions are rarely achieved in practice, 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
1
1
/2

/3
6
3
/7

5
3
8
5
3
 b

y
 g

u
e
s
t o

n
 2

5
 A

u
g
u
s
t 2

0
2
2



Generalized seismological data functionals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA369 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
however, and a more refined analysis is needed for a proper 
structural interpretation. Our  procedure is t o  minimize a 
quadratic form like (7) to obtain a Gaussian-wavelet 
approximation to the filtered, windowed cross-correlagram 
between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( t )  and the complete synthetic i ( t ) :  

EWc,s(t) - g ( t )  - A  G a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[CS(t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I,)] cos [Lii,(t - I,)]. 

The apparent phase delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, and group delay S, measure the 
interference between the isolation filter and other 
waveforms on the synthetic, and will be small when F;.Wcfs 
is approximated by the filtered, windowed autocorrelation 
function Eweff. In the Sa example, the interference due to 
wavegroups excluded from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is negligible on the transverse 
component, but not on the vertical: at 25 mHz, for example, 
I ,  = -0.6 s and 7, = -4.2 s. It is typical that the interference 
affects the group delay more than the phase delay. 

To a very good approximation, the spectral widths of the 
cross-correlagrams are dominated by the various filters 
applied to the seismogram, which are known, and only 
weakly dependent on the unknown details of the 
propagation. Hence, the synthetics can be constructed such 
that us = CS. The differences between (5) and (8) can then 
be parametrized in terms of four time-like quantities. Two 
are the differential phase and group delays. 

St, = tp - 7,, 

St, = I ,  - 7,. 

The third measures the difference in logarithmic amplitudes, 

1 

WS 

St, = - [In A - In A],  

and the fourth measures the difference in centre 
frequencies, 

The quantities in (9)-(12) contain the information about 
earth structure extractable from eWC,,(t). Most data 
commonly derived from seismograms can be associated 
with, or related to, these four types of observables. Because 
the procedures we have described do  not depend on the 
particular waveform of interest, we shall call them 
generalized seismological data. In setting up structural 
inverse problems, one considers a particular datum to be an 
estimate of a certain function of earth structure, called a 
gross earth data functional by Backus & Gilbert (1967). We 
shall use the term generalized seismological data functionals, 

abbreviated GSDF, to describe the functional relationships 
between the set of differential times {St, = t, - 7, : x = 
q, p, a,  g} and an earth model perturbation 6m = m - m. 
One of the main purposes of this paper is to derive these 
functional equations. 

Fig. 6 shows the values of the differential times estimated 
by applying the waveform-fitting procedure to the Sa 
cross-correlagrams using filters spaced at 5 mHz intervals 
across the band 10-45mHz. An assessment of the 
uncertainties in these measurements will be deferred to a 
more comprehensive observational study. We note, 
however, that St, and 6t, are better determined parameters 

than at, and 61, because they are fixed by variations which 
take place on the time-scale of the correlagram’s carrier 
wave rather than its envelope. In this particular example, 
the standard errors associated with the former two are on 
the order of f l  s and those for the latter two are perhaps a 
factor of two larger, except near the low-frequency end of 
the band, where all of the measurement errors increase. The 
nearly constant offset between the St, data for the two 
components could plausibly be explained by a poor source 
model, but variations of the other measurements with 
frequency and component-type are indicative of significant 
variations between the path-averaged structure and the EU2 
reference model. 

In this initial paper, we discuss the functional equations 
for all four data types, but our attention is focused primarily 
on the differential phase delay St,, which has practical 
advantages in structural inverse problems. Observationally, 
it is more stable than the group delay with respect 
signal-generated noise. Theoretically, it is more easily 
interpreted than either the group delay or the two 
functionals describing the amplitude variations. As we shall 
discuss later in this paper, there is an approximation, often 
valid in practice, which allows us to take advantage of a 
variational principle when modelling the differential phase 
delay for an isolated waveform. The variational principle 
limits the sensitivity of this datum to wavefield distortions in 
the real earth not properly represented by the synthetics, 
thus simplifying the first-order relationship between St, and 
a perturbation to earth structure. It therefore becomes a 
relatively straightforward task to compute its FrCchet 
kernel. 

The phase-delay residuals St, shown in Fig. 6 are negative 
for both the vertical and transverse components, implying 
that the average upper mantle velocities along this particular 
path are greater than EU2; moreover, they both show a 
similar frequency variation, characterized by concave- 
downward curvature. Most significant, the SH data are 
systematically offset by 5-6 s with respect to the P-SV data, 
matching the shift in the correlagram peaks noted earlier. 

3.6 Frechet kernels 

To see if the St, offset in Fig. 6 requires anisotropy, we 
need to be able to assess how differently the SH and P-SV 
waveforms sample the velocity structure. This can be done 
by examining the FrCchet kernels that relate a path- 
averaged perturbation Sm(r) to perturbations in the 
phase-delay times. A t  a centre frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALi,, the 
perturbation will induce a change in the phase delay of the 
nth mode branch, which we denote by bti(LiJ. The FrCchet 
kernel g:(O,, r )  that maps the spherically symmetric 
perturbation bm(r) into S t i ( L i , )  is easily derivable from the 
eigenfrequency kernels for standing modes (Woodhouse & 
Dahlen 1978). We shall show that, to a good approximation, 
the phase-delay residuals 6t, can be corrected for 
windowing and filtering effects to obtain a differential time 
St, whose Frkchet kernel can be written as a linear 
combination of the gs’s: 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
1
1
/2

/3
6
3
/7

5
3
8
5
3
 b

y
 g

u
e
s
t o

n
 2

5
 A

u
g
u
s
t 2

0
2
2



370 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Gee and T. H .  Jordan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 

L". 
v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
io 

- 

5 

0 

-5 

-10 

-20 
- I 5  t 
-25 I I I 1 1 I I I I 

10 20 30 40 50 
Frequency (mHz) 

151 

a 

O n  
n 

0 

A @ Q  

-25  
10 20 30 40 50 

Frequency (mHz) 

5 

0 
A 

-15 

-20 

-25 
10 20 30 40 50 

I - requency (mHz) 

5t  
0 ,-. 

-15 

0 n 

n 

0 0  
n 

-2c 
n 

-25 
10 .? 0 30 40 50 

Fr-equency (mHz) 

Figure 6. Generalized data functionals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6rJx = q, p. a, g) obtained by applying the waveform fitting procedure to the Su cross-correlagrarns. 
The vertical (circles) and transverse (triangles) component measurements were made with filters applied at 5 rnHz intervals in the band from 
10-45 mHz. 

The expressions for the coefficients c, are themselves a sum 
over the travelling modes in the isolation filter, and they 
involve the source excitation and receiver response, as well 
as the various windowing and filtering parameters. Fig. 7 
illustrates the kernels for the Sa example at the frequencies 
from 10 to 45 mHz for the case of an isotropic earth model. 
We see that the phase delay is primarily sensitive the shear 
velocity structure of the upper mantle and transition zone; 
for both polarizations, the density kernels oscillate about 
zero, and the compressional velocity kernels on the vertical 
component are very small. At low frequencies, the P-SV 
kernels oscillate more than the SH kernels, but averaged 
over an oscillation, their values are very similar. Above 25 
mHz the P-SV kernels have shallower turning points-the 
exponential tails on the transverse component extend 

farther into the lower mantle-and above 35 mHz they 
exhibit a strong peak centred near the base of the crust. The 
latter is due to the existence of the PL energy in the Sa 
isolation filter, clearly evident in Fig. 4, which is governed 
by the shear velocity contrast across the MohoroviEiC 
discontinuity. As a final feature of interest, we note that the 
SH kernels above 35mHz display a low-amplitude 
oscillation in the lower mantle below their evanescent tails. 
This oscillatory behaviour, absent in the P-SV kernels, is 
caused by the interference of ScS,, which arrives 
approximately two minutes after Sa. 

A rigorous test of the anisotropy hypothesis would use the 
Frechet kernels in Fig. 7 to search for an isotropic model 
that satisfies the phase-delay data in Fig. 6. If a reasonable 
model can be found, e.g. one which fits these data as well 
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Figure 7. Vertical (P-SV) and transverse (SH) component Frechet kernels for 6r,  in the band from 10-45 mHz, corresponding to the 
measurements illustrated in Fig. 6. The solid line is the shear velocity kernel, the short dashed line is the density kernel, and the long dashed 
line is the compressional velocity kernel. The location of the MohorovitiC and transition zone discontinuities are marked by horizontal lines. 
One tic interval on the horizontal axis represents 5 X lO-'s km-3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu nit ' perturbation. 

as, say, the phase-delay observations extractable from the 
surface waves and other phases on the seismograms of Fig. 
4, then we might be able to conclude that anisotropy is 
unnecessary. A formal treatment of this inverse problem 
will not be attempted here, but it is clear that, given the 
similarity of the SH and P-SV kernels in Fig. 7, it will be 
extremely difficult to match the large traveltime differences 
observed for Sa with a smooth isotropic model. [It is always 
possible, of course, to mimic radial anisotropy with rough 
isotropic layering (e.g. Backus 1962; Gee & Jordan 1988)]. 
We surmise that, averaged over vertical scale lengths of a 
hundred kilometres or so, some type of radial anisotropy is 
required. Inversion to obtain such a path-averaged model 
can be accomplished by using the appropriate anisotropic 
kernels (Woodhouse & Dahlen 1978; Dziewonski & 
Anderson 1981) to compute the g:'s (Gaherty, Jordan & 
Gee 1992). 

4 THEORETICAL DEVELOPMENT 

Having outlined the methodology and introduced some of 
the notation in the previous section, we now proceed to fill 
in the theoretical details. The basic approximation 
underlying the theory is contained in equation (5): the 
representation of the filtered, windowed cross-correlagram 
by a Gaussian wavelet. The Gaussian-wavelet approxima- 
tion emerges most naturally as the leading term of an 
expansion known as a Gram-Charlier series. 

4.1 Autocorrelagram of the isolation filter 

We first consider the autocorrelation function of the 

isolation filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( t ) ,  defined by 

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CAf) ..f(t) @,J(f) = f (z) f ( t  + t )  dt 

-m 

1 .-m 
1 

= - 1 edw)e-i"" dw. 
2n -m 

Since CAt) is a real-valued, symmetric function peaked 
at zero lag, its Fourier spectrum CAW) is also real-valued 
and symmetric. We expand CAW) on the positive w-axis 
in terms of Hermite functions, which are defined to be 
the product of an unnormalized Gaussian, Ga(n)= 
exp ( -x2/2), and He, (n), the Hermite polynomial of 
degree k : 

Here H(w) is the Heaviside step function, Gc is a frequency 
location parameter, and Cc is a bandwidth scale parameter. 
The Hermite polynomials can be generated by 
differentiation of the Gaussian function, 

where (k/2) is the largest integer less than or equal to k/2. 
The Hermite polynomials are complete on the interval 
(-m, a) and orthogonal with respect to the Gaussian 
weight; additional properties needed for our purposes are 
summarized in Appendix B. The coefficients in (15) are real 
and may be written in terms of spectral moments of CAW) 
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(Rietz 1971): 

where p,,(GC) is the p th  normalized, one-sided moment of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CAW) about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGc, 

1 "  
&(GC) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI C&o)(w - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,)P dw. (18) 

0 

The coefficient of the leading term, a, = Po/2n, is thus the 
total power in the isolation filter, which equals the value of 
its autocorrelagram at zero lag. It will be convenient to 
normalize the amplitude-scale of the seismograms such that 
this peak value is unity: a,= 1. Moreover, it will be 
judicious to fix the location parameter Gc at the centroid of 
the spectrum CAW) and the scale parameter Gc at its 
half-width; i.e. 5c,ii,(0)/Gc = p2(Oc) = 1. With these 
choices, a ,  = a, = 0, and the zeroth-order term of (15) is the 
best Gaussian representation of CAW); the first correction 
term, measuring the skewness of the spectral peak, is third 
order. The notation employed in our discussion of the Sa 
isolation filters conforms to these definitions, and the values 
of the spectral parameters we obtained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Gc/2n = 28.4 mHz 
and tic/2n = 8.1 mHz for the SH component) are fairly 
typical of body waves recorded on long-period GDSN 
instruments after low-pass filtering. 

In the statistics literature, an expansion of a probability 
density in Hermite functions is known as a Gram-Charlier 
series (Jackson 1961; Rietz 1971). When the normalization 
and expansion parameters have been chosen such that a, = 1 
and a ,  = a, = 0, we shall say the Gram-Charlier expansion 
is in its canonical form. For the case at hand, all of the 
coefficients given by (17) are real, so requiring the 
Gram-Charlier series to be in canonical form determines 
three quantities: the amplitude scale factor and the two 
spectral parameters Gc and Cc. It is worth noting for later 
application that the expansion coefficients ak for an arbitrary 
spectrum S(w) are complex and, hence, six equations must 
be satisfied to put the series into canonical form. This 
system of non-linear equations determines the six-parameter 
Gaussian wavelet which has the same low-order (p 5 2) 
spectral moments as S(w). 

The advantage of representing CAW) as a canonical 
Gram-Charlier series is evident in its time-domain image. 
The simple Fourier-transform properties of Hermite 
polynomials (Hille 1926) yield 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=O 

= G a  (a,t)[cos (G$) + ~ ~ ( 5 , t ) ~  sin ( 6 , t )  

+ a4(act)" cos ( 6 , t )  - . . .]. (19) 

The leading term is a Gaussian wavelet with a carrier 
frequency Gc and an envelope half-width equal to the 
inverse of the spectral half-width Gc. The first correction 
term is third order, containing the same carrier wave, but 
phase-shifted by 3n /2  and modulated by an additional factor 
proportional to t 3 .  The factor of tk in the bth-order term 

implies the existence of a finite neighbourhood in the 
vicinity of the peak of the autocorrelagram where the error 
associated with the Gaussian-wavelet approximation can be 
made arbitrarily small. This asymptotic behaviour carries 
over to the other correlagrams considered in this paper and 
is the theoretical keystone of our methodology. 

Of course, it is always possible to eliminate the higher 
order coefficients in (19) by pre-filtering the isolation filter 
so that CAW) has the form of the Gaussian pre-multiplier in 
(15). This spectrum is a real, even function with peaks at  
f Gc. Enforcing the Gaussian-wavelet approximation by 
spectral shaping requires the relative bandwidth 

5" = aJG, (20) 

to be sufficiently small that the contribution of the peak 
centred at  -Gc to the second-moment integral (18) can be 
neglected; i.e. 

5" will be called the pre-filtering parameter; it is the first of 
a several 'control variables' at our disposal to insure the 
Gaussian-wavelet approximation is valid (see Table 1). In 
our applications, the inequality in (21) is always satisfied; in 
the Sa example, &,=0.29, and the asymptotic expression 
for the integral yields a value on the order of In fact, 
the low-passed GDSN waveforms from intermediate- 
magnitude earthquakes usually have peaked power spectra 
with nearly Gaussian shapes, so that a Gaussian wavelet 
accurately describes the autocorrelagram over a significant 
fraction of the envelope half-width 6,' without any fancy 
pre-filtering. Fig. 8 compares the normalized autocorrela- 
gram for the SH-component isolation filter used in our 
analysis of the Sa phase (solid line) with the Gram-Charlier 
partial sums through fourth order (dashed lines). The 
second-order (Gaussian) approximation yields a residual of 
less than 1 per cent within zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf5F1 = 20 s of the peak, and less 
than 10 per cent within f100s .  The coefficient a3 is only 
0.03, so the third-order term is down by nearly two orders of 
magnitude. 

In the case of the autocorrelagram, both the carrier and 
the envelope of the Gaussian wavelet are centred at zero 
lag. We seek to describe the Gaussian-wavelet approxima- 
tions to much more complex functions; specifically, the 
cross-correlagrams (5) and (8), where the spectral 
parameters have been modified by windowing, filtering and 
attenuation, and time shifts have been introduced by 

Table 1. Control parameters and their values. 
SH PSV 

50 3 prefiltcring 0.3 0.3 
- 
0, 

0.9 0.8 

(-1.9) - 1.5 (-2.1) - I 5  
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:[ 
0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0.8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
-1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-150 -100 -50 0 50 100 150 
Lag Time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( s )  

0.151 I 

-0.15- ' I , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 
-150 -100 -50 0 50 1OC 150 

Lag Time (s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACAr) (solid line) for the transverse-component isolation 
filter of Sa. The dashed lines represent partial sums of the 
Gram-Charlier series; the residuals are plotted below on an 
expanded scale. 

interference and dispersion. The convenient properties of 
Gram-Charlier series allow us to derive explicit expressions 
for the parameters of these Gaussian wavelets, as well as the 
higher order correction terms needed to validate the 
Gaussian approximation. Aspects of an operational calculus 
we have developed for this purpose are described in 
Appendix C. 

4.2 Gaussian wavelet approximation of the filtered, 
windowed autocorrelagram 

The first operation to be considered is windowing, which 
localizes the broad-band correlagram in the lag-time 
domain. Windowing reduces (though it does not eliminate) 
the contributions of interfering wave groups to the 
observations. We assume that the window zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ( t )  is a 
real-valued, one-sided, even function centred at a lag-time 
t,. Then, the time-domain image of its canonical 
Gram-Charlier expansion can be written as a series in even 
powers of t :  

W ( t )  = Ga [a,(t - t , )]{  1 + b4[a,(t - t,)I4 

- b,[a,(t - t , ) ]6+ * . .}, (22) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, is the half-width of its Fourier spectrum W ( w ) .  

1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

-0.8 

- 1 .o 
-150 -100 -50 0 50 100 150 

Lag Time (s) ;#;;;I ----.-,------,-----/- 
-0.05 
-0.10 
-0.15 

-150 -100 -50 0 50 100 150 
Lag Time (s) 

Figure 9. F;WCdr) (solid line) for the transverse-component 
isolation filter of Sa. The dashed lines represent partial sums of the 
Gram-Charlier series; the residuals are plotted below on an 
expanded scale. 

The coefficients are given by the spectral integrals 

where we have chosen to represent W ( w )  in terms of 
Hermite expansion on ( -0- i ,  0-i) centred at w = 0. In the Su 
example, the window we applied was a Hanning taper of 
total length T, = 140 s ,  for which aW/2n = 5.2 mHz and 

To form W c d t ) ,  we centre the taper on the peak of the 
autocorrelation function ( t ,  = 0) and multiply. The theor- 
ems in Appendix C yield 

b, = 0.01. 

Wcdt) = Ga (Gwct)  

where the new half-width G w c = V m  reflects the 
spectral broadening due to the time-domain localization. 
The kth coefficient is given by the convolutional sum 

(26) t = -  - 
1 - ~ c / ~ w c ,  

c4 = e;u4 + (1 - l$)Zb,. 
The first four are: co= 1, c1 = c , = O ,  c 3 =  i$u3, and 
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The dimensionless parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, measures the degree of 

time localization achieved by windowing. If the window is 
wide, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, << Gc,  6, - 1, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAck =a,; if it is narrow, u, >> 
6, = O ,  and c, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb,. Since, according to (19), the higher 
order coefficients {a, : k 2 3)  contribute more to  the 
autocorrelagram at lag-times far from its peak, the 
time-localization parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt1 can be employed as a second 
control variable for regulating non-Gaussian terms in the 
spectrum. For the Hanning taper employed in the Sa 
example, we have used 6, = 0.84, so that widowing reduces 
the third-order coefficient by about 40 per cent. 

The next operation to consider is the narrow-band 
filtering which localizes the windowed autocorrelagram in 
the frequency domain: F;Wcdt) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 F ; ( f )  * [ W ( t ) c d f ) ] .  The 
index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi specifies a filter F; with half-bandwidth a, and centre 
frequency w;. For our analysis of GDSN records, we 
typically use a series five to ten filters centred at frequencies 
from 10 to 45 mHz, each with u, /w,  -0.1. Although we 
have worked out complete expressions involving filters with 
arbitrary Gram-Charlier coefficients, the analysis in this 
paper is simplified by considering only zero-phase Gaussian 
filters. In practice, we have found that the non-Gaussian 
structure introduced by any reasonable zero-phase filter- 
e.g., windowing the spectrum with a narrow Hanning taper 
centred at w,-is negligible. 

In the special case when Wcdt) can be approximated a 
simple Gaussian wavelet (i.e. c, = 0 for k 2 l), its spectrum 
can be analytically multiplied with an appropriately 
normalized Gaussian filter and Fourier transformed to 
obtain KWCdt )  = Ga (a,?) cos ( w l f ) ,  where w/ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,' are 
the effective centre frequency and half-bandwidth resulting 
from the windowing and filtering: 

Retaining these values as expansion parameters when 
ck Z 0, we can apply the theorems of Appendix C to  obtain 
the general expression 

F;WCdt) = Ga (a:[) (29) 

where the Gram-Charlier coefficients are given by a double 
infinite sum over the { c k } :  

m 

d,(u,'f), cos (w:t + k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf) , 
k =I)  

Here we have introduced two new control variables, a 
frequency-localization parameter. 

62  = d / L ,  (31) 

and a frequency-shift parameter, 

(32)  

Expansion (29) is not in canonical form, since the terms 
proportional to c, contribute to the d ,  for all k 5 n, so that 
d,,# 1, d ,  #d ,#O.  The leading terms for the first five 

When the bandwidth reduction due to  the filtering is large 
(E2  << l), the centre frequency and half-bandwidth of 
E W c A w )  approach the values of the applied filter. Since 
the contribution of the kth term is attenuated by the factor 
( g2)', this frequency-localization parameter can be 
employed to control the Gaussian-wavelet approximation. 
In the Sa example, values of E2 that we used ranged from 
0.11 at 10 mHz to 0.44 at 45 mHz. 

The frequency-shift parameter E3 measures, in units of 
GWc, the position of the applied filter relative to the centre 
frequency of windowed correlagram. The contribution of c, 

to d ,  scales as 1E3Inpk ;  hence, the Gaussian-wavelet 
approximation can also be improved by choosing values of 
w, near 6,. If the higher order terms in the windowed 
correlagram are appreciable, then the approximation will 
fail towards the edges of the pass-band where becomes 
large. In practice, the limiting factor on the useable 
bandwidth of the data is not typically this kind of theoretical 
breakdown, but rather the decrease in the effective 
signal-to-noise ratio; i.e. the signal suppression described by 
the first Gaussian pre-multiplier in (29) .  

The approximation realized by the actual computational 
procedure is, in fact, better than the Gaussian wavelet 
obtained from the zeroth-order term in (29). Instead of 
fixing w,! and a: at the theoretical values specified by (27) 
and (28) ,  we estimate them numerically using the 
least-squares procedure described in the previous section. 
That is, we normalize the cross-correlagram to unit 
amplitude at  t = 0 and then determine a centre frequency 9, 
and half-bandwidth 15' from the approximation 

Wed[) = g(t) = G a  (aft) cos (aft), (34) 

by minimizing a x2 quadratic form analogous to  (7). 
Because the squared differences between F;Wedt) and g ( t )  

are weighted by a Gaussian factor exp (- y2tZ) ,  this 
procedure requires the fit to be best near t = 0 ,  where, 
according to (29), the contributions of the higher order 
terms vanish. Hence, the minimum will be achieved when 
the low-order moments of the spectrum g ( w )  match those of 
F;-WcAw); i.e. when 

Ef = w,! + u,'d,/d,, 

@ = ~,"[l - ( d , / d J 2  + 2 d J d J .  

(35) 

(36) 

The correction terms are usually very small, however, so 
that the numerical deviations of the Gaussian parameters 
from (27) and (28) are practically negligible. The worst case 
in the Su example occurs at  o , / 2 n  = 45 mHz. Here 6, and 
t3 are largest (0.43 and 1.5, respectively), but the deviations 
are less than 1 per cent in centre frequency and 2 per cent in 
bandwidth. 
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In any case, the filtered, windowed autocorrelagram can 

always be written in the cannonical form 

F;Wcdt) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ga (Cfr) cos (Gft) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
(37) 

compares the filtered, windowed autocorrelation function 
(solid line) with the Gram-Charlier partial sums through 
fourth order (dashed lines). 

Fig. 9 shows the fit of equation (37) to the filtered, 
windowed autocorrelagram through the fourth order term. 

The quadratic error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 incurred by fitting a Gaussian 
wavelet to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI.; Wcdt) can be integrated term-by-term. The 
results of a complete analysis, in which we employ some 
inconsequential approximations, are 

(38) 

(39) 

where the size of the coefficients is governed by a new 
control variable, the weighting-function parameter 

Hek@) is identically zero for all odd values of k, and both 
al and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL?, are zero by construction; hence, ek = 0 for k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 5, 
which is why the first non-zero term in (38) is sixth order. 
Assuming this leading term dominates, we obtain a 
dimensionless measure of the rms error incurred by 
truncating the higher order terms in (37): 

The Gaussian-wavelet approximation will be strictly valid 
when 1x1 << 1. The worst case in the Sa example occurs for 
the filter frequency at the high end of the band zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(45mHz), 
where the truncation error for the autocorrelagram is 
estimated to be 1x1 = 0.018)a3 + 6 . 2 ~ ~ 1  = 0.004. A similar 
value applies to the cross-correlagrams, as confirmed by the 
excellent Gaussian-wavelet approximations displayed in Fig. 
5(c). In our processing, we typically take lj4 = l / f i , so that 
the last factor in (41) alone damps the truncation error by 
over an order of magnitude. In cases where the 
non-Gaussian coefficients {ak : k 2 3) are larger, it is 
possible, if necessary, to decrease lj4 further without 
appreciably degrading our ability to estimate the wavelet 
parameters. Suppression of the truncation error can also be 
achieved by decreasing the other control variables, which 
are summarized in Table 1. In practice, therefore, the 
validity of the Gaussian-wavelet approximation sets only 
weak limits on the domain of the theory's application, and 
we shall employ it throughout our subsequent derivations. 

4.3 Differential propagation 

The isolation filter f ( t )  computed as the sum (4) over 
synthetic components will correspond to some waveform 
f ( t )  on the observed seismogram. The spectrum of f ( t )  can 
be written as the product of the spectra specifying the 
source excitation, the effects of propagation, and the 

instrument response: f ( w )  = I (w)P(w)S(w) .  Since the 
objective of our analysis is to investigate the earth structure 
by placing constraints on the propagation operator P, we 
shall assume both S and I are exactly known and have been 
included in the calculation of f ( w ) .  Then, 

f ( w )  = D ( @ l f ( W ) ,  (42) 

where D ( w )  = P ( w ) / p ( w )  is the differential propagation 
operator. This operator can be written in its exponential 
form D ( w )  = eisk("Ir, where x is the propagation distance 
and 6k( w )  = k(  w )  - E( w )  is the complex-valued differential 
wavenumber. The differential wavenumber can be expanded 
in a Taylor series about an arbitrary frequency wo: 

6 k ( w )  = 6k(w,)  + ( w  - wo)6&(wo) 

+ f ( w  - wo)26i(w,)  + * . * . (43) 

Most methods for measuring the differential dispersion of 
surface waves (e.g. Dziewonski et af. 1972) assume the 
effective bandwidth is small enough that (43) can be 
truncated after the linear term. This is usually adequate, 
although in cases where the dispersion is strong and the 
earth model used to compute the synthetics is a poor 
representation of structure along the path, the linear- 
dispersion approximation sometimes fails. It is possible to 
include completely the quadratic-dispersion terms in the 
GSDF theory by introducing a carrier-phase term 
proportional to t2, yielding a six-parameter Gaussian 
wavelet; we have derived and implemented the quadratic 
expressions in a version of our analysis codes. For most 
applications to long-period seismograms, however, a 
first-order approximation is completely adequate. We 
therefore confine our detailed discussion to the first two 
terms of (43). For completeness, the equations involving the 
second-order terms are given in Appendix D. 

The linear approximation to the differential propagation 
operator can be parametrized by four real-valued, time-like 
quantities: 

D ( o )  =exp { - w o  6t,(wo) - (w - wo) 6ta(wo)  

+ 4 0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6tp(wo) + ( w  - wo) 6tg(wo)ll. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(44) 

The imaginary part of the exponential argument defines the 
differential phase delay 6tp  and the differential group delay 
6tg at wo: 

6tp( wo) = x {6k(wo))  = tp(wo) - f(Oo), 
w0 

(45) 

atg( wo) = x 9L3 { 6&( wg)} = tg( wo) - ig( wo). (46) 

tp and tg are the total phase and group delays of the 
observed waveform relative to the origin time of the event, 
including those due to the source excitation and instrument 
response, and f, and i, are the corresponding phase and 
group delays computed for the reference model. Under the 
assumption that the source and instrument are exactly 
modelled, (45) and (46) are identical to the differences in 
the phase and group traveltimes. 

The real part of the exponential argument defines two 
differential attenuation times, 6t, and 6ta .  In the special 
case where the amplitude ratio '& [ f ( w ) / f ( w ) ]  is primarily 
controlled by the difference in a frequency-independent 
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attenuation factor Q-', we can write 

This particular relationship between the amplitude para- 
meters and the differential attenuation ignores terms of 
order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ-2. When the absolute dispersion is small in the 
sense that 5, If, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,( << zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, then the first-order approxima- 
tion implies 6t,= at,, and the time corresponds to a 
differential form of the t* parameter commonly used in the 
analysis of body waves (e.g. Burdick 1978). This 
identification is avoided in this paper, because we want to 
allow for more complex amplitude effects, including 
frequency-dependent attenuation, amplitude perturbations 
associated with differential focussing and reflection, and 
interference effects owing to differential phase shifts among 
the various waveforms involved in (4). In modelling these 
effects, the two amplitude parameters are allowed to vary 
separately. 

The spectrum of the cross-correlagram is, by definition, 
CAW) = D(m)cdu). A first-order approximation to its 
Gram-Charlier series can be obtained by evaluating (44) at 
w0 = 0, and multiplying it into (15). We can reduce this 
series to canonical form and Fourier transform the results to 
get the time-domain expansion. 

Cdf) = exp (-0, St,) Ga [u,(t - 6tg)]{cos [w,(t - st,)] - 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 a;[u,(r - 6 t , ) ] k  cos 

k - 3  

+ O(E2), (49) 

where {6t, = 6tX(6, )  : x  = q, p, a, g} and E is a dimension- 
less parameter that measures the magnitude of the 
differential dispersion. In deriving (49) we have specificially 
assumed that the differential phase and amplitude variations 
across the bandwidth are first order in the sense that 
Cc, )6 t ,  - 6t.J - gC 6t, - 2ne. It is important to note that no 
constraint is placed on the size of at,, which sets only a 
frequency-independent amplitude scale, nor on the non- 
dispersive part of the differential traveltime, (at, + 6 t g ) / 2 .  
The latter need not be small because it can be factored out 
of (49) and treated, via the Fourier shift theorem, as a 
simple displacement of f ( t )  relative to f(t). 

Equation (49) shows that, to first order in E ,  the Gaussian 
envelope of the Gram-Charlier series is shifted by the 
differential group delay &,(0,) and its cosine carrier is 
shifted by the differential phase delay 6t , (Gc) .  The 
first-order expressions for the perturbed carrier frequency 
and half-bandwidth are 

0, = 0, - 8 6ta(0,), 

uc = 6, - 3 3  6 t a ( 0 , ) u 3 ,  

(50) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(51) 

and the higher order coefficients in (49) are related to those 
of cfl by 

The perturbations in the last three expressions are due 
entirely to the frequency dependence of the differential 
amplitude, which is generally weak. For example, if the 
observed Qs for the Su phases of Fig. 4 were a factor of two 
lower than the model values (-200F-a fairly extreme 
example-then )6t,l= 5 s. In this case, the differential 
attenuation would induce a carrier-frequency shift of about 
- 1.4 mHz, which is greater than the frequency estimation 
errors and thus potentially observable. The difference in the 
half-bandwidths would be less than 0.2 mHz, however, a 
completely negligible perturbation in terms of its effect on 
the signal structure. In practice, assuming a, = Gc is usually 
an excellent approximation, since the bandwidth difference 
is proportional to the skewness coefficient a3,  which is 
generally small. This approximation, which also depends on 
the quadratic terms in the differential dispersion being 
negligible, is necessary to limit the number of GSDFs to 
four. 

We therefore consider the Gaussian wavelet 

C d t )  = exp (-GC St,) Ga zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5,(t - st,)] 

x cos [(GC - a: 6t,)(t - st,)]. (53) 

The four differential time parameters in (53) correspond 
exactly to the GSDFs defined in (9)-(12). In other words, 
fitting Gaussian wavelets to C d t )  yields, to first order in 
E, 8r,(O,) = 6tx(GC) for x E {q, p, a, g}. Fig. 10 illustrates in 
graphical form how each of the four parameters perturbs a 
narrow-band (5, = 0.1) correlagram. 

Equation (53) provides an inadequate basis for the 
analysis of broad-band data, however. The approximations 
employed in its derivation can always be enforced by 
pre-filtering the seismograms, of course, but this tactic has 
the undesirable consequence of spreading out energy in the 
time domain, thereby increasing the interference with 
signals not included in the isolation filter. To take full 

I 

I 
-200 -150 -100 -50 C 50 100 150 200 

Lag T i m e  ( s )  

Figure 10. Illustration of the effect of the generalized data 
functionals on the cross-correlation function, Cdr) (solid line), for a 
10s perturbation to 6tx compared with Cdr) (dashed line). 
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advantage of the available bandwidth, it is necessary to  
localize the correlagrams by windowing in the time domain 
prior to narrow-band filtering in the frequency domain. We 
first investigate the effect of these sequential operations on 
the GSDFs by continuing with the detailed analysis of an 
isolated waveform. An explicit consideration of interference 
effects will be deferred to Section 4.5. 

4.4 Cross-correlagram of an isolated waveform 

A Gaussian-wavelet approximation to the filtered, win- 
dowed cross-correlagram F;WCdr) = F;(t) * W(r)[ f . ( r )  @ 
f ( r ) ]  will yield an approximate description of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF;WC,,(t) 
when the windowing is effective in isolating f ( r )  from other 
phases on the seismogram. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs in (22), W(r)  is assumed to 
be symmetrical function with a half-width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu;’. In order to 
minimize the signal distortion by the window, we centre 
W ( r )  at the peak of the cross-correlagram, which occurs at 
some lag-time r , .  Differentiating (53) gives the location of 
this peak, correct to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(E) :  

The brackets in (54b) denote the largest integer less than or 
equal to the argument. The integer n describes the 
cycle-skipping which occurs whenever the dispersion is 
strong enough that the envelope peak is displaced by more 
than a half-period away from the carrier’s zero-phase point. 
When the relative bandwidth co is small, the envelope 
decays slowly and t, approaches 6tp + 2nn/0, ;  i.e. the 
shift of the cross-correlation peak away from zero lag 
measures the differential phase delay at GC to within the 
n-cycle ambiguity. As &, increases, the envelope rolls off 
more rapidly, and the peak time is biased towards the 
differential group delay. These properties are useful for the 
interpretation of ordinary traveltimes derived by cross- 
correlation methods (Jordan 1980; Sipkin & Jordan 1980). 

We filter the windowed cross-correlagram and fit it with a 
five-parameter Gaussian wavelet by minimizing a x2  
quadratic form like (7): 

( 5 5 )  

For each narrow-band filter F ; ,  we compute { S t ,  = 
6 t X ( 0 , ) : x  = p, g, q ,  a} by combining the cross-correlagram 
parameters { A ,  m,, u,, r , ,  t,} with the autocorrelagram 
parameters { A  = I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,, a,, 7, = 7, = 01 using equations ana- 
logous to (9)-( 12). These differential time measurements 
can be related to the dispersion parameters defined in (44) 
through the Gram-Charlier coefficients { d ; }  for F; W C d t )  
derived using the equations in Appendix B. The resulting 
series will not be in canonical form, but we can always 
choose the control variables to make the deviations 
(1 - db), d ;  and d; as small as we like (cf. equations 33a-c). 
In particular, we may assume the control variables have 
been adjusted such that the deviations are O(E) ,  which 
implies that uf = 6, + O(E’). (This is certainly valid for the 
So example.) Because the algebra is rather heavy and the 
general expressions for the coefficients are unedifying, we 

W C d t )  - g ( t )  = A  G a  [udt - r,)] cos [w,(r - rp)]. 

give only the formulae for the GSDFs evaluated at G,, valid 

The equation for the apparent differential group delay is 
to O(&).  

simple and easily interpreted: 

at, = t; at,( 0,) + (1 - g ) t c  

= 6t,(0,) + (1 - E:)[ t ,  - 6 T g ( 0 , ) ] .  (56) 

For a window wider than the autocorrelagram Cdr) ,  i.e. 
when El i= 1, the value observed through the narrow-band 
filter is nearly equal to the actual differential group delay 
evaluated at the apparent centre frequency 0,. As  the 
window is made narrower, 61, approaches the centre time of 
the window, t,. The parameters in the Sa example give a 
0.29/0.71 weighting between these two limits, and the 
difference at, - at,, plotted as a function of frequency in 
Fig. l l (g) ,  reaches about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+5 s at the high end of the band. 
Since r ,  is an observable, equation (56) can be used to 
correct the apparent differential group delay for this 
windowing bias. 

Windowing also affects the apparent differential phase 
delay. We find 

The windowing bias is again proportional to (1 - E ; )  but in 
this case it is further suppressed by the fractional shift in the 
centre frequency due to the filtering. Although this factor 
vanishes at the centre of the band, its magnitude can 
approach unity near the low- and high-frequency ends, and 
the correction can be significant (Fig. l l p ) .  

The amplitude of CAW) has a frequency dependence in 
the vicinity of Gf measured by at:,. The corresponding 
parameter for F;WCdo) is 

6t, = g 6 ta (0 , ) .  (58) 

Windowing therefore suppresses this differential time by the 
square of the time-localization parameter. In the limit of a 
very narrow window, the correlagrams are reduced to sharp 
peaks with equally flat spectra, and 6r,-+0. Finally, the 
effect of the time-series operations on the amplitude ratio 6, 
is described by 

(59) 

The second term is the amplitude bias due to windowing, 
analogous to that in (57). Figs l l ( a )  and (4) show the 
amplitude correction terms for the Sa example. 

4.5 Effects of interference on non-isolated waveforms 

Equations (56)-(59) express the quantities actually me- 
asured, the 6rx’s, in terms of the dispersion parameters more 
fundamentally related to earth structure, the 6tx’s, in the 
special case when the windowing is effective in eliminating 
the interference from waveforms on the seismogram not 
represented by the isolation filter. On the synthetic 
seismograms, this interference is measured by the four time 
shifts that describe the deviations of the filtered, windowed 
cross-correlagram F; Wefs  from the autocorrelagram F; WE,: 
a phase delay iP, a group delay 7,. and two amplitude 
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Figure 11. Correction factors for windowing and filtering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6r, - 6r,) plotted as a function of frequency for the vertical (circles) and transverse 
(triangles) component generalized data functionals. 

parameters 

Here it is assumed the bandwidth variations are sufficiently 
suppressed by windowing and filtering, so that Cs = Cf, and 
that the quadratic terms in both the amplitude and phase 
deviations' are negligible over this bandwidth. 

To set up the general expressions for these parameters, 
we represent the synthetic and observed cross-correlagrarns 
in terms of the component cross-correlagrams 

Equations (2) and (4) yield double summations over the 
component indices m and n : 

The first expression is exact; the second is an approximation 
only because it includes a finite, rather than infinite, set of 
waveforms. 

The Fourier transform of each element in the (63a) can be 
related to CAW) by a response operator Dmn(w), which can 
be expanded in a Taylor series about Gf. Truncating 
second-order terms yields a linear form containing four 
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Generalized seismological data functionals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA379 

frequencies, where it reaches -8 s. For both components, 
however, the interference phase delays i, are less than 2 s. 

parameters computable directly from the reference model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Iii: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fyy Gf) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq( af) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfT( af), 
q y ( G f )  = F ( G f )  - ?;(tif), 

i!y(tif) = ft(Gf) + f:(Gf), 

f y y G f )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq6, )  - f;(af). 

(64) 

(65) 

(66) 

(67) 

f; and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5; are the absolute phase and group delays of the nth 
component waveform, each being the sum of a propagation 
traveltime and a set of source, receiver, and a-filter delays. 
Similarly, each of the amplitude parameters f: and is the 
sum of the delays describing the propagation attenuation 
and the source, receiver and a-filter amplitudes. Carrying 
through the same analysis as in Section 4.4, we obtain the 
five-parameter Gaussian-wavelet approximation, 

&Wc,,(t) ==A,,, Ga [ q ( t  - ipmn)] cos [6 , , ( t  - ipmn)], (68) 
- 

where A,,,,, = exp (-Gf7Yn), 6,, = Gf - Cf7y ,  and the 7,"" 
are related to the f,"" by equations analogous to (56)-(59). 

To approximate the summation (63a) as a single Gaussian 
wavelet, we develop its Gram-Charlier expansion and 
reduce it to canonical form. The six non-linear equations 
resulting from the latter step specify a general six-parameter 
Gaussian wavelet, as detailed in Appendix 'E. Under the 
assumption that the quadratic variations are negligible, the 
summation wavelet reduces to a five-parameter Gaussian 
form. One of them, the effective bandwidth a,, is fixed by 
the autocorrelagram. Therefore, the reduction to canonical 
form yields a system of four implicit, non-linear equations 
for the unknown parameters (7, : x  = q, p, a, g}: 

c B,,(i,"" - i,) cos rpmn + 2 B,,(7rn - 7,) sin q,,, = 0, 
m.n m.n 

(71) 

c B,,(i,"" - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7,) cos rpmn - 2 B , , ( i r  - 7,)  sin qmn = 0. 
m.n  m . n  

(72) 

Here, B,, and rp,, are the real-valued coefficient and phase 
factor defined by 

(73) 
1 
2n 

B,, = r e x p  [-ti#,"" - f q ) ]  Ga [6#pmn - i , ) ] ,  

rp,, = (6f - $irm)(ipmn - 7,)  - 3:(irnn - i,)(ZP - i,). (74) 

The four time shifts (7,:x =q ,p ,a ,g }  measure the 
interference of the extraneous waveforms after windowing 
and filtering. When the interference is negligible, F; WcS 
equals fiWcfl, and these times are all zero. 

Fig. 12 plots the values of the interference time shifts for 
the Sa example. For the transverse component, all of the 
shifts are generally small, a few seconds or less, as expected 
from the isolated character of the SH-polarized Sa phase on 
the synthetic in Fig. 4. The sizes of the shifts are generally 
larger for the vertical component, owing to interference by 
the shear-coupled PL wave, which is poorly represented by 
the isolation filter. The largest effect is seen for 7 ,  at high 

4.6 Perturbation formulae 

In practice, we never have to solve (69)-(72), because we 
can determine the interference parameters by numerically 
fitting (8) to the synthetic cross-correlagram. It is by 
perturbing this system of non-linear equations, however, 
that we derive the theoretical relationships between the 
observables, 61, = tx - i,, which are our GSDFs, and the 
differential dispersion parameters of the individual mode 
branches, 6c = t: - 5:. The FrCchet kernels for the former 
can then be computed, since the kernels for the latter are 
known. 

The notation needed for the perturbation expansions can 
be simplified by defining a set of N x N dimensionless 
matrices. Let C and S be the matrices with components 

(CIrnn = Bmn cos T m n  9 

(SIrnn = Bmn sin Vrnn 7 

(75) 

(76) 

and, for x equal to either a or g,  let C, and S, be the 
matrices 

(C,),,, = B,,6#,"" - 7,) cos q,,, 

(S,)m, = B,,6#,m" - 7,) sin rp,,. 

(77) 

(78) 

We note that in the special case when Zq = ip = ia = 7 ,  = 0 
(no interference), then B,, = B,, and rp,, = -cp,,,. These 
symmetries and those associated with (65) and (67) imply 
that, in this special case, C, C,, and S, are symmetric and S, 
S,, and C, are antisymmetric. Using this notation, we can 
write the unperturbed system (69)-(72) in the following 
form: 

1 * c .  1 = 1, 

1 .  s . 1 = 0, 

1. (C, + S,) . 1 = 0, 

1 * (C, - S,) . 1 = 0, 

(79) 

(80) 

(81) 

(82) 

where 1 is the N-vector with unit components. 
Variations in the component parameters, i;+ 7," + St:, 

will perturb the parameters of the composite correlagram, 
ix+ix + bt,. We let 61, be the N-vector whose nth 
component is at:, and, for the moment, proceed formally 
under the assumption that the perturbations are small in the 
sense that 

6, st; = O(E), 

6, 6r; = O( E ) ,  

tif st; = O(E), 

ef 6r; = O( E ) ,  (83) 

for all n, where E << 1 is the perturbation scaling parameter. 
Retaining terms to first order in E ,  we obtain four linear 
equations, 

at, = 1 . c . st, + 1 . s . at,, (84) 
6t, = -1 * s . 61, + 1 . c . at,, (85) 
6t, = -1. (C, + S,) .6t,  + 1 .  (C, - S,) . st, 

+ 1 *  c * 6t,+ 1 * s. 6t,, (86) 

-1-s. b t , + l - C .  61,. (87) 

6t, = -1 . (C, - S,) * 61, - 1 . (c, + s,) . 6% 
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Figure 12. Interference time shifts, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf x ,  estimated from the waveform-fitting of equation (8) to F,WCi.(t) plotted as a function of frequency for 
the vertical (circles) and transverse (triangles) components. 

The perturbation formulae (84)-(87) provide the requisite 
linearized relationships between the GSDFs and quantities 
computable from the individual mode branches. In 
particular, they show the existence of couplings among the 
different types of waveform parameters. The expression for 
the net differential phase delay 6tp, for example, depends 
upon averages of both the phase delays 6t; and amplitude 
differentials 6tG of the individual wavelets. This is physically 
correct. Increasing the amplitudes of the modes contributing 
primarily to the beginning of a wave group relative to those 
arriving at later times shifts the phase centre forward, even 
when the phases of the individual groups are not perturbed. 
Correspondingly, the constructive interference caused by 
shifting the arrival times for individual modes towards the 
phase centre of a wave group increases its net amplitude 

even when the amplitudes of the individual groups remain 
unaltered. Both 6t, and 6tp are stationary with respect to 
6t: and 6t:. The perturbations 6t, and 6t, are not stationary 
with respect to dt i  and 6t;, however, and additional terms 
are present to account for these couplings. 

The perturbation scalings given by (83) are more stringent 
than previously assumed to obtain the linearized equations 
(56)-(59) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(cf. discussion following equation 49). Indeed, 
they are just as restrictive as the scalings used to linearize 
differential waveform perturbations. They can be relaxed, 
however, by noting that (84-(87) provide exact solutions to 
the non-linear system (79)-(82) for two special cases: (1) a 
constant, frequency-independent amplitude perturbation, 
i.e., 6t,=t,l and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASt,= 6t,= 6t,=0; and (2) a constant, 
frequency-independent traveltime perturbation, i.e. 
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at, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 6t, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt , 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 61, = St, = 0. The scalings can thus be 
revised to read 

6jf(6r; - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto) = O(&),  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5, st: = O(&),  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-,(6t; - t , )  = O ( & ) ,  (88) 

6jf(6t; - 1 , )  = O(&),  

where I,, and 1, are suitably chosen constants of arbitrary 
magnitude. Moreover, it is clear from the form of (73) that 
the component cross-correlagrams for which 17,"" - 7,1>> 
5;' or (7,"" - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7,) >> 6;' will contribute negligibly to the 
sum, so that the scalings in (88) need only apply across a 
restricted set of ns. Therefore, large shifts in traveltime and 
large amplitude perturbations are accommodated by the 
linearized theory, provided that the differential variations 
among the waveforms which dominate the correlagram are 
not too great. In most applications involving compact 
waveforms, including the Sa example used here, this 
requirement is well satisfied. It is considerably less 
restrictive than needed for linearized waveform inversion. 

4.7 Frichet kernels for the structural inverse problem 

Let g:(Gf, r )  be the FrCchet kernel that maps the model 
perturbation 6m(r) into the first-order perturbation 
St:(G,): 

R 

6tXGf) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 g:(Gf, r )  6m(r)r2 dr,  (89) 

Because the phase-delay functional 6t: obeys a variational 
principal, its perturbation can be written as in integral over 
the unperturbed wave function. When the component 
waveforms are individual travelling modes, as in the 
examples discussed here, the expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg:(G,, r )  is 
related in a simple way to the eigenfrequency kernels given 
by Woodhouse & Dahlen (1978). The group-delay kernel 
for an individual mode branch, g ; ( G , , r ) ,  has a more 
complicated analytical form, and is more difficult to 
compute, because it involves the first-order perturbation to 
the eigenfunction; appropriate numerical algorithms have 
been developed by Rodi et al. (1975) and Gilbert (1976). In 
general, the kernels for the amplitude functionals, gG(Gf, r )  
and g:(Gf, r ) ,  also depend on the eigenfunction perturba- 
tion. If the amplitude differences are dominated by 
anelasticity variations, however, equations (47) and (48) 
yield 6t: i= 6t: = $:: SQ,', where SQ,' is the perturba- 
tion to the attenuation factor for the ( n  - 1)th branch. The 
kernels for both of the amplitude parameters are then 
simply related to g:(& r ) .  

Let 6t, be the N-vector whose components are the 
perburbations 6t:(Gf) ,  and let G, be the operator whose 
nth row is g:(Gf, r ) ,  so that at, = G, . 6m. In terms of the 
component waveforms, (57) can be written 

x = q ,  p, a ,  g. 

bt, = at, + a ( t , l -  6t,), (90) 

where a = (1 - $:)( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, - Gc)/Gf. Substituting this and the 
corresponding equation for 61, into (85) and using the 
identity (79) allows us to write the complete first-order 
perturbation equation 

6t, = at, + 1 .  [C . (G, - aG,) - S . (G, - aG,)] . 6m.  (91) 

The integral kernel of the operator on the model 
perturbation defines the FrCchet derivative of at,, with 

respect 6m. Similar expressions can be derived for the other 
three GSDFs. Because of the couplings among the variables 
in (56)-(59) and (84)-(87), their FrCchet derivatives also 
involve all four operators G,, G,, G, and G,. This 
complication makes them inconvenient for application to 
structural inverse problems. 

For a large, useful class of isolation filters, however, the 
couplings among the GSDFs will be sufficiently weak that 
their FrCchet kernels can be greatly simplified. Figs 13 and 
14 display the four vectors 1 . C, 1 .  S, 1 . (C, + S,), and 
1 .  (C, - S,) computed for the two polarizations of Sa at 
30mHz. By (79)-(82), the components of the first sum to 
unity, and those of the latter three sum to zero. O n  the 
vertical component, only the mode branches 2-5, which 
dominate the Sa isolation filter at  this frequency, have 
significant amplitudes. On the transverse component, the 
mode branches 23-24 also show significant amplitude, 
representing the interference of the core reflection ScS, with 
Sa on the cross-correlagram. 

To the extent that the 6ft's for these modes are slowly 
varying functions of n ,  the oscillatory nature of the vectors 
1 .  S, 1 .  (C, + S,), and 1 .  (C, - S,) implies that the 
cross-coupling terms in (84)-(87) will average nearly to 
zero. If this averaging is effective, the perturbation 
equations can be reduced to the common form, 

6tx = 1. C . 6t, = (92) 

We note that (92) is an especially good approximation for 
6t, and at,, since the only cross-couplings in (84) and (85) 
involve contractions over 1 . S, whose components are 
relatively small for all n. This results from the fact that the 
matrix S is approximately symmetric about its anti-diagonal, 
as well as anti-symmetric about its diagonal. 

When (92) applies, the linearized relationships between 
the 6t,'s and the 6 ~ ~ ' s  allow us to express (89) in the 
simplified form 

B,, cos qm, st:, x = q ,  p, a ,  g. 
m.n 

R 

6t, = gX(i5,, r )  6m(r)r2 dr -- 1 . C . G, . 6m. (93) 

In other words, the measured differential time 6r, can first 
be corrected for windowing and filtering effects by solving 
(56)-(59) to obtain 6t,, and this corrected phase delay can 
then be inverted using (93). Under approximation (92), the 
Frechet derivatives of the 6t,'s with respect to 6m are all 
operators of the form g, = 1 . C . G,; i.e., their FrCchet 
kernels are 

N 

g,(Gf? r )  = c c, g:(Gf, r ) ,  (94) 
n = l  

where the coefficient c, is the nth component of the vector 
1 .  c, 

(95) 

The phase-delay kernels displayed in Fig. 7 were calculated 
from these expressions using the coefficients displayed in 
Figs 15 and 16. Evident in these plots are an increase in the 
dominant mode number of the Sa isolation filter with 
frequency and, at the higher frequencies on the transverse 
component, the influence of ScS, interference. 
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C 

I . . . . . . . . . . .  . . . . . . . . . . . . .  - * - .  I -J 

I c a  + 591 

I . . . . . . . . .  . . . . . . . . . . . . . . .  , . . , _ J  

I cg - 501 

1 .  . . . . . . . . . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I . ’ . > > ,  , ~ . .  I j I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 D 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 I5 

Mode Bronch 

Figure 13. The four vectors 1.C. 1-S,  l.(C,+S,), and 
1 (CI - S,) computed for the vertical (P-SV) component 
polarization of Sa at 30mHz as a function of travelling-wave 
branch. 

PSV 

4D mHz 

i 

~ 

20 mnz 

I 10 mH2 

0 5 0 I 20 2,  yi .I¶ 

Mode Branch 

Figure 15. The phase-delay kernel coefficients c, computed for the 
vertical (P-SV) component polarization of Sa as a function of 
branch number corresponding to the kernels displayed in Fig. 7. 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

c o  + sg 

I cg 7 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
0 5 0 I5 m 25 

Mode Bronch 

Figure 14. The four vectors 1 . C, 1 - S, 1 * (C, + S,,), and 1. (C, - 
S,) computed for the transverse (SH) component polarization of Sa 
at 30 mHz as a function of travelling-wave branch. 

45 muz 

B I  

I 10 muz 

I l 
0 5 0 3 10 2,  Y) .!a 

Mode Bronch 

Figure 16. The phase-delay kernel coefficients c, computed for the 
transverse (SH) component polarization of Sa as a function of 
branch number corresponding to the kernels displayed in Fig. 7. 
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Generalized seismological data functionals 383 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in the Earth’s interior, rather than relying on the standard 
taxonomy of seismological phases. An approach of this sort 
may be especially fruitful for the study of deep-seated 
features, such as the shear velocity structure of the inner 
core. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADISCUSSION A N D  CONCLUSIONS 

In this paper we have developed a theory for extracting 
phase and amplitude information from complex waveforms 
recorded on broad-band seismograms and for interpreting 
this information in terms of earth structure. The basic tool is 
the isolation filter (4), a composite waveform constructed 
for a reference earth model to select data from a desirable 
portion of the seismogram. When the cross-correlation 
between this synthetic waveform and an observed 
seismogram is localized in the time domain by windowing 
and in the frequency domain by narrow-band filtering, the 
resulting cross-correlagram can be approximated by a 
five-parameter Gaussian wavelet (5). One of these five 
parameters is the bandwidth of the correlagram, specified by 
the narrow-band filter; the other four define a set of 
time-like, frequency-dependent quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

q,  p, a,  g}. which are functionals of earth structure. at, is 
the differential phase delay and 6t, is the differential group 
delay of the observed waveform relative to the synthetic, 
and 61, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat;, are the corresponding frequency-dependent 
amplitude parameters. For body waves whose amplitudes 
are controlled primarily by dissipation due to  internal 
friction, the latter correspond to differential versions of the 
conventional t *  parameter. We have developed a procedure 
for measuring the four generalized seismological data 
functionals by fitting a Gaussian wavelet to the windowed, 
filtered cross-correlagram (equations 9-12). 

To relate the GSDFs to  earth structure, we apply 
corrections to the differential times for the effects of 
windowing and filtering. Solving a linear system of four 
equations in four unknowns (equations 56-59) yields a set of 
differential dispersion parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{at, :x = q ,  p, a,  g}. For- 
mulae expressing the perturbations of the GSDFs in terms 
of the perturbations to the dispersion parameters for the 
individual component waveforms, including all interference 
effects, have been derived (equations 84-87). Under a set of 
approximations valid for a large class of isolation filters, 
these can be simplified to yield easily computed expressions 
for the FrCchet kernels of the 6 ~ ~ ’ s  (equation 93). The 
calculation of these FrCchet kernels requires no high- 
frequency approximations. 

The power of the theory resides in its generality. To 
illustrate the specifics of the methodology, we have here 
employed the travelling modes of a SNREI earth model to 
construct the isolation filters and FrCchet kernels for an Sa 
waveform; the basic theory can just as well be applied to 
other types of wavefield representations, however. In some 
applications, for example, it may be more efficient to take 
the component waveforms in (1) to be generalized ray 
contributions. It may also be advantageous to compute the 
waveforms and FrCchet kernels using a two- or  three- 
dimensional reference model, rather than relying on a 
one-dimensional, path-average approximation. In the 
context of a modal representation, first-order scattering 
theory (Woodhouse 1983; Tromp & Dahlen 1990; Li & 
Tanimoto 1992) is easily adapted for this purpose. 

We are applying the GSDF methodology to various 
observational problems, including upper mantle anisotropy 
(Gaherty et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1992) and core diffraction (Gee & Jordan 
1990). We have also begun to investigate isolation filters 
constructed to optimize the sampling of a particular feature 
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APPENDIX A: GAUSSIAN WAVELETS 

A Gaussian wavelet is a function of the form g( t )  = %[e'@(')] where 4 is a complex-valued, quadratic polynomial in time t. Six 
real numbers are needed to specify the polynomial; hence, we call this general function a six-parameter Gaussian wavelet. Any 
such wavelet can be expressed as the product of a Gaussian envelope with amplitude A and half-width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa-'" centred at a time 
to, and the cosine of a quadratic phase function with a value Go, slope w0, and curvature p at 2, ) :  

To ensure that g(t)-+O as I t l - - tm, we require a to be strictly positive. Without loss of generality, we may also choose A and 
wn to be positive. We note that wn is the instantaneous frequency of g ( t )  at to. Defining the quantities 

v2 = a + is, ('42) 

If a < w:, then, in the vicinity of wn, the contribution of the spectral peak at -wl,  can be neglected, and the Fourier transform 
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of (A4) is given by 

which can be recast in the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 

where Ga zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) = e-22'2, and the half-bandwidth a, and phase curvature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy are real numbers related to the other parameters by 

The special case when phase function is linear, i.e. when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB = y = 0, defines a five-parameter Gaussian wavelet. Then, 
v = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaln = a, is the half-bandwidth of the spcctrum, to is the group delay, t ,  is the phase delay, and the time-domain expression 
reduces to the same form as equation (5); 

g ( t )  = A  Ga [u,(t - to)] cos [ q , ( t  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtl)]. (A10) 

In a five-parameter wavelet, a, is constrained to be real; in a six-parameter wavelet, it is allowed to be complex. The former 
describes narrow-band waveforms with approximately linear dispersion functions, while the latter is needed for the analysis of 
quadratic dispersion (see Appendix D). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
APPENDIX B: HERMITE POLYNOMIALS 

The properties of the Hermite polynomials, defined in the text by (16), are discussed by Hille (1926). Szego (1926), Palamh 
(1937), Sansone (1959) and Lebedev (1965). Hermite polynomials form a complete set over the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-a, a) and are 
orthogonal with respect to a Gaussian weight: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m 

Ga (x) Hek(X) Hem@) dr = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 k !  6 k m .  

The first seven Hermite polynomials are plotted in Fig. B1: 

He&) = 1, 

He2(x) = x2 - 1, 

He,(x) = x4 - 6x2 + 3, 

He6(x) = x6 - 15x4 + 45x2 - 15. 

He,(x) = x, 

He&) = x 3  - 3x, 

He&) = x s  - lox3 + 15x, 

The Hek(x) are related to an alternative set of Hermite polynomials, usually denoted Hk(x), through a simple scaling: 
Hek(x) = 2 - k ' 2 H k ( ~ / ~ ) .  The latter are more commonly employed in mathematical physics, while the former are more 
prevalent in probability and statistics. 

The Hermite polynomials have the following properties with respect to negation, shifting and scaling of their argument: 

These expressions can be used to obtain general formulae relating shifted and scaled sums of Hermite polynomials: 
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4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-4  

-4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2  0 2 4 
X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure B1. A plot of the scaled Hermite polynomials He,(x)/k! for degrees 0 to 6. 

The Fourier-transform properties of Hermite polynomials are given by the transform pair: 

In these formulae and elsewhere, Ga (z) e-'''' 

APPENDIX C: GRAM-CHARLIER SERIES 

In seismology, the two basic operations applied to correlagrams are time-domain localization by windowing and 
frequency-domain localization by narrow-band filtering. Here we develop the calculus for expressing these operations 
analytically in terms of Gram-Charlier series. 

Canonical representation of real functions 

The spectrum of an arbitrary function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ( w )  can be expanded in Hermite polynomials {He,(o): k = 0, 1,2, . . .}. When 
pre-multiplied by a Gaussian function, Ga (a), this expansion is referred to as a Gram-Charlier series (Jackson 1961; Rietz 
1971). We generalize the usual form of these series by considering an expansion where the pre-multiplier is the spectrum of a 
general Gaussian wavelet, given in equation (A5). Because C( t )  is real-valued, we can limit our consideration to positive 
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frequencies. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ a k }  be complex coefficients such that 

where H(w) is the Heaviside step function. Then, the spectrum at negative frequencies can be recovered using its Hermitian 
symmmetry: C ( - w )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C:(w) .  

There are six parameters in ((21): an amplitude scale A ,  a frequency location parameter w,,, a complex bandwidth scale 
parameter v with vK2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa;' - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiy and two time shift parameters t ,  and 1,. The expansion coefficients ak may be determined by 
rearranging (Cl ) ,  multiplying both sides by He,[(w - w ~ ) / v ]  and integrating over the interval (-m, 00). The orthogonality 
condition (Bl)  yields 

for the kth coefficient. 

(B9): 
We obtain a time-domain expression for C(t)  by making use of the Fourier transform properties of Hermite polynomials 

1 
m 

e-iwn(r-to G a  [ v ( t  - to)] 2 ak[-iv(t - to)]* . 
k=O 

We say that the Gram-Charlier expansion is in its canonical form when the first three coefficients satisfy the relations: 
a,, = 1, a ,  = a, = 0. The real and imaginary parts of these equations specify a system of six equations in the six parameters of 
the Gram-Charlier expansion. 

In the case where the phase-curvature parameter is small, y - 0 and the six-parameter system reduces to five: 

which is the basis for the derivations in the text. Appendix D describes some results obtained from the six-parameter 
representation. 

Windowing theorem 

In the case of a windowing operator which is a real-valued, one-sided, even function centred at  a lag-time t , ,  the time-domain 
image of its canonical Gram-Charlier expansion can be written as a series in even powers of t: 

W ( f )  = G a  [U,(t  - t,)]{l + b,[U,(t - t,)I4 - b,[a,(t - t,)]'+ . . .}, (C5) 

where a, is the half-width of its Fourier spectrum W ( w )  and the coefficients are determined by the spectral integrals of 
Hermite polynomials given by (23). 

The windowing theorem states 
m m 

W(t )C( t )  = 5% {Ae-'wn('-fl) G a  [a,(t - t,)] G a  [ v ( f  - to)] 2 b,[- iU,(f  - t,)lm 2 ak[--iv(t - to)lk} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rn =o k=O 

with coefficients that are given by a convolutional sum over two infinite sums 

The windowed function is parametrized by a Gaussian envelope with a peak time which is the weighted mean of their peaks 

a;r, + v2to 

a;+ v2 ' 
t;, = 

and a spectral bandwidth which is the sum of their bandwidths 

a;: = a; + v2,  (W 
since the windowed function is more compact in the time domain and consequently more broad in the spectral domain. In the 
general case of the six-parameter wavelet, oh and f;, are complex parameters; in the five-parameter case they are real as v = uo. 
The coefficients are obtained by expressing each of the power-series expansions in powers of ah(t - t;,) and determining their 
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product. These operations require the standard translation and product theorems for power series: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m m m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk c pkxk c qmxrn=  c r k X k ;  r k =  c P r n q k - r n .  (C11) 
k=O m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=n k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0 m = O  

While (C6) is in the form of Gram-Charlier series, the operations of translation and multiplication have altered the coefficients 
such that co # 1, and c ,  # c ,  # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

Filtering theorem 

For a narrow-band Gaussian filter with centre frequency wi and bandwidth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, 

where fO is the normalization constant d m / G a  [ (w ,  - w O ) / m ] ,  the filtering theorem has the form 

with coefficients which are a double infinite sum 

The Gram-Charlier expansion in (C13) is paramet$rized by a new centre frequency w :  and half-width 0:: 

(I)! = 
vzwi + &IO 

v 2 +  u; ' 

v2u2 

v2 + u; ' 
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

which arise from the product of two Gaussians. The new scale factor A' is given by 

and reduces to A' = A  in the case of a five-parameter wavelet. 
The expression for the coefficients derives from applying the shift property of the Hermite polynomials (B6) to change the 

argument from ( w  - wO) to ( w  - w i )  and then applying the scale property of Hermite polynomials (B7) to scale the bandwidth 
parameter from v to a:. These operations modify the coefficients such that do # 1, and d ,  # d, # 0. 

APPENDIX D: QUADRATIC DISPERSION 

The analysis of generalized seismological data functionals presented in the text is based on the model of linear dispersion. 
While the linear term of the Taylor series for differential wavenumber is usually a good approximation, in some cases (such as 
fundamental-mode surface wave dispersion) it may be inadequate. Here we extend our analysis of cross-correlagrams to the 
case of quadratic dispersion. In order to minimize the algebraic complexity, we present expressions for the Gaussian-wavelet 
approximation rather than the complete Gram-Charlier expansions. 

In the case of quadratic dispersion, the expression for the differential response operator D ( w )  has the form 

~ ( w )  Gexp {-wo6tq - ( w  - wO)6t, - l ( w  - wO)*A + i[w,,6tp + ( w  - wO)6t, + f ( w  - wO)'p]>, 

where at,, 6tg, 6tq, and 6t, are defined by (45)-(48) and 

p ' X  % {bk (wo) } ,  (D2) 

A'X.%nf {6 f (w, ) } .  (D3) 

p and A represent the real and imaginary parts of the curvature of the complex phase function. With this parametrization of the 
differential response operator, we obtain an expression for CAt) in the form of a six-parameter Gaussian wavelet (A4): 

a [ V ( t  - tO)I}? (D4) CA') = a {Ae-;1Wd-h)1 G 
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where D ( w )  is expanded about Gf and v - ~ =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaL2+ iy .  The six real variables of (D4) can be expressed in terms of the 
parameters of the differential response operator: 

0% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 w, - af( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat, - Ahf), 

a c  

a;' = a;' + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, (D7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P -  
2 

at, + - [(Of - w,)2 - a:], 6, ( W c - G f )  
t ,  = - atp + 

w, w, 

t ,) = bt ,  - ,u(Gf - GJ, (D9) 

Y = P  (D10) 

Following our earlier analysis of windowing and filtering the cross-correlation function, we derive an expression for e W C f  in 
the case of the quadratic dispersion 

EWCdt )  = % {A'e-ifuf('-'')lGa [uf(t - t b ) ] } ,  (D11) 

which depends on the complex-valued parameters A ' ,  of, uf, t; and t i .  The scale factor A' has the form 

with atc = at + 4. The frequency location and scale parameters are defined in an analogous fashion to the linear dispersion 
case (27 and 28) 

The time shift parameters are also modified by the operations of windowing and filtering 

(Tit, + $1,)  

dW+ a: ' 
1;) = 

We may recover the expression for linear dispersion (55) from (D11) by setting p and A to zero. 

APPENDIX E: SUM-OF-WAVELETS THEOREM 

Given a complex spectrum C ( w )  which may be represented as a sum over Gaussian wavelets 

it can be approximated by a function which is itself a Gaussian wavelet in the canonical form 

5 n  . w - w  
C + ( w )  = A--expi[Gl, + ( w  - G ) f o ] G a ( ~ ) [ l  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ak HeA(+)], 

V k = 3  

with parameters which are defined by 

1 = B,,elqn, 

o = - C B,e'qn[iv:(t: - to)  + (0, - s)], 

n 

1 

V n  
(E3a-c) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
1
1
/2

/3
6
3
/7

5
3
8
5
3
 b

y
 g

u
e
s
t o

n
 2

5
 A

u
g
u
s
t 2

0
2
2



390 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Gee and T. H .  Jordan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where B, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP), are complex quantities: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= (W& - a,) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 - @,)to. (E5) 

These three complex-valued equations were obtained from the first three coefficients of the Gram-Charlier expansion in (E2) 

and their real and imaginary parts form a system of six non-linear, implicit equations corresponding to the six parameters of 
(E3) (A,  0, v ,  to and t , ) .  These parameters define the best-fitting Gaussian wavelet in the least-squares sense. 
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