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This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-
proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal pro-
cessing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance
filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the pro-
posed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method
attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifica-
tions allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper
indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details
and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al.
presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP ’03) in Grado, Italy.
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1. INTRODUCTION

Vector signal processing is of paramount importance in ap-
plication areas such as biomedicine, computer vision, mul-
timedia, robotics, industrial inspection, and remote sensing.
In all these areas, end-users and system developers have to
work with multidimensional vectorial data sets. The growing
interest in the development of vector processing techniques
can be attributed primarily to the importance of color im-
age processing [1, 2]. The surge of emerging applications [1]
such as web-based processing of color images and videos, en-
hancement of DNA microarray images, digital archiving and
culture heritage preservation, multimedia sequence mining,

and the proliferation of devices [3] such as video-enabled
wireless phones and personal digital assistant (PDA) tools
suggests that the demand for new, more powerful, and cost-
effective vector-filtering solutions will continue.

It is well known that humans and computer vision sys-
tems use color information to sense the environment and
that the correct perception of color can help in different tasks
of image understanding and object recognition. Unfortu-
nately, noise and other impairments associated with the mea-
surement or the transmission apparatus significantly degrade
the value of the color information. This usually declines the
perceptual quality and the fidelity of the images, and also de-
creases the performance of the task for which the image was
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used. It comes therefore, as no surprise, that the most com-
mon signal processing task is the noise filtering. Noise filter-
ing is an essential part of any image processing-based system,
whether the final information is used for human inspection
or for an automatic analysis.

In the last decades, several noise reduction techniques
have been proposed. They can be divided into two classes:
linear filters and nonlinear filters.

Linear processing techniques have been widely used in
digital signal processing applications. However, many image
processing tasks are suitable for linear operations as well. On
the other hand, image signals are nonlinear in nature due
to the presence of structural information (edge and flat ar-
eas) and are perceived via the human visual system which
has strong nonlinear characteristics [4]. Therefore, nonlin-
ear methods can potentially preserve important multichan-
nel structural elements, such as color edges, and eliminate
degradations occurring during signal formation or transmis-
sion through nonlinear channel.

This paper contributes to the progressive generalization
of vector filtering operators. The main emphasis is on the
development of a unified framework for the description and
analysis of color image filters. Existing, vector color image
processing solutions can be discerned as follows:

(i) componentwise (marginal) methods [5, 6], which sep-
arately operate on color channels;

(ii) vector (multichannel) methods [1, 2], which process
the color pixels as vectors.

In the case of red-green-blue (RGB) image representa-
tion which is most often used for image acquisition, stor-
ing and displaying systems, componentwise filters produce
strong, visible color artifacts due to independent (separate)
processing of the correlated RGB channels. Their projection
into the restored RGB image often produces a new color quite
different from the neighbors. Therefore, vector filters, espe-
cially nonlinear vector filters, which process the color pixels
as vectors seem to be more appropriate [1, 2, 7].

The most popular class of nonlinear vector operators is
the one based on the theory of order statistics [8, 9, 10, 11].
In such an approach, the center of the ordered sequence,
known as a median [10], represents the sample which has
the largest probability to be noise free. In vector-valued sig-
nals such as color images, outliers are associated with the
maximum extremes of aggregated distances to other input
vectors in the sliding window [12, 13, 14]. For that reason,
the output of the vector filters based on ranking is the low-
est ranked vector in a predefined sliding window. Mostly
used vector filtering techniques such as vector median fil-
ters (VMFs) [15] and vector directional filters (VDFs) [16]
utilize either the aggregated Euclidean distance (in the VMF
designs) or the aggregated angular distance (in the VDF de-
signs) of the input vectors within a processing window. How-
ever, these measures do not take into account neither the
importance of the specific samples in the filter window nor
structural contents of the image. Much better results can be
obtained when distances appropriately modified by weight-
ing coefficients represent the degree to which each input vec-

tor contributes to the output of the filter. The relationship
between the image vector at the window center and its neigh-
bors should be reflected in the decision for the weights of the
filter.

This paper focuses on a class of nonlinear filters termed
selection weighted vector filters (SWVFs) [17]. As the name
implies, the output of the filter is selected from an input
set associated with the positive weight vector (or two inde-
pendent weight vectors for Euclidean and angular distances).
These weights express the degree of which the specific dis-
tances between multichannel inputs contribute to the aggre-
gated measure serving as an ordering criteria. To adapt the
filter weights to varying signal and noise statistics, we provide
the generalized multichannel adaptation algorithms based
on the sigmoidal function [17]. The proposed approach has
the advantage of optimal weighted medians (WMs) [18], is
fast, saves the memory space and is easy to implement. More-
over, the achieved weights are sufficiently robust and the pro-
posed method is able to remove impulsive noise while pre-
serving edge information.

The rest of this paper is organized as follows. In Section 2,
the formulation of the problem is introduced and an
overview of the most commonly used vector filters is pre-
sented. A generalized framework for vector filtering is intro-
duced in Section 3. Motivation and design characteristics are
discussed in detail. Variations of the proposed structure are
recommended and analyzed with respect to their properties
and parameters used. In Section 4, the proposed methods are
tested using a variety of noise corrupted test images. Conclu-
sions are offered in Section 5.

2. MULTICHANNEL IMAGE FILTERING
FUNDAMENTALS

We consider a K1×K2 multichannel image x(i) : Z l→Zm rep-
resenting a two-dimensional matrix of m-component sam-
ples xi = (xi1, xi2, . . . , xim) ∈ Z l. Note that standard color im-
ages such as RGB images relate to parameters l and m equal
to 2 and 3, respectively. Components xik, for k = 1, 2, . . . ,m
and i = 1, 2, . . . ,Q; Q = K1K2, represent the kth elements of
the vectorial inputs xi.

Each multichannel sample xi = (xi1, xi2, . . . , xim) can be
considered as an m-dimensional vector in the vector space.
For a color vector xi, its magnitude Mx(i) : Z l → R+,

Mxi =
∥

∥xi

∥

∥ =

√

(

xi1
)2

+
(

xi2
)2

+ · · · +
(

xim
)2

, (1)

constitutes a measure of their brightness. Its direction Dx(i) :
Z l → Sm−1,

Dxi =
1
∥

∥xi

∥

∥

xi =
1

Mxi

xi,

dxik =
xik
∥

∥xi

∥

∥

=
xik
Mxi

, for k = 1, 2, . . . ,m,

(2)

where Sm−1 is a unit ball in Rm and ‖Dxi‖ = 1, describes their
chromaticity.
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2.1. Problem formulation

In many practical applications, vectorial signals such as mul-
tichannel images are corrupted by additive noise. The most
commonly used model is defined [1, 15, 19] as

xi = oi + vi, (3)

where xi = (xi1, xi2, . . . , xim) represents the observed (noisy)
sample, oi = (oi1, oi2, . . . , oim) is the desired (noise free) sam-
ple, vi = (vi1, vi2, . . . , vim) is the vector describing the noise
process (e.g., thermal noise mixed with bit errors), and i de-
notes the spatial position of the samples in the image. Note
that vi can describe signal-dependent noise as well as noise
to be considered independent.

The appearance of the noise and its influence on the im-
age relates to its characteristics. Noise signals can be either
periodic in nature or random. In certain cases (e.g., sensors),
noise can be described in terms of the commonly used Gaus-
sian noise model. However, noise-corrupted signals are of-
ten characterized by abrupt local changes, in which case the
noise masking the true signal can be modelled as impulsive
sequences, which occur in the form of short time duration,
high energy spikes attaining large amplitudes with probabil-
ity higher than that predicted by a Gaussian density model.
Such impulsive noise can be introduced into the images by
electronic interference, flaws in the data transmission proce-
dure, or through the aging of the storage material [2].

2.2. State of the art in color image filtering

The most popular vector image processing filters, such as the
VMF and the VDF, are operating on some type of sliding
window W = {xi ∈ Z l; i = 1, 2, . . . ,N} of a finite size N ,
which usually affects one image sample (mostly the sample
x(N+1)/2 placed in the center of the window) at a time, chang-
ing its value by some function of a local neighborhood area
{x1, x2, . . . , xN}. This window operator slides over the image
to affect individually all the image pixels.

Probably the most well-known filter is the VMF [15].
The VMF can be derived as a maximum likelihood estimate
(MLE) when the underlying probability densities of vi ∈ Z l

are double exponential. The output of the VMF scheme can
be equivalently expressed as the sample x(1) ∈W , that is, the
sample of the input set W , minimizing the distance to other
samples inside W :

min arg
x(1)∈W

N
∑

i=1

∥

∥x(1) − xi

∥

∥

L, (4)

where ‖xi − x j‖L is the generalized Minkowski metric [20]
determining the distance between two m-channel samples
xi = (xi1, xi2, . . . , xim) and x j = (x j1, x j2, . . . , x jm),

∥

∥xi − x j

∥

∥

L =

( m
∑

k=1

∣

∣xik − x jk
∣

∣

L

)1/L

, (5)

where L denotes the norm parameter, for example, the city-
block distance (L = 1) or Euclidean distance (L = 2), and
xik is the kth element of xi. If the vector dimension m = 1
(gray-scale case), the VMF is equivalent to the scalar median
filter (MF).

Properties of the VMF scheme have been summarized in
[15]. One of the most important is the robust noise attenua-
tion capability which makes the VMF very attractive for vari-
ous applications. However, the drawback of the VMF scheme
is its low signal-detail preserving capability, as the VMF tends
to produce streaks, that is, regions of constant or nearly con-
stant brightness. This was a motivation for developing of
the VMF-based modifications, for example, fast switching
schemes [21], weighted filtering structures [22, 23], gradient-
based design [24], and combinations with the linear filters
[15], rational filters [25], and fuzzy sets [26, 27]. The prop-
erties of color spaces have been followed in [28]. To speed up
the calculation of the distances between the color vectors, the
VMF based on linear approximation of the Euclidean norm
has been provided [29].

Another class of vector operators, termed VDF filters
[16], is operating on the directional domain of color images.
It has been observed [30] that the output of the basic VDF
(BVDF) [16] is the color vector x(1) ∈ W whose direction is
the MLE of directions of the input vectors. Thus, the BVDF
output x(1) minimizes the angular ordering criteria to other
samples inside the sliding filtering window W :

min arg
x(1)∈W

N
∑

i=1

A
(

x(1), xi

)

, (6)

where

A
(

xi, x j

)

= arccos

(

xi · x j
∣

∣xi

∣

∣

∣

∣x j

∣

∣

)

(7)

represents the angle between two m-dimensional vectors xi

and x j .
In [30], it has been proven that in the case of color im-

ages, the angular minimization approach is useful for di-
rectional data such as color data. Therefore, the filtering
schemes based on directional processing of color images (or
directional processing followed by magnitude processing)
[1, 2, 16] may achieve better performance than the VMF-
based approaches in terms of the color chromaticity (direc-
tion of color data) preservation. On the other hand, the VDF
filters do not take into account the brightness of color vec-
tors. To utilize both features in color image filtering [2, 16],
the generalized VDFs (GVDFs) and double window GVDF
first eliminate the color vectors with atypical directions in
the vector space and consequently process the vectors with
the most similar orientation according to their magnitude.
Thus, the GVDF splits the color image processing into the
directional processing and the magnitude processing.

Other approaches such as directional-distance filter
(DDF) [31] and hybrid vector filters [32], respectively,
combine both ordering criteria used in the VMF and the
BVDF schemes and require evaluation of both the VMF and
BVDF outputs. Spherical medians (SMFs) [16] minimize the
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angular criteria (6) excluding the constraints of the output
sample lying in the filter window W . In order to develop ro-
bust smoothing algorithms operating on vectors’ direction-
ality, fuzzy adaptive filters have been provided [19, 33]. Re-
cently developed weighted VDF (WVDF) filters [34, 35] im-
prove the signal-detail preserving capability of the VDF op-
erators.

3. PROPOSED FRAMEWORK

3.1. Generalization

Let W = x1, x2, . . . , xN be a set of vector-valued samples
spawned by a filter window of a finite size N and let x(N+1)/2

be the central sample corresponding to the window refer-
ence position. We assume that w = [w1,w2, . . . ,wN ] and
u = [u1,u2, . . . ,uN ] represent sets of positive real weights,
where the weights wi and ui, for i = 1, 2, . . . ,N , are associ-
ated with the input sample xi.

Applying a minimization procedure similar to the one
used for VMF or BVDF, the obtained SWVF output is the
sample x(1) minimizing

min arg
x(1)∈W

( N
∑

i=1

wi

∥

∥x(1) − xi

∥

∥

L

)1−p( N
∑

i=1

uiA
(

x(1), xi

)

)p

, (8)

where p is a design parameter ranged from 0 to 1. Weight
coefficient wi signifies the importance of the input sample
xi based on the aggregated Euclidean distance and ui mea-
sures the importance of xi according to the aggregated an-
gular distance. A design parameter p can be used to tune
the overall filter characteristics in terms of color fundamen-
tals [1]. It should be mentioned at this point that the aggre-
gated Euclidean distance relates to the brightness character-
istics of the color vectors under consideration, whereas the
aggregated angular distance relates to the chromaticity prop-
erties of specific samples. Weight coefficients associated with
xi emphasize its importance in (8) by adding the multiplied
distances to the aggregated measures of its neighbors. Due to
zero self-contribution of xi to the corresponding aggregated
measure, wi and ui make xi favorable. Thus, the weight coef-
ficients used in the SWVF scheme allow to control its detail-
preserving and noise attenuating characteristics.

The output of the SWVF can be determined using the
vector order statistics. We denote

ψi =





N
∑

j=1

w j

∥

∥xi − x j

∥

∥

L





1−p

×





N
∑

j=1

u jA
(

xi, x j

)





p (9)

as the combined aggregated measure associated with xi, for
i = 1, 2, . . . ,N . Then the ordered sequence of ψ1,ψ2, . . . ,ψN

is given by ψ(1) ≤ ψ(2) ≤ · · · ≤ ψ(N). Assuming that
the ordering of ψ(i)’s implies the same ordering of the in-
put set x1, x2, . . . , xN , the procedure results in the ordered
set x(1), x(2), . . . , x(N), where x(i) is associated with ψ(i). In

Table 1: Special cases of the proposed SWVF framework.

Filter SWVF parameters Reference

WVMF p = 0 [23]

WVDF p = 1 [35]

VMF wi = 1, ui = 1, p = 0 [15]

BVDF wi = 1, ui = 1, p = 1 [16]

DDF wi = 1, ui = 1 [31]

Original

signal o

Noise
process v

g(·, ·)

Corrupted

signal x
Filter

Filter
output y

Cost
function

Figure 1: The filtering problem statement, where a filter is usually
designed under the minimization of the cost function.

this case, the SWVF output is defined as the lowest order-
statistics x(1), which is equivalent to the sample-minimizing
earlier definition (8). From this algorithm, it is evident that
the SWVF output is restricted to the dynamic range of the
input samples and thus, it can never cause new outliers.

A class of SWVFs includes (Table 1) a number of previ-
ously introduced vector filters as their subclasses. These fil-
ters can be achieved by appropriate configuration of the de-
sign parameter p and the weight coefficients w1,w2, . . . ,wN

and u1,u2, . . . ,uN . Thus, the SWVF includes the WVMF (for
p = 0) and WVDF (for p = 1) such as basic subclasses. Spe-
cial cases such as VMF (p = 0), BVDF (p = 1), and DDF are
obtained with wi = 1, ui = 1, for i = 1, 2, . . . ,N .

3.2. Adaptive filter design

SWVFs constitute a wide class of vector operators. Each set-
ting of the filter parameters represents a specific filter which
can be used for specific purposes. Using optimization scheme
(Figure 1), the weight coefficients can follow the statistics and
structural context of desired signal and be adapted in re-
quired manner. To simplify the SWVF optimization and pro-
vide better illustration of the weight adaptation [17], we con-
sider the equivalence between the weight vectors w and u so
that wi = ui, for i = 1, 2, . . . ,N . Thus, in the rest of this paper,
we will make the use of the weight coefficients w1,w2, . . . ,wN

only. These coefficients are adaptively determined using gen-
eralized multichannel sigmoidal optimization approach [17]
of the standard WM filters [18].

The development of vector image processing filters [2]
requires the quantification of the distance between the
vector-valued samples, and the sample ordering using the
obtained distances. Both require a method to compare the
vectorial inputs. This can be done by combining the sign op-
erator and the distance measure between two vectors.
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We consider the generalized difference between two vec-
tors a and b:

D(a− b) = S(a, b)
(

‖a− b‖L
)1−p(

A(a, b)
)p

, (10)

where S(·) ∈ {−1, 1} is a polarity function given by

S(a, b) =







+1, for ‖a‖ − ‖b‖ ≥ 0,

−1, for ‖a‖ − ‖b‖ < 0.
(11)

Note that the polarity function introduced here preserves
the sign of the difference between the scalar image samples a
and b since for a scalar case, that is, m = 1 and p = 0, the
magnitude of a and b is equivalent to a and b, respectively.

Given an input set W = {x1, x2, . . . , xN} and a weight
vector w = [w1,w2, . . . ,wN ], we denote the SWVF output as
y = y(w,W) = x(1). The loss in performance (error in the
filtering operation) is defined as

e =
∣

∣D(o− y)
∣

∣. (12)

Although this function is not convex in nature, it allows to
express the error criteria using the same design parameter p
like in the SWVF scheme and thus, (12) well describes behav-
ior of the SWVF framework.

One (but no only) natural way of choosing the weight co-
efficients w1,w2, . . . ,wN is to require that this choice should
minimize the average loss or risk. Therefore, the cost func-
tion of the SWVF filtering is defined as follows:

JSWVF(w) = E
{∣

∣D(o− y)
∣

∣

}

, (13)

where E{·} indicates statistical expectation.
With the constraint of nonnegative weights keeping the

aggregated measure (9) positive, the optimization problem
with inequality constraints can be expressed as follows:

minimize JSWVF(w)

subject to wi ≥ 0 for i = 1, 2, . . . ,N.
(14)

During processing, the sliding filtering window is mov-
ing over an image domain. The weight coefficients wi, for
i = 1, 2, . . . ,N , are adjusted by adding the contribution of
the samples multiplied by a certain regulation factor µ [17]:

wi = P
[

wi + 2µD(o− y) sgn
(

D
(

xi − y
))]

, (15)

where y is the output of the sigmoidally optimized SWVF
related to the actual weight coefficients w.

This iterative algorithm determines the weight coeffi-
cients with respect to the filter weights at the previous point.
If D(o−y) is zero, a filter holds the preserving characteristics
and all weight coefficients remain unchanged. If D(xi − y) is
zero, the input sample xi denotes the same noise attenuation
and detail preserving capability as y and the correspond-
ing weight wi remains also unchanged. In the rest of cases,
D(o− y) and D(xi − y) influence the weight update in terms
of the tradeoff between the noise smoothing and the signal-
detail preservation. Note that the initial weight vector w can

be set to arbitrary positive values, but the best choice is to
start the weight adaptation with equal weights—for exam-
ple, wi = 1, for i = 1, 2, . . . ,N—corresponding to the robust
smoothing functions such as VMF, BVDF, and DDF. To end
the description of (15), notation sgn(·) denotes the sign sig-
moidal function,

sgn(a) =
2

1 + e−a
− 1, (16)

and P(·) is a projection function,

P
(

wi

)

=







0 if wi < 0,

wi otherwise,
(17)

which changes the negative values to zero during the weight
adaptation.

For illustration purposes, we consider the scalar case
(e.g., componentwise filtering for a particular value of k). In
this case and for p = 0, (15) can be written as follows:

wi = P
[

wi + 2µ
(

ok − yk
)

sgn
(

xik − yk
)]

. (18)

Assuming for the moment that P(·) is an identity function,
for xik ≫ yk and positive µ, the adaptation formula (18) re-
duces to

wi = wi + 2µ
(

ok − yk
)

. (19)

According to (19), the importance of the sample occupying
the ith position in a supporting window increases if ok is
greater than the actual output yk and decreases if ok is less
than yk. Thus, this difference multiplied by a regularization
factor represents the weight increment (for 0 < ok − yk), the
weight decrement (for 0 > ok− yk), or it can keep the weights
unchanged (for ok − yk = 0).

It is clear that the availability of original (training) signal
in (15) is essential in the development of the filter. However,
noise-free (training) samples may not be available in prac-
tical image processing applications. In such a case, the pro-
posed scheme can be optimized using training sets available
from other natural images. Upon completion of the train-
ing, the filter can be applied to real images. Another way is
to replace the desired signal o with the input central sample
x(N+1)/2 as follows:

wi = P
[

wi + 2µD
(

x(N+1)/2 − y
)

sgn
(

D
(

xi − y
))]

. (20)

This approach is useful when underlying noise probability is
low and detail-preserving characteristics of the SWVFs are
required. Another adaptation scheme can be obtained if a
robust easily achieved estimate y∗, for example, component-
wise MF or sample average, is used instead x(N+1)/2:

wi = P
[

wi + 2µD
(

y∗ − y
)

sgn
(

D
(

xi − y
))]

, (21)

where y∗ = (y∗1 , y∗2 , . . . , y∗N ) is the MF of the input set W :

y∗k = med
{

x1k, x2k, . . . , xNk

}

, (22)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: Color images test: (a) original image Lena, (b) image Lena corrupted by 10% impulsive noise (pv = 0.10), (c) original image
Peppers, (d) original image Parrots, (e) image Peppers corrupted by 10% impulsive noise (pv = 0.10), and (i) image Parrots corrupted by
5% impulsive noise (pv = 0.05). The results obtained by filtering the images shown in Figures 2e and 2i are, respectively, (f) VMF output,
(g) SWVF1 output (p = 0.5), (h) SWVF2 output (p = 0.5), (j) VMF output, (k) SWVF1 output (p = 0.5), and (l) SWVF3 output (p = 0).

where k, for k = 1, 2, . . . ,m, denotes the color channel, xik,
for i = 1, 2, . . . ,N , represent the kth component of the input
sample xi, and med is a median operator.

Such a filter is characterized by robust noise attenuation
capability and is able to remove strong image noise. Its draw-
back is a worse signal-detail preservation. Therefore, it can be
desirable to combine noise attenuating and detail-preserving
characteristics of (20) and (21). Thus, the SWVF adaptation
formula is given by

wi = P
[

wi+2µ
(

D
(

y∗−y
)

+D
(

x(N+1)/2−y
))

sgn
(

D
(

xi−y
))]

.
(23)

4. APPLICATION TO COLOR IMAGES

In this section, the performance of the SWVFs is evaluated
in the most important area of vector processing, namely,
color image filtering. Note that all filtering results presented
in this paper were obtained with a 3 × 3 square window,
that is, for N = 9. Firstly, the noise attenuation prop-

erties and color/structural preservation capability of the
SWVF framework are examined by utilizing the color im-
age Lena (Figure 2a). The test image has been contaminated
(Figure 2b) by impulsive noise [35] given by

xi =







vi with probability pv,

oi with probability 1− pv,
(24)

where i characterizes the sample position, oi is the orig-
inal sample, xi represents the sample from the noisy im-
age and pv is a corruption probability (also refereed as a
percentage number of corrupted pixels). The impulse vi =
(vi1, vi2, . . . , vim) is independent from pixel to pixel and has
generally much larger and smaller amplitude than the neigh-
boring samples at least in one of the components.

Secondly, the SWVF filters optimized using the noisy im-
age Lena (Figure 2b) are compared, in terms of performance
related to the color images Peppers (Figure 2c) and Parrots
(Figure 2d) test, with other widely used color image filters
such as MF [6], VMF [15], BVDF [16], GVDF [16], SMF
[16], DDF [31], and hybrid vector filters HVF1, HVF2 [32].
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To provide some measure of closeness between two dig-
ital images, a number of different objective measures based
on the difference in the statistical distributions of the pixel
values can be utilized. In this paper, we will make the use of
commonly employed objective measures [7, 19, 21] such as
mean absolute error (MAE), mean square error (MSE), and
normalized color difference criteria (NCD). The MAE and
MSE are defined as follows:

MAE =
1

mK1K2

m
∑

k=1

K1K2
∑

i=1

∣

∣oik − xik
∣

∣,

MSE =
1

mK1K2

m
∑

k=1

K1K2
∑

i=1

(

oik − xik
)2

,

(25)

where oi = (oi1, oi2, . . . , oim) is the original pixel, xi =

(xi1, xi2, . . . , xim) is the noisy (or restored) pixel, i is the pixel
position in a K1 × K2 color image, and k characterizes the
color channel.

To evaluate the measure of color distortion in the percep-
tual way to humans [2], we also use the NCD criteria defined
as follows:

NCD

=

K1K2
∑

i=1

√

(

L∗oi
−L∗xi

)2
+
(

u∗oi
−u∗xi

)2
+
(

v∗oi
−v∗xi

)2

K1K2
∑

i=1

√

(

L∗oi

)2
+
(

u∗oi

)2
+
(

v∗oi

)2

,
(26)

where L∗ represents lightness values and (u∗, v∗) chromi-
nance values corresponding to original oi and noisy (or fil-
tered) xi samples expressed in the CIELUV color space.

The second evaluation approach is the subjective evalua-
tion of the image quality with respect to the structural con-
tent (edges, textures, and fine details) preservation and the
presence of unremoved impulses or introduced color arti-
facts as a result of faulty processing. Note that the human
visual system is sensitive to changes in color, and maintain-
ing the sharpness of the edges is as important as removing
the image noise. Edges are important features since they pro-
vide an indication of the shape of the objects in the image.
From this point of view, it is evident that the noise removal
tasks in color images may be understood as achieving the best
balance between the noise suppression and color/structural
content preservation.

Tables 2 and 3 allow for the objective comparison of a va-
riety of vector image filtering techniques. The results indicate
that the proposed SWVF framework (SWVF1 and SWVF2,
both defined in (15), were trained using the test image Lena
corrupted by impulsive noise pv = 0.10 and 0.20, respec-
tively; SWVF3 is a self-adaptive technique defined by (23))
provides the best results among the tested filters, and per-
formance of the filters designed within the SWVF frame-
work is satisfactorily robust for a wide range of the im-
pulsive noise corruption. Moreover, Figure 2 shows that the
proposed SWVF methods achieve excellent balance between
noise attenuation and signal-detail preserving characteris-

tics. These results are also confirmed by the corresponding
estimation errors shown in Figure 3, and zoomed parts of
the test images depicted in Figures 4 and 5. It can be easily
observed that the standard filtering techniques such as VMF
and MFs excellently suppress impulses present in the image;
however, their excessive smoothing capability results in edge
blurring. In some situations, the decreased noise attenuation
capability of the BVDF can result in the presence of impulses
in the filtered image. It can be seen that the proposed SWVF
filters achieve excellent balance between signal-detail preser-
vation and noise suppression. This is also reflected in very
small estimation error depicted in Figures 3b, 3c, 3e, and 3f.

Figure 6 shows the adaptation capability of the proposed
SWVF scheme (15) starting with the same initial weighting
vector w = [1, 1, 1, 1, 1, 1, 1, 1, 1]. These results are related to
the training set represented by the test image Lena and its
corrupted versions with 2% and 10% impulsive noise, re-
spectively. Objective criteria MAE, MSE, and NCD are ex-
pressed in dependence on the regularization factor µ rang-
ing from 10−12 to 103 and the design parameter p ranging
from 0 to 1. The obtained results indicate that the SWVF
adaptation depends strongly on µ. For its small value, the
SWVF provides worse detail-preserving characteristics and
performs the smoothing operation similar to the DDF, which
depends on design parameter p. This is caused by achieved
weight coefficients like in the initial weight vector w since too
small value of µ does not have large enough influence on the
adaptation of w. From Figure 7, it can be seen that the error
criteria related to the SWVF performance increase with the
noise corruption pv. Simultaneously, the growth of pv results
in smaller difference between the best and the worst perfor-
mance of the SWVF technique related to the same noise in-
tensity pv. To end this, Figure 8 shows the dependence of µ
on p. It can be observed that the SWVF (for any value of p)
usually achieves the best balance between all considered ob-
jective measures for µ larger than 0.5.

Figure 9 corresponds to the convergence properties of the
SWVF framework. The results show that the SWVFs con-
verge to an appropriate weight vector within the first itera-
tion and the additional adaptation cycle usually does not im-
prove the performance of the SWVFs.

Figure 10 relates to the SWVF robustness. The basic
SWVF (p = 0.5) was trained using the test image Lena cor-
rupted by a wide range of impulsive noise and consecutively
tested using statistically different noisy test images Peppers
and Parrots. It can be seen that the training samples with low
impulsive noise intensity pv lead to worse robustness of the
SWVF framework, especially in terms of the MSE values.

Apart from the numerical behavior (actual performance)
of any algorithm, its computational complexity is a real-
istic measure of its practicality and usefulness. Therefore,
the selected filtering classes are analyzed here in terms of
normalized operations, such as additions (ADDs), multipli-
cations (MULTs), divisions (DIVs), square roots (SQRTs),
comparisons (COMPs), and arc cosines (ARCCOSs). Table 4
summarizes the total number of operations for VMF,
BVDF, DDF, WVMF, WVDF, and SWVF schemes. Note
that the SWVF is a generalized filtering class for all the
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Table 2: Comparison of the presented algorithms using the test image Peppers.

Impulsive noise pv = 0.05 pv = 0.10 pv = 0.15

Method/criterion MAE MSE NCD MAE MSE NCD MAE MSE NCD

Noisy 3.988 486.1 0.0441 7.677 943.3 0.0869 11.474 1402.4 0.1279

MF 3.248 43.1 0.0484 3.579 53.9 0.0546 3.996 70.3 0.0620

VMF 3.169 43.9 0.0452 3.503 55.0 0.0494 3.858 68.7 0.0540

BVDF 3.740 60.7 0.0438 4.151 82.7 0.0484 4.598 113.2 0.0532

DDF 3.182 44.6 0.0431 3.512 56.6 0.0475 3.844 70.8 0.0518

GVDF 3.433 57.9 0.0453 3.785 73.4 0.0492 4.139 92.0 0.0534

SMF 3.442 42.9 0.0456 3.723 52.3 0.0499 4.101 64.8 0.0545

HVF1 3.282 42.9 0.0441 3.626 53.6 0.0485 3.992 68.0 0.0530

HVF2 3.274 41.9 0.0441 3.614 52.4 0.0485 3.994 67.2 0.0530

SWVF1 (p = 0) 0.995 19.9 0.0138 1.460 50.7 0.0203 2.221 114.1 0.0299

SWVF1 (p = 0.5) 0.962 18.1 0.142 1.381 43.1 0.0196 2.088 88.4 0.0275

SWVF1 (p = 1) 1.595 31.0 0.0193 2.068 65.5 0.0244 2.667 113.0 0.0311

SWVF2 (p = 0) 1.454 21.2 0.0204 1.754 33.3 0.250 2.189 56.1 0.0309

SWVF2 (p = 0.5) 1.783 24.0 0.0255 2.068 35.1 0.0295 2.448 55.1 0.0346

SWVF2 (p = 1) 2.522 39.3 0.0295 2.879 58.5 0.0338 3.346 93.3 0.0390

SWVF3 (p = 0) 2.032 27.7 0.0287 2.409 37.4 0.0345 2.916 52.9 0.0414

SWVF3 (p = 0.5) 2.378 33.0 0.0329 2.734 42.6 0.0378 3.201 58.5 0.0436

SWVF3 (p = 1) 3.241 53.4 0.0377 3.894 79.4 0.0456 4.170 100.4 0.0484

Table 3: Comparison of the presented algorithms using the test image Parrots.

Impulsive noise pv = 0.05 pv = 0.10 pv = 0.15

Method/criterion MAE MSE NCD MAE MSE NCD MAE MSE NCD

Noisy 3.805 443.6 0.0432 7.526 882.0 0.0857 11.115 1311.5 0.1270

MF 2.718 63.1 0.0170 2.960 70.0 0.0198 3.275 80.9 0.0236

VMF 2.669 64.2 0.0132 2.890 69.6 0.0142 3.178 80.0 0.0158

BVDF 3.460 109.0 0.0116 3.630 113.5 0.0127 3.883 125.2 0.0144

DDF 2.645 65.3 0.0117 2.839 69.7 0.0128 3.070 76.7 0.0143

GVDF 3.036 93.6 0.0126 3.188 96.2 0.0137 3.321 97.0 0.0165

SMF 2.927 61.6 0.0130 3.133 67.1 0.0141 3.492 87.5 0.0153

HVF1 2.786 65.7 0.0122 3.002 69.9 0.0132 2.786 65.7 0.0122

HVF2 2.771 63.5 0.0121 2.999 68.6 0.0131 2.771 63.5 0.0121

SWVF1 (p = 0) 0.903 27.1 0.0042 1.267 47.2 0.0067 1.942 104.1 0.0129

SWVF1 (p = 0.5) 0.745 18.5 0.0033 1.021 29.8 0.0049 1.539 67.2 0.0086

SWVF1 (p = 1) 1.373 43.2 0.0046 1.611 53.6 0.0058 2.065 88.9 0.0087

SWVF2 (p = 0) 1.256 30.9 0.0056 1.501 41.6 0.0069 1.857 60.9 0.0095

SWVF2 (p = 0.5) 1.399 36.0 0.0058 1.624 43.4 0.0070 1.881 53.3 0.0086

SWVF2 (p = 1) 2.199 70.0 0.0070 2.385 75.2 0.0081 2.643 89.5 0.0099

SWVF3 (p = 0) 1.581 38.1 0.0072 1.909 46.7 0.0090 2.229 56.4 0.0110

SWVF3 (p = 0.5) 2.098 51.8 0.0091 2.370 58.2 0.0105 2.691 67.1 0.0124

SWVF3 (p = 1) 3.380 105.2 0.0113 3.559 111.2 0.0124 3.748 120.4 0.0139

above-mentioned filtering classes and thus, it is expected that
the proposed generalization will increase the overall cost. As
it can be seen, the VMF is a computationally most attractive
case among the considered filtering schemes.

Summarizing the results presented above, the follow-
ing conclusions can be drawn: (i) the proposed SWVF op-
timization framework holds excellent adaptation capabil-
ity; (ii) the noise attenuation capability of the SWVF filters
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(a) (b) (c) (d) (e) (f)

Figure 3: Estimation error corresponding to filtering of the images shown in Figures 2e and 2i, respectively: ((a), (d)) VMF output; ((b),
(e)) SWVF1 output (p = 0.5); ((c), (f)) SWVF3 output (p = 0).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Zoomed parts of images corresponding to filtering of Figure 2e: (a) original image, (b) noisy image (pv = 0.10), (c) MF output,
(d) VMF output, (e) BVDF output, (f) SWVF1 output (p = 0.5), (g) SWVF2 output (p = 0.5), and (h) SWVF3 output (p = 0).

increases with the degree of the impulsive noise corruption
present in the training set; (iii) the proposed SWVFs atten-
uate impulsive noise present in the color images while ex-
cellently preserving color/structural information; (iv) SWVF
filters are sufficiently robust and provide better results than
widely used image filtering schemes, both vectorial in na-
ture and componentwise; (v) the filter complexity is com-
parable with widely used vectorial schemes; (vi) the pro-
posed multichannel adaptation tool is relatively fast, for ex-
ample, in the case of a 256 × 256 color image less than
1 second using Intel PIV 2.4 GHz processor and program
written in C on the MS VC++ 5.0 platform, and is easy to
implement.

5. CONCLUSION

The paper introduced a generalized vector signal process-
ing framework based on the order-statistics theory. The pro-
posed SWVF framework generalizes many attractive vector
processing schemes by selecting filtering parameters in a sim-

ple, consistent, and systematic manner. The behavior of the
introduced vector processor was analyzed in details. Color
image filtering was introduced as an example of important
vectorial processing. In order to adapt the filter character-
istics to varied signal and noise statistics, a new generalized
multichannel weight adaptation was introduced. This adap-
tation tool based on the sigmoidal function is fast, easy to
implement, and achieves convergence within the first few it-
erations. Simulation results and comparisons reported here
indicate that the proposed class is able to achieve excellent
tradeoff between smoothing and detail preservation, is suf-
ficiently robust, and it can outperform the commonly used
filtering schemes in terms of both objective and subjective
evaluation approaches.

Future research will focus on the introduction of alter-
native weight adaptation formulas and mechanisms. It is ex-
pected that this modification in conjunction with a separate
adaptation of the filtering weights related to magnitude and
angular characteristics of the vectorial inputs will enhance
further the performance and provide additional flexibility.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Zoomed parts of images corresponding to filtering of Figure 2i: (a) original image, (b) noisy image (pv = 0.05), (c) MF output,
(d) VMF output, (e) BVDF output, (f) SWVF1 output (p = 0.5), (g) SWVF2 output (p = 0.5), and (h) SWVF3 output (p = 0).

APPENDIX

Let the weight vector w = {w1,w2, . . . ,wN} define the com-
ponentwise WM filter which is separately applied to the RGB
color channels. In this case, Wk = {x1k, x2k, . . . , xNk} denotes
the input set, while yk = y(w,Wk) is the WM output for the
kth color channel. Given an estimation error ek = ok − yk,
the cost function defined under the MAE is expressed as
JMAE(w) = E{|ok − y(w,Wk)|}, where E{·} represents sta-
tistical expectation. Similarly to (14), the constrained solu-
tion [18] leads to the minimization of JMAE(w) with simulta-
neous consideration of wi ≥ 0, for i = 1, 2, . . . ,N .

Assuming that JMAE(w) is nonconvex in the weights and
the optimal weights are at one of the multiple local minima,
the conditions for optimality can be derived as follows:

∂JMAE(w)

∂wi
= E

{

sgn
(

ok − yk
)∂yk
∂wi

}

, (A.1)

where sgn(ok − yk) is the sign function equal to 1, 0, and −1
for (ok−yk) > 0, (ok−yk) = 0, and (ok−yk) < 0, respectively.

Based on the WM optimization framework [18], mini-
mization of (A.1) leads to the adaptation step defined as fol-
lows:

wi = P

[

wi + 2µ
∂J(w)

∂wi

]

, (A.2)

where i = 1, 2, . . . ,N , and P(·) is defined in (17). Replacing
the expectation operator with the instantaneous estimates
results in the following adaptation formula:

wi = P

[

wi + 2µ
∂y(w)

∂wi
sgn

(

ok − yk
)

]

, (A.3)

where ek = ok − yk denotes the error of the actual output.
Assuming the sigmoidal approximation of the sign function
[18], another simplification of (A.3) results in (18).

To extend (18) to vector arrays such as the color images,
the differences between the kth components should be re-
placed with the distances between the vector-valued inputs.
There exist at least two ways to obtain the vector extension of
(18). By modifying (18) as follows:

wi = P
[

wi − 2µ
(

yk − ok
)

sgn
((

xik − ok
)

−
(

yk − ok
))]

,
(A.4)

the first solution reduces to

wi = P
[

wi − 2µψ(y, o) sgn
(

ψ
(

xi, o
)

− ψ(y, o)
)]

, (A.5)

where ψ(a, b) = (‖a − b‖L)1−p(A(a, b))p denotes the error
criterion corresponding to the proposed SWVF scheme. It
can be emphasized that (A.5) is numerically stable, and de-
pending on µ and p, the obtained SWVF weight vector w can
represent the robust solution.

However, assuming sgn(·) of (A.5) is equal to 1 for a
moment, (A.5) reduces to wi = P[wi − 2µψ(y, o)]. Since
this development ignores the sign of the difference, which
is essential for calculation of the weights as shown in (19),
the approach of (A.5) often results in zero (or very small)
weighting coefficients. Therefore, the solution used through-
out the paper utilizes the sign error criterion between the vec-
torial inputs a and b. Based on ψ(a, b) and the polarity func-
tion S(a, b) of (11), the error criterion corresponding to the
SWVF framework is expressed as D(a − b) = S(a, b)ψ(a, b),
resulting in (10). Using D(a − b) as the error function, the
scalar optimization formula (18) can be extended for the
vector-valued case (15) utilized in this paper.
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Figure 6: SWVF weight adaptation expressed through ((a), (b)) the MAE, ((c), (d)) the MSE, and ((e), (f)) the NCD image quality measures
in the dependence on the regularization factor µ and design parameter p. Training set was obtained through the image Lena with ((a), (c),
(e)) 2% impulsive noise (pv = 0.02); ((b), (d), (f)) 10% impulsive noise (pv = 0.10).
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Figure 7: Comparison of the SWVF adaptation capability expressed via ((a)–(d)) MAE, ((e)–(h)) MSE, and ((i)–(l)) NCD error criteria
using the different noise probability pv in the dependence on the regularization factor µ: ((a), (e), (i)) p = 0; ((b), (f), (j)) p = 0.3; ((c), (g),
(k)) p = 0.7; and ((d), (h), (l)) p = 1.



1882 EURASIP Journal on Applied Signal Processing

0 0.2 0.4 0.6 0.8 1

p

−6

−4

−2

0

2

lo
g 1

0
(µ

)

(a)

0 0.2 0.4 0.6 0.8 1

p

−6

−4

−2

0

2

lo
g 1

0
(µ

)
(b)

0 0.2 0.4 0.6 0.8 1

p

−6

−4

−2

0

2

lo
g 1

0
(µ

)

(c)

0 0.2 0.4 0.6 0.8 1

p

−6

−4

−2

0

2

lo
g 1

0
(µ

)

(d)

0 0.2 0.4 0.6 0.8 1

p

−6

−4

−2

0

2

lo
g 1

0
(µ

)

(e)

0 0.2 0.4 0.6 0.8 1

p

−6

−4

−2

0

2

lo
g 1

0
(µ

)
(f)

pv = 0

pv = 0.02

pv = 0.05

pv = 0.10

pv = 0.15

pv = 0.20

Figure 8: Optimal values of regularization factor µ versus design parameter p: ((a), (c), (e)) achieved values related to objective measures
(a) MAE, (c) MSE, and (e) NCD using different noise intensity pv; ((b), (d), (f)) approximated suboptimal values for a wide range of pv.
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Figure 10: Performance of the SWVF technique (for p = 0.5) related to the test images Peppers ((a), (c), (e)) and Parrots ((b), (d), (f))
corrupted by a wide range of impulsive noise pv in dependence on the impulsive noise corruption pv affecting the training image Lena.
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Table 4: Number of elementary operations for a complete processing cycle corresponding to a 3× 3 supporting window.

Filter/operation ADDs MULTs DIVs SQRTs COMPs ARCCOSs

VMF 186 63 — 21 8 —

BVDF 375 210 21 21 8 21

DDF 540 282 21 42 8 21

WVMF 186 135 — 21 8 —

WVDF 375 282 21 21 8 21

SWVF 540 426 21 42 8 21
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