
Generalized Sequential Probability Ratio Test for Separate

Families of Hypotheses

Xiaoou Li, Jingchen Liu, and Zhiliang Ying
Department of Statistics, Columbia University,

New York, NY 10027, USA

Abstract: In this paper, we consider the problem of testing two separate families of hypotheses via a gen-

eralization of the sequential probability ratio test. In particular, the generalized likelihood ratio statistic is

considered and the stopping rule is the first boundary crossing of the generalized likelihood ratio statistic.

We show that this sequential test is asymptotically optimal in the sense that it achieves asymptotically the

shortest expected sample size as the maximal type I and type II error probabilities tend to zero.
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1. INTRODUCTION

Sequential analysis starts with testing a simple null hypothesis against a simple alternative hypoth-
esis. The fixed sample size problem of this classic test is solved by Neyman and Pearson (1933) who
laid the theoretical foundation of likelihood-based hypothesis testing. The sequential probability
ratio test (SPRT), formulated via the boundary crossing of the likelihood ratio statistic, is proved to
be optimal in terms of minimal expected sample size for fixed type I and type II error probabilities
(Wald, 1945; Wald and Wolfowitz, 1948). In this paper, we consider a natural extension of this
classical problem to testing two families of composite hypotheses, that is,

H0 : f ∈ {gθ : θ ∈ Θ} against HA : f ∈ {hγ : γ ∈ Γ}, (1.1)

where the two families are completely separated from each other. Motivated by the optimality of the
sequential probability ratio test, we consider a sequential test based on the generalized likelihood
ratio statistic. The sampling stops after the nth observation if the generalized likelihood ratio
crosses either of the two boundaries Ln > eA or Ln < e−B for some positive constants A and B,
where

Ln =
supγ∈Γ

∏n
i=1 hγ(Xi)

supθ∈Θ

∏n
i=1 gθ(Xi)

.

The null hypothesis is rejected if Ln > eA and is accepted otherwise where A and B are determined
by the type I and type II error probabilities. We call this procedure the generalized sequential
probability ratio test (generalized SPRT).

Address correspondence to Jingchen Liu, Department of Statistics, Columbia University, New
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The generalized sequential probability ratio test is a very natural generalization of the sequential
probability ratio test in terms of both the problem formulation and the stopping rule. However, to
the authors’ best knowledge, there has not been rigorous discussion on this sequential procedure
in the literature. The results in this paper fill in this void by providing asymptotic descriptions of
the type I and type II error probabilities in terms of the levels A and B, the expected sample size
(stopping time), and its asymptotic optimality in terms of expected sample size. As a corollary
of these results, the generalized SPRT is asymptotically optimal in the following sense. As the
maximal type I and type II error probabilities tend to zero, possibly with different rates, the
expected stopping time of the generalized SPRT achieves its asymptotic lower bound. For the test
as general as (1.1) with a fixed sample size, the uniformly most powerful test usually does not
exist. Therefore, we do not expect the optimal sequential test in terms of expected sample size
(as optimal as SPRT) for (1.1) to exist. The asymptotic optimality is naturally the next level of
optimality to consider. The current result for the generalized SPRT is parallel to the optimality
result for SPRT.

From the technical point of view, the challenges mainly lie in the fact that the generalized
likelihood ratio statistic is the ratio of two maximized likelihood functions. Usual techniques, such
as large deviations theory for independent and identically distributed random variables, exponential
tilting for random walks, and Bayesian arguments employed by Wald and Wolfowitz (1948), are
no longer applicable. The technical contribution of this paper is the proposal of a set of tools
for the large deviations studies of the generalized likelihood ratio statistic. A key element is the
construction of a change of measure for developing approximations of the type I and type II error
probabilities. This change of measure is not of the traditional exponential tilting form and therefore
is nonstandard. Similar change of measure techniques for the computation of small probabilities
have been employed under various settings by Shi et al. (2007); Naiman and Priebe (2001); Adler
et al. (2012).

Testing separate families of hypotheses, originally introduced by Cox (1961, 1962), is an impor-
tant and fundamental problem in statistics. Cox recently revisited this problem in Cox (2013) that
mentions several applications such as the one-hit and two-hit models of binary dose-response and
testing of interactions in a balanced 2k factorial experiment. Furthermore, this problem has been
studied in econometrics (Vuong, 1989). Another application is in educational testing. Under the
one-dimensional item response theory models, each examinee is assigned with a scalar θ indicating
this person’s ability. The so-called mastery test is interested in testing whether θ < θ− or θ > θ+.
Item response theory usually employs logistic models that fall into the exponential family for which
there is a vast literature (Lai and Shih, 2004; Bartroff et al., 2008; Bartroff and Lai, 2008; Shih
et al., 2010). However, some more complicated models go beyond exponential family, for which
existing results do not apply. For instance, the normal ogive model is not of the canonical form and
the three-parameter logistic model includes a guessing parameter. The current results fill in this
void. For more applications of testing separate families of hypotheses, see Berrington de González
and Cox (2007), Braganca Pereira (2005), and the references therein.

There is a vast literature on sequential tests starting with seminal works Wald (1945); Wald
and Wolfowitz (1948); Kiefer and Weiss (1957); Hoeffding (1960) for testing simple null hypothesis
against simple alternative hypothesis. An important generalization to SPRT is the 2-SPRT by Lor-
den (1976). For composite hypotheses, a univariate or multivariate exponential family is usually
assumed. Under such a setting, sequential testing procedures for two separate families of hypothe-
ses are discussed by Pollak and Siegmund (1975); Lai (1988); Lai and Zhang (1994). For testing
non-exponential families, random walk based sequential procedures are discussed in the textbook
Bartroff et al. (2013). Another relevant work is given by Pavlov (1987, 1990) who considers test-
ing/selecting among multiple composite hypotheses. The author establishes asymptotic efficiency
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of a different sequential procedure (similar to 2-SPRT). The efficiency results are similar to those in
this paper. Therefore, the generalized sequential probability ratio test admits the same asymptotic
efficiency as that in Pavlov’s papers. Recent applications of sequential tests are included in Lai and
Shih (2004); Bartroff et al. (2008). Additional references can be found in the textbook Bartroff
et al. (2013).

The rest of this paper is organized as follows. The generalized sequential probability ratio test
and its asymptotic properties are described in Section 2. Possible relaxation of some technical
conditions are provided in Section 3. Numerical examples are given in Section 4. Proofs of the
theorems are provided in Section 5.

2. MAIN RESULTS

2.1. Generalized Sequential Probability Ratio Test

Let X1,...,Xn,... be independent and identically distributed random variables following a density f
with respect to a baseline measure µ. We consider the problem of testing two separate families of
hypotheses

H0 : f ∈ {gθ : θ ∈ Θ} and HA : f ∈ {hγ : γ ∈ Γ}, (2.1)

where gθ and hγ are density functions with respect to a common measure µ. To avoid singularity,
we assume that gθ and hγ are mutually absolutely continuous for all θ and γ. The generalized
sequential probability ratio test is based on the generalized likelihood ratio statistic

Ln =
supγ∈Γ

∏n
i=1 hγ(Xi)

supθ∈Θ

∏n
i=1 gθ(Xi)

. (2.2)

For two positive numbers A and B, we define stopping time

τ = inf{n : Ln > eA or Ln < e−B}. (2.3)

Under very mild conditions, τ is almost surely finite for any distribution within the two families.
The null hypothesis is rejected if Lτ > eA and is not rejected if Lτ < e−B. We define notation for
the Kullback-Leibler divergence

Dg(θ|γ) = Egθ{log gθ(X)− log hγ(X)} and Dh(γ|θ) = Ehγ{log hγ(X)− log gθ(X)},

where Egθ and Ehγ are expectations under the corresponding distributions. The following technical
conditions will be used.

A1 The two families are completely separate, that is, infθ,γ Dg(θ|γ) > ε0 and infθ,γ Dh(γ|θ) > ε0

for some ε0 > 0. In addition, for each θ and γ, the solutions to the minimizations infθDh(γ|θ)
and infγ Dg(θ|γ) are unique. Lastly, both Dg(θ|γ) and Dh(γ|θ) are twice continuously differ-
entiable with respect to θ and γ.

A2 The parameter spaces Θ ⊂ Rd1 and Γ ⊂ Rd2 are compact.

A3 Let ξ(θ, γ) = log hγ(X) − log gθ(X). There exists α > 1 and x0 such that for all θ, γ, and
x > x0

Pgθ(sup
γ∈Γ
|∇γξ(θ, γ)| > x) ≤ e−| log x|α and Phγ (sup

θ∈Θ
|∇θξ(θ, γ)| > x) ≤ e−| log x|α .

3



Condition A1 is important for the analysis that guarantees the exponential decay of error
probabilities as a function of the expected sample size. A sufficient condition for the complete
separation is that the Hellinger distances between any two distributions in the two families are
strictly positive. Condition A2 can be further relaxed and replaced by some other conditions that
will be discussed subsequently. Condition A3 imposes certain tail restrictions on the score function
that has a tail decaying faster than any polynomial.

2.2. The Main Theorems

We start the discussion with a simple null H0 : f = g0 against a composite alternative HA : f ∈
{hγ : γ ∈ Γ}. In this case, the generalized likelihood ratio statistic is given by

Ln =
supγ∈Γ

∏n
i=1 hγ(Xi)

g0(Xi)
. (2.4)

The definition of the stopping time τ remains. The following theorem provides the asymptotic
type I and type II error probabilities of the generalized sequential probability ratio test under this
setting.

Theorem 2.1. In the case of the simple null hypothesis against composite hypothesis, consider
the generalized probability ratio test with stopping time (2.3) and the generalized likelihood ratio
statistic given by (2.4). Under Conditions A1-3, the type I and maximal type II error probabilities
admit the following approximations

logPg0(Lτ > eA) ∼ −A, sup
γ∈Γ

logPhγ (Lτ < e−B) ∼ −B as A, B →∞.

The analysis technique of Theorem 2.1 and its intermediate results are central to all the analyses.
For the general case of composite null hypothesis against composite alternative hypothesis, we
establish similar asymptotic results that are given by the following theorem.

Theorem 2.2. Consider the composite null hypothesis against composite alternative hypothesis
given as in (2.1). The generalized sequential probability ratio test admits stopping time (2.3) and
the generalized likelihood ratio statistic (2.2). Under Conditions A1-3, the maximal type I and type
II error probabilities are approximated by

sup
θ∈Θ

logPgθ(Lτ > eA) ∼ −A, sup
γ∈Γ

logPhγ (Lτ < e−B) ∼ −B as A, B →∞. (2.5)

In the power calculation of SPRT for the simple null hypothesis versus simple alternative hypoth-
esis, if the likelihood ratio has zero overshoot, then we have the following equalities A = log 1−α2

α1

and B = log 1−α1
α2

where α1 is the type I error probability and α2 is the type II error probability.
They have exactly the same asymptotic decay rate as (2.5). Lastly, we provide the asymptotic
approximations of the expected stopping time.

Theorem 2.3. Under the setting and the conditions of Theorem 2.2, the expected stopping time
admits the following asymptotic approximation

Egθ(τ) ∼ B

infγ∈ΓDg(θ|γ)
, Ehγ (τ) ∼ A

infθ∈ΘDh(γ|θ)
, as A, B →∞ for all θ and γ.
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Based on the results of Theorems 2.2 and 2.3, we now discuss the asymptotic optimality of
the generalized SPRT. Consider type I and type II error probabilities α1 and α2 that approach
zero possibly with different rates. Theorem 2.2 suggests that we need to choose A ∼ − logα1 and
B ∼ − logα2 for the generalized SPRT to achieve such levels of error probabilities. Then, the
corresponding expected stopping time is given by Theorem 2.3. In what follows, we show that
the expected stopping time in Theorem 2.3 is asymptotically the shortest. Consider an arbitrarily
chosen sequential procedure testing between the g-family and the h-family with stopping time τ ′.
The two types of error probabilities of this test are less than or equal to α1 and α2 respectively.
Then, its expected stopping time is bounded from below by

Egθ(τ
′) ≥ (1 + o(1))Egθ(τ) and Ehγ (τ ′) ≥ (1 + o(1))Ehγ (τ)

for all θ and γ.
We establish the above asymptotic inequalities by making use of the optimality results of SPRT.

For a fixed pair θ and γ, we consider the testing problem of the simple null H0 : f = gθ against the
simple alternative HA : f = hγ . We further consider SPRT for this test with stopping boundaries

eÃ and e−B̃. We choose Ã and B̃ such that the type I error and type II error probabilities of
SPRT for the simple (gθ) versus simple (hγ) test are (or slightly larger than, but of the same order
as) α1 and α2 respectively. According to Theorem 2.2 and standard results of SPRT (Wald and
Wolfowitz, 1948), we have that A ∼ Ã ∼ − logα1 and B ∼ B̃ ∼ − logα2 if the overshoot is of order
O(1). Let τ̃ be the stopping time of SPRT. According to classic results on random walks, it can be
shown that

Egθ(τ̃) ∼ B/Dg(θ|γ) and Ehγ (τ̃) ∼ A/Dh(γ|θ).
Furthermore, we view the test with stopping time τ ′ in the previous paragraph as a testing procedure
for the simple null (gθ) versus simple alternative (hγ) problem. According to the definition of α1

and α2, the type I and type II error probabilities of this test for the simple versus simple problem
are bounded from the above by α1 and α2. Therefore, according to the optimality of SPRT we
have that

Egθ(τ
′) ≥ Egθ(τ̃) = (1 + o(1))B/Dg(θ|γ) and Ehγ (τ ′) ≥ Ehγ (τ̃) = (1 + o(1))A/Dh(γ|θ).

For the first inequality, the left-hand side does not depend on γ and furthermore Γ is a compact
set. Thus, the o(1) is uniformly small for γ ∈ Γ. We maximize the right-hand side with respect to
γ and obtain that

Egθ(τ
′) ≥ (1 + o(1))

B

infγ Dg(θ|γ)
.

Note that the right-hand side of the above inequality is precisely the asymptotic expected stopping
time in Theorem 2.3. With the same argument, we have that

Ehγ (τ ′) ≥ (1 + o(1))
A

infθDh(γ|θ)
.

Summarizing the above discussion, we have the following corollary.

Corollary 2.1. Let T (α1, α2) be the class of sequential tests with their type I and type II errors
bounded above by α1 and α2, respectively. Each test in T (α1, α2) corresponds to a stopping time τ ′

and a decision function D′. Let αA,B1 = supθ Pgθ(Lτ > eA) and αA,B2 = supγ Phγ (Lτ < e−B). Then,
under the setting of Theorem 2.2 and under Conditions A1-3, the generalized sequential probability
test is asymptotically optimal in the sense that

Egθ(τ) ∼ inf
(τ ′,D′)∈T (αA,B1 ,αA,B2 )

Egθ(τ
′)

as A→∞ and B →∞.
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3. FURTHER DISCUSSION ON THE CONDITIONS

In this section, we provide further discussion on Condition A1, A2, and A3 and possible relaxations.
Condition A1 requires that the two families of hypotheses are completely separate. This condi-
tion is crucial for the exponential decay of the error probabilities in Theorems 2.1 and 2.2. The
uniqueness of the minimization of the Kullback-Leibler divergence ensures the convergence of the
maximum likelihood estimators and validity of the stopping time analysis. Therefore, Condition
A1 is necessary for the theorems. In what follows, we provide further discussions on Conditions A2
and A3.

3.1. Relaxing Condition A2 and Analysis for Non-compact Spaces

When the parameter spaces Θ and Γ are non-compact, the expected stopping time of the generalized
sequential probability ratio test can usually be approximated similarly as that of Theorem 2.3 with
mild regularity conditions such as almost sure convergence of the maximum likelihood estimators.
For the asymptotic decay rate of the type I and type II error probabilities, the generalization
to non-compact spaces is not straightforward and additional conditions are necessary. We start
the discussion with a counterexample in which Theorem 2.2 fails when the parameter spaces are
non-compact.

Example 3.1. Consider the null hypothesis being the lognormal distributions

gθ(x) = x−1(2πθ)−1/2e−
(log x)2

2θ

and the alternative hypothesis being the exponential distributions

hγ(x) = γ−1e−x/γ .

Both distributions live on the positive real line. The maximum likelihood estimators for the param-
eters based on n observations are θ̂n = 1

n

∑n
i=1(logXi)

2 and γ̂n = 1
n

∑n
i=1Xi. The generalized log-

likelihood ratio statistic based on one sample is log hγ̂1(X1)−log gθ̂(X1) = log | logX1|− 1
2 + 1

2 log(2π)

and L1 =
√

2π/e× | log(X1)|. The type I error probability is bounded from below by

sup
θ∈Θ

Pgθ(Lτ > eA) ≥ sup
θ∈Θ

Pgθ(L1 > eA) ≥ lim
θ→∞

Pgθ{
√

2π/e× | log(X1)| > eA} = 1

regardless of the choice of A. The last equality holds because log(X1) follows a normal distribution
with mean 0 and variance 2πθ/e.

Therefore, additional conditions are certainly needed to generalize the results of Theorem 2.2
to non-compact parameter spaces and to rule out cases such as Example 3.1. Let ξi(θ, γ), i = 1, 2...
be i.i.d. copies of ξ(θ, γ). The log-likelihood ratio based on n observations is defined as

Sn(θ, γ) =

n∑
i=1

ξi(θ, γ). (3.1)

We further define Sn = supγ infθ
∑n

i=1 ξi(θ, γ) and τ = inf{n : Sn < −B or Sn > A}. To rule out
the cases such as Example 3.1, we need to carefully go through the proof of Theorem 2.2 (Section
5) that consists of the development of an upper and a lower bound of the error probabilities. The
lower bound does not require the compactness of the parameter spaces and is generally applicable.
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It is the development of the upper bound where the compactness plays an important role in the
analysis. Define

HA,θ =

∞∑
n=1

∫
Γ
Pgθ(Sn(θ, γ) > A)dγ. (3.2)

The condition for non-compact parameter spaces is

A2′ Let HA,θ be defined as in (3.2) and we require lim supA→∞ supθ∈Θ
1
A logHA,θ ≤ −1. Symmet-

rically, we define

GB,γ =
∞∑
n=1

∫
Θ
Phγ (Sn(θ, γ) < −B)dθ

that satisfies lim supB→∞ supθ∈Θ
1
B logGB,θ ≤ −1.

Condition A2′ is usually difficult to check. Therefore, we provide a set of sufficient conditions for
A2′.

Lemma 3.1. Assume that the following conditions hold.

B1 For each θ, let γθ = arg infγ∈ΓDh(γ|θ). There exist ε and δ positive such that

Dh(γ|θ) ≥ Dh(γθ|θ) + δ|γ − γθ|l, for some l > (d+ 1)/2, all θ ∈ Θ, and all |γ − γθ| > ε

where d is the dimension of Γ.

B2 The log-likelihood ratio ξ(θ, γ) has bounded variance under hγ for all θ ∈ Θ and γ ∈ Γ.

B3 There exists ε > 0 such that ε < Dg(θ|γ)/Dh(γ|θ) < ε−1 for all θ and γ.

Then, lim supA→∞ supθ∈Θ
1
A logHA,θ ≤ −1.

For the two families of distributions in Example 3.1, Condition A2′ is not satisfied. With
Condition A2′ in addition to Conditions A1 and A3, we expect to obtain similar approximation
results as in Theorem 2.2. Given that the techniques are similar but substantially more tedious,
we do not provide the details.

3.2. Relaxing Condition A3

We now consider the situation in which Condition A3 is violated. For instance, if the alternative
hypothesis hγ is the exponential distributions, then the partial derivative ∂γξ(θ, γ) is infinity when
γ → 0. For these types of families, we need to replace Condition A3 by some localization condition.
Let γ̂n be the maximum likelihood estimator based on n i.i.d. samples. The localization condition
to replace A3 is as follows.

A3′ There exists a family of sets Γ′A ⊂ Γ indexed by A such that Pgθ(γ̂n /∈ Γ′A) ≤ e−(n+1)A and
for some α > 1, β ∈ (α−1, 1) and all θ ∈ Θ

Pgθ( sup
γ∈Γ′A

|∂γξ(θ, γ)| > eA
β
x) ≤ e−| log x|α .

Similarly, there exists Θ′B ⊂ Θ such that Phγ (θ̂n /∈ Θ′B) ≤ e−(n+1)B and

Phγ ( sup
θ∈Θ′b

|∂θξ(θ, γ)| > eA
β
x) ≤ e−| log x|α .
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For the two hypotheses in Example 3.1, we have α = 2. For some 1/2 < β < 1 let

Γ′ = [e−A
β′
,∞) where 1/2 < β′ < β.

Then, we can verify that such a choice of Γ′ satisfies Condition A3′. We summarize the discussion
in this section as follows.

Theorem 3.1. Under Conditions A1, A2′, and A3′, the approximations in (2.5) holds.

Given that the proof of the above theorem is basically identical to that of Theorem 2.2 and
therefore we do not provide the details.

4. NUMERICAL EXAMPLES

4.1. Poisson Family of Distributions against Geometric Family of Distributions

In this section, we provide numerical examples to illustrate the results of the theorems. We start
with the Poisson distribution against the geometric distribution. Let

gθ(x) =
e−θθx

x!
Θ = [0.5, 2], hγ(x) =

γx

(1 + γ)x+1
Γ = [0.5, 2]

where x takes non-negative integer values and 1/(1 + γ) is the success probability of the geometric
trials. We truncate the parameter spaces from above for Condition A2 and from below to make
these two families of distributions completely separated for Condition A1. The test statistic is

Ln =

∏n
i=1 hγ̂(Xi)∏n
i=1 gθ̂(Xi)

where θ̂ = γ̂ = max{min(
1

n

n∑
i=1

Xi, 2), 0.5}.

For B fixed at 4, we compute the type I error probabilities for different values of A via Monte Carlo.
Figure 1 plots the logarithm of the type I error probabilities against the boundary parameter A.
For fixed A = 4, we compute the expected sample size under distributions g0.5(x), g1(x), and g1.5(x)
for different values of B as shown in Figure 2. Similarly, for fixed B = 4, we compute the expected
sample sizes under distributions h0.5(x), h1(x), and h1.5(x) for different values of A as shown in
Figure 3.

The slope of the fitted line in Figure 1 is -1.02. The fitted slopes in Figure 2 are 35.50, 12.12,
and 6.81. The fitted slopes in Figure 3 are 26.22, 8.22, and 4.61. From Theorems 2 and 3, the
theoretical values of the slope in Figure 1 is −1, and the theoretical values of the slopes in Figure
2 are {infγ D(g0.5|hγ)}−1 = 36.85 , {infγ D(g1|hγ)}−1 = 12.28, and {infγ D(g1.5|hγ)}−1 = 6.99.
The theoretical slopes in Figure 3 are {infθD(gθ|h0.5)}−1 = 26.97, {infθD(gθ|h1)}−1 = 8.23, and
{infθD(gθ|h1.5)}−1 = 4.30. It is clear that the numerically fitted values are close to the theoretical
ones.

4.2. Gaussian Scale Family against Laplace Scale Family

We proceed to testing Gaussian scale family against Laplace scale family, both of which are non-
compact. Specifically, let

gθ(x) = (2πθ)−1/2e−x
2/(2θ), Θ = (0,∞) and hγ(x) = (2γ)−1e−|x|/γ Γ = (0,∞).
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Figure 1 . Logarithm of the type I error probabilities (y-coordinate) against boundary parameter
A (x-coordinate) for Poisson against Geometric with B = 4.
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Figure 2 . Eg0.5(τ), Eg1(τ) and Eg1.5(τ) (y-coordinate) against boundary parameter B (x-
coordinate) for Poisson against Geometric with A = 4.

The generalized likelihood statistic is

Ln =

∏n
i=1 hγ̂(Xi)∏n
i=1 gθ̂(Xi)

, where γ̂ = 1
n

∑n
i=1 |Xi| and θ̂ = 1

n

∑n
i=1X

2
i .

For B fixed at 4 and different A values, we compute the type I error probabilities of the generalized
sequential probability ratio test. Figure 4 plots the logarithm of the type I error probabilities against
the boundary parameter A. Furthermore, for fixed A = 4 and different B values, we calculate the
expected sample size under g1 and for fixed B = 4 with different A values we calculate the expeted
sample size under h2. Figure 5 plots the expected sample size against B, and Figure 6 is the
plot for expected sample size against A. We fit a straight line to each of the three plots via
the least squares. The slopes of the fitted lines in Figures 4, 5, and 6 are −1.00, 20.60, and 14.42
respectively. The theoretical values of these three slopes should be −1, {infγ∈ΓD(g1|hγ)}−1 = 20.65
and {infθ∈ΘD(gθ|h2)}−1 = 13.82 that are close to the numerically fitted values.
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Figure 3 . Eh0.5(τ), Eh1(τ) and Eh1.5(τ) (y-coordinate) against boundary parameter A (x-
coordinate) for Poisson against Geometric with B fixed to be 4.
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Figure 4 . Logarithm of the type I error probabilities (y-coordinate) against boundary parameter
A (x-coordinate) for Gaussian against Laplace with B = 4.

4.3. Lognormal against Exponential

We proceed to the lognormal distribution against exponential distribution

gθ(x) =
1

x
√

2πθ
e−

(log x)2

2θ Θ = [0, 1], hγ(x) =
1

γ
e
− x
γ Γ = [0, 1]

As explained in Example 3.1, we consider θ and γ on compact sets for Condition A2. The generalized
likelihood ratio statistic is

Ln =

∏n
i=1 hγ̂(Xi)∏n
i=1 gθ̂(Xi)

, where γ̂ = min(
1

n

n∑
i=1

Xi, 1), θ̂ = min
{ 1

n

n∑
i=1

(logXi)
2, 1
}
.

For a fixed B= 4 and different values of A, we compute the type I error probabilities of the
generalized sequential probability ratio test under the distribution g1(x). Figure 7 is the scatter plot
for the logarithm of the type I error probabilities against the boundary parameter A. Furthermore,
for a fixed A and different B values, we compute the expected sample sizes under g0.5(x) and
g1(x) via Monte Carlo. For a fixed B and different A, we also compute the expected sample
sizes under probability measure h0.5 and h1(x). Figure 8 plots the expected sample sizes under
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Figure 5 . Expected sample size Eg1(τ) (y-coordinate) against boundary parameter B (x-
coordinate) for Gaussian against Laplace with A = 4.
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Figure 6 . Expected sample size Eh2(τ) (y-coordinate) against boundary parameter A (x-
coordinate) for Gaussian against Laplace with B = 4.

probability measure g0.5 and g1 against B. Figure 9 plots the expected sample sizes under h0.5 and
h1 against A. We fit a straight line to each of the three plots via the least squares. The slope of
the fitted line in Figure 7 is −0.92. The slopes of the regression lines in Figure 8 are 4.67, and
4.75. . The slopes of the regression lines in Figure 9 are 1.08, and 3.28. From Theorems 2.2 and
2.3, the theoretical value of the slope in Figure 7 should be −1, and the slopes in Figure 8 are
{infγ∈ΓD(g0.5|hγ)}−1 = 4.72, and {infγ∈ΓD(g1|hγ)}−1 = 4.54. The theoretical value of slopes in
Figure 9 are {infθ∈ΘD(gθ|h0.5)}−1 = 1.03 and {infθ∈ΘD(gθ|h1)}−1 = 3.02.

5. TECHNICAL PROOFS

5.1. Proof of Theorem 2.1

We write an ∼= bn if log an ∼ log bn as n→∞. To make the discussion smooth, we delay the proofs
of the supporting lemmas to the appendix.

Proof of Theorem 2.1. Define the log-likelihood ratio of a single observation

ξ(γ) = log hγ(X)− log g0(X)

11
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Figure 7 . Logarithm of the type I error probabilities (y-coordinate) against boundary parameter
A (x-coordinate) for lognormal distribution against exponential distribution where B is fixed to be
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Figure 8 . Expected sample size Eg0.5(τ) and Eg1(τ) (y-coordinate) against boundary parameter
B (x-coordinate) for lognormal distribution against exponential distribution, where A is fixed to
be 4.

and let ξi(γ) = log hγ(Xi)− log g0(Xi) be i.i.d. copies of it. The log-likelihood ratio becomes

Sn(γ) =
n∑
i=1

ξi(γ).

The generalized log-likelihood ratio statistic is logLn = Sn = supγ∈Γ Sn(γ). The stopping time
can be equivalently written as τ = inf{n : Sn < −B or Sn > A}. We reject the null hypothesis if
Sτ > A and do not reject otherwise. Let γ∗ = arg supγ Eg0{ξ(γ)}, −µγg = Eg0{ξ(γ)} = Dg0(0|γ),
and µγh = Ehγ{ξ(γ)} = −Dhγ (γ|0). We now proceed to the computation of the type I and type II
error probabilities. The decay rate of the type I error probability is given by the following lemmas
that is the key result of the remaining derivations.

Lemma 5.1. Under the setting and conditions of Theorem 2.1, the type I error probability is
approximated by

e−(1+o(1))A ≤ Pg(Sτ > A) ≤ Pg(sup
n

sup
γ
Sn(γ) > A) ≤ κAα0HA
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Figure 9 . Expected sample size Eh0.5(τ) and Eh1(τ) (y-coordinate) against boundary parameter
A (x-coordinate) for lognormal distribution against exponential distribution, where B is fixed to
be 4.

for some ε0, α0, and κ > 0 and

HA =

∞∑
n=1

∫
Γ
P (Sn(γ) > A− 1)dγ.

The constant κ depends on the dimension of Γ and α0 depends on α in Condition A3.

Lemma 5.2. Let mes(Γ) =
∫
I(t ∈ Γ)dt be the Lebesgue measure of the parameter set Γ and let

Dh(γ|0) = Ehγ{log hγ(X) − log g0(X)} be the Kullback-Leibler divergence. Under the setting and
conditions of Theorem 2.1, there exists some κ0 > 0 such that for A sufficiently large HA defined
as in Lemma 5.1 admits the following bound

HA ≤
κ0mes(Γ)Ae−A

minγ Dh(γ|0)
.

Therefore, we finished the analysis of the type I error probability. We focus on the type II error
computation α2 = supγ∈Γ Phγ (Sτ < −B). For each γ0, notice that Sn ≥ Sn(γ0) and thus

Phγ0 (Sτ < −B) < Phγ0 (Sτ(γ0)(γ0) < −B) ≤ e−B

where τ(γ0) = inf{n : Sn(γ0) < −B or Sn(γ0) > A}. The last step of the above display is a classical
large deviations result of random walk. This provides an upper bound of α2. We now show that
this upper bound is achieved in the sense of “∼=”. In particular, we wish to show that

lim inf
A,B→∞

logPhγ∗ (Sτ < −B)

B
≥ −1. (5.1)

We establish the above inequality via contradiction. Suppose that (5.1) is not true, that is, there
exist two sequences Ai, Bi →∞ as i→∞ and ε0 > 0 such that

logPhγ∗ (Sτ < −Bi)
Bi

< −1− ε0

and equivalently Phγ∗ (Sτ < −Bi) < e−(1+ε0)Bi . Recall that, from the type I error computation, we
have that Pg0(Sτ > Ai) ∼= e−Ai .
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Now we consider the simple null f = g0 against the simple alternative f = hγ∗ and SPRT with
stopping time

τ̃i = inf{n : Sn(γ∗) < −B̃i or Sn(γ∗) > Ãi}.
The threshold Ãi and B̃i is chosen such that the SPRT has exactly the same (or slightly larger)
type I and type II error probability as the generalized SPRT, that is,

e−Ãi ∼= Pg0(Sτ̃i(γ∗) > Ãi) ∼= Pg0(Sτ > Ai) ∼= e−Ai

and
e−B̃i ∼= Phγ∗ (Sτ̃i(γ∗) < −B̃i) ∼= Phγ∗ (Sτ < −Bi) < e−(1+ε0)Bi .

Therefore, we have that Ãi ∼ Ai and B̃i > (1 + ε0/2)Bi. Furthermore, notice that the expected
stopping time for SPRT is

Eg(τ̃i) ∼ B̃i/µγ∗g , Ehγ∗ (τ̃i) ∼ Ãi/µ
γ∗
h .

Note that µγ∗g = infγ∈ΓDg(θ|γ). According to Theorem 2.3 (whose proof is independent of the
current one), we have that Eg(τ̃i) > Eg(τ) ∼ Bi/µγ∗g that contradicts the optimality result of SPRT
(Wald and Wolfowitz, 1948). Thus, (5.1) must be true and we establish that

α2 = sup
γ∈Γ

Phγ (Sτ < −B) ∼= e−B as A, B →∞.

5.2. Proof of Theorem 2.2

With the above proof, Theorem 2.2 can be obtained rather easily. This proof also requires some
intermediate results in the proof of Theorem 2.1.

Proof of Theorem 2.2. Let Sn(θ, γ) be defined as in (3.1). We define notation

Sn = sup
γ

inf
θ

n∑
i=1

ξi(θ, γ), τ = inf{n : Sn < −B or Sn > A}.

As the two types of errors are completely symmetric, we only derive the type I error. We start with
the upper bound. For each θ, by slightly abusing the notation, define

Sn(θ) = sup
γ
Sn(θ, γ), τ1(θ) = inf{n : Sn(θ) < −B or Sn(θ) > A}.

Then, an upper bound is given by

Pgθ(Sτ > A) ≤ Pgθ(Sτ1(θ)(θ) > A) ≤ κAα0

∞∑
n=1

∫
Γ
Pgθ(Sn(θ, γ) > A− 1)dγ. (5.2)

The last step follows from the fact that the right-hand side is precisely the type I error probability
of the simple null gθ versus composite alternative {hγ : γ ∈ Γ}. We now consider the lower bound.
For each given γ and θ∗ = arg infθ∈ΘDh(γ|θ), we have that

Pgθ∗ (sup
γ′

inf
θ′
Sτ (θ′, γ′) > A) ≥ Pgθ∗ (inf

θ
Sτ2(γ)(θ, γ) > A) ∼= e−A

where τ2(γ) = inf{n : infθ Sn(θ, γ) < −B or supγ Sn(θ, γ) > A}. Once again, the last step is
thanks to the type II error proof in Theorem 2.1.
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5.3. Proof of Theorem 2.3

The proof of this theorem uses a change of measure. Suppose that ξ(x) is a stochastic process living
on some d-dimensional compact parameter space x ∈ X ⊂ Rd. A generic probability measure is
denoted by P . The following change of measure helps to compute the tail probability of supx ξ(x).
In particular, this change of measure is introduced in two ways. We first define it through the
Radon-Nikodym derivative

dQb
dP

= H−1
b

∫
X
I(ξ(x) > b− 1)µ(dx)

where I(·) is the indicator function, µ is a positive measure, and

Hb =

∫
X
P (ξ(x) > b− 1)µ(dx).

To better understand this measure Qb, we provide a procedure generating sample paths of ξ(x) un-
der Qb. This provides an alternative distributional description of ξ(x) under Qb. The corresponding
sample path generation is given as follows.

1. Sample a random index x∗ ∈ X according to the density function (with respect to measure
µ)

qn(x∗) = P (ξ(x∗) > b− 1)/Hb.

2. Conditional on the realized x∗, sample ξ(x∗) conditional on ξ(x∗) > b− 1 under the measure
P .

3. Sample the rest of the process {ξ(x) : x 6= x∗} conditional on the realization ξ(x∗) under the
original measure P .

It is not hard to verify that the above three-step sample path generation is consistent with the
Radnon-Nikodym derivative. Some variations of this change of measure will be used in the proof
of other lemmas.

Proof of Theorem 2.3. Without loss of generality, we derive the approximation for Eg0(τ), that is,
the true θ is 0. Using the notation in the proof of Theorem 2.2, we consider the limiting process of
Sn(θ, γ). To start with, we consider a large constant M > 0 and split the expected stopping time

Eg0(τ/B) = Eg0(τ/B; τ/B ≤M) + Eg0(τ/B; τ/B > M). (5.3)

Let θ̂n = arg infθ Sn(θ, γ) and γ̂n = arg supγ Sn(θ, γ). Then, as n → ∞, we have the following

almost sure convergence, θ̂ → 0 and γ̂ → γ0 , arg infγ Dg(0|γ). Thus, we have the following weak
convergence

{SbBtc(θ̂n, γ̂n)/B : t ∈ [0,M ]} ⇒ {−t× inf
γ
Dg(θ|γ) : t ∈ [0,M ]}

where “⇒” is weak convergence. Thus, the first term is approximated by

Eg0(τ/B; τ/B ≤M)→ 1/Eg0{ξ(γ0)} = 1/ inf
γ
Dg(0|γ) as B →∞. (5.4)

In what follows, we show that the second term Egθ(τ/B; τ/B > M) → 0 as B → ∞ for
M sufficiently large. Let τ ′ = inf{n : supγ Sn(0, γ) < −B}. We observe that τ ′ ≥ τ and
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thus it is sufficient to bound Egθ(τ
′/B; τ ′/B > M). For each λ > 0, we consider the probabil-

ity Pg0(τ ′ > λB). Notice that Sn(0, γ) has a negative drift that is bounded from the above by
−ε and thus supγ E{SλB(0, γ)} < −ελB. For λ > M with M sufficiently large, we have that
supγ E{SλB(0, γ)} < −B − ελB/2. Note that

Pg0(τ ′ > λB) ≤ Pg0(sup
γ
SλB(0, γ) ≥ −B).

The last issue is to provide a bound of Pg0(supγ SλB(0, γ) ≥ −B). We consider the change of
measure

dQ−B
dPg0

= H−1
−B

∫
Γ
I(SλB(0, γ) ≥ −B − 1)dγ

where H−B =
∫
Pg0(SλB(0, γ) ≥ −B − 1)dγ and thus

Pg0

(
sup
γ
SλB(0, γ) ≥ −B

)
≤ Pg0

(
sup
k≤λB

|∂ξ(0, γ)| ≥ e(λB)β

)
+Pg0

(
SλB(0, γ) ≥ −B; sup

k≤λB
|∂ξ(0, γ)| < e(λB)β

)
.

The first term is bounded by

Pg0

(
sup
k≤λB

|∂ξ(0, γ)| ≥ e(λB)β

)
≤ λBe−(λB)αβ .

We use the change of measure for the second term

Pg0

(
SλB(0, γ) < −B; sup

k≤λB
|∂ξ(0, γ)| < e−(λB)β

)

= H−B × EQ−B
[∫

Γ
I(SλB(0, γ) ≥ −B − 1)dγ;SλB(0, γ) ≥ −B; sup

k≤λB
|∂ξ(0, γ)| < e(λB)β

]
.

By means of standard large deviations analysis,

H−B ≤ e−ε0λB.

For the expectation, on the set {SλB(0, γ) ≥ −B}, there exists at least one γ0 such that SλB(0, γ0) ≥
−B. In addition, the derivative of SλB(0, γ) is bounded by λBe(λB)β . Thus, we have a lower bound∫

Γ
I(SλB(0, γ) ≥ −B − 1)dγ ≥ δ0λ

dBded(λB)β .

Plugging the above bound back, we have that

Pg0

(
SλB(0, γ) < −B; sup

k≤λB
|∂ξ(0, γ)| < e−(λB)β

)
≤ e−ε0λB/2

and with λ sufficiently large
Pg0(τ ′ > λB) ≤ e−ε0λB/2.

With the above bound, we have that

Egθ(τ
′/B; τ ′/B > M) = o(1)

as B → 0. Together with the approximation in (5.4), we put this estimate back to (A.3) and
conclude the proof.
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6. CONCLUSION

In this paper, we study the asymptotic properties of the generalized sequential probability ratio
test for the composite null hypothesis against composite alternative hypothesis. We derived the
exponential decay rate of the maximal type I and type II error probabilities as the crossing levels
tend to infinity. In particular, we show that these two probabilities decay to zero at rate e−A and
e−B, respectively, which are the same as those of the classic sequential probability ratio test. With
such approximations, we are able to establish the asymptotic optimality of the generalized SPRT,
that is, it admits asymptotically the shortest expected sample size among all the sequential tests
with the same maximal type I and type II error probabilities. These results serve as a natural
extension to those of the classic optimality results for the sequential probability ratio test.
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A. Other technical proofs

The proofs need some variations of the change of measure Qb introduced in the previous section.
Given that all the calculations for the rest of the proof are under the distribution g0, we let P = Pg0
through out this section. To start with, we introduce two measures that are special cases of the
measure in the beginning of Section 5.3.

A change of measure. Define measure Q via the Radon-Nikodym

dQ

dP
=

1

HA

∞∑
n=1

∫
Γ
I(Sn(γ) > A− 1)dγ

where I(·) is the indicator function and

HA =

∞∑
n=1

∫
Γ
P (Sn(γ) > A− 1)dγ.

The measure Q depends on A. To simplify the notation, we omit the index A in notation Q. The
sample path generation requires three steps.

1. Sample two random indices (n∗, γ∗) jointly according to the density/mass function

q(n∗, γ∗) = P (Sn∗(γ∗) > A− 1)/HA.

Note that n∗ is integer-valued and q as a function of n∗ is a probability mass function.
Furthermore, γ∗ is a continuous variable and q as a function of γ∗ is a density function.

2. Conditional on the realized n∗ and γ∗, sample Sn∗(γ∗) conditional on Sn∗(γ∗) > A− 1 under
the measure P .

3. Sample the rest of the process {Sn(γ) : n 6= n∗, γ 6= γ∗} conditional on the realization Sn∗(γ∗)
under the original measure P .

A second change of measure. This change of measure is defined for Sn(γ) with n fixed and
γ ∈ Γ. Define measure Qn via the Radon-Nikodym

dQn
dP

= H−1
n

∫
Γ
I(Sn(γ) > −1)dγ

where I(·) is the indicator function and

Hn =

∫
Γ
P (Sn(γ) > −1)dγ.

The corresponding sample path generation is given as follows.

1. Sample two random indices γ∗ according to the density function

qn(γ∗) = P (Sn(γ∗) > −1)/Hn.

2. Conditional on the realized γ∗, sample Sn(γ∗) conditional on Sn(γ∗) > −1 under the measure
P .
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3. Sample the rest of the process {Sn(γ) : γ 6= γ∗} conditional on the realization Sn(γ∗) under
the original measure P .

Proof of Lemma 5.1. We start the proof by deriving a lower bound. Notice that Sτ ≥ Sτ (γ) for all
γ. Thus, we have

P (sup
n

sup
γ
Sn(γ) > A) ≥ P (Sτ > A) ≥ P (Sτ(γ) > A) ∼= e−A

where τ(γ) = inf{n : Sn(γ) < −B or Sn(γ) > A}. The last step in the above display is a classic
large deviations result. We now proceed to the derivation of an upper bound of P (supn supγ Sn(γ) >
A) and start with a localization on the set

LA = ∪∞n=1{sup
γ
|∂ξn(γ)| > nζeA

β}

for some α−1 < β < 1 and ζ sufficiently large. According to Condition A3, we have that

P (LcA) ≤
∞∑
n=1

P{sup
γ
|∂ξn(γ)| > nζeA

β} ≤
∞∑
n=1

n−(α−1)ζAβe−A
αβ

= o(e−A).

Define
τA = inf{n : sup

γ
Sn(γ) > A}

and thus supn supγ Sn(γ) > A if τA < ∞. We now derive an upper bound for P (τA < ∞, LA) via
the change of measure Q as follows

P (sup
n

sup
γ
Sn(γ) > A,LA) = HAE

Q

([ ∞∑
n=1

∫
Γ
I{Sn(γ) > A− 1}dγ

]−1
, τA <∞, LA

)
.

Note that on the set {τA <∞}, there exists at least one γ such that SτA(γ) > A. Furthermore, on

the set LA, the gradient |∇SτA(γ)| is bound by eA
β
τ ζ+1
A . Therefore, we have the following lower

bound
∞∑
n=1

∫
Γ
I{Sn(γ) > A− 1}dγ ≥

∫
Γ
I{SτA(γ) > A− 1}dγ ≥ {edAβτ (ζ+1)d

A }−1.

Thus,

P (sup
n

sup
γ
Sn(γ) > A,LA) ≤ edAβHAE

Q(τ
(ζ+1)d
A ; τA <∞).

The last step is to control the moment EQ(τ
(ζ+1)d
A ). Let n∗ and γ∗ be the random indices generated

from Step 1 of the three-step sample path generation from Q. Therefore, we split the expectation

EQ(τ
(ζ+1)d
A ; τA <∞) ≤ EQ(τ

(ζ+1)d
A ; τA ≤ n∗) + EQ(τ

(ζ+1)d
A ; τA <∞, n∗ < τA <∞)

≤ EQ{n(ζ+1)d
∗ }+ EQ(τ

(ζ+1)d
A ; τA <∞, n∗ < τA <∞)

≤ O(A(ζ+1)d) + EQ(τ
(ζ+1)d
A ;n∗ < τA <∞).

We now focus on the last term by starting with the probability

Q(τA = n∗ + k).
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Note that τA > n∗ implies that A − 1 < Sn∗(γ∗) < A and Sn(γ) < A for all n ≤ n∗ and γ ∈ Γ.
Therefore, we have

Q(τA = n∗ + k) ≤ P (sup
γ
Sk(γ) > 0).

To obtain an estimate of the above probability, we use the change of measure Qn

P
[

sup
γ
Sk(γ) > 0;∪kn=1{sup

γ
|∂ξn(γ)| > ek

β}
]

= Hk × EQk
[
(

∫
Γ
I(Sk(γ) > −1)dγ)−1; sup

γ
Sk(γ) > 0,∪kn=1{sup

γ
|∂ξn(γ)| > ek

β}
]

and
P (∪kn=1{sup

γ
|∂ξn(γ)| > ek

β}) ≤ ke−kαβ . (A.1)

For the normalizing constant, we have that

Hk = O(e−ε0k).

For the integral
∫

Γ I(Sk(γ) > −1)dγ inside the expectation, on the set {supγ Sk(γ) > 0}, there
exists at least one γ0 such that Sk(γ0) > 0. Furthermore, the derivative is bounded from the above

by ek
β
. Thus, the integral is bounded from below by∫

Γ
I(Sk(γ) > −1)dγ ≥ δ0k

−de−dk
β
.

Thus, we have

P (sup
γ
Sk(γ) > 0;∪kn=1{sup

γ
|∂ξn(γ)| > ek

β}) = O(e−ε0k/2). (A.2)

We put together (A.1) and (A.2) and obtain that

Q(τA = n∗ + k) ≤ P (sup
γ
Sk(γ) > 0) = O(ke−k

αβ
+ e−ε0k/2).

Therefore, we have that

EQ(τ
(ζ+1)d
A ;n∗ < τA <∞) = O(E(n

(ζ+1)d
∗ )) = O{A(ζ+1)d}.

Thereby, we conclude the proof.

Proof of Lemma 5.2. We now prove an important fact that HA
∼= e−A. Recall the notation ξ(γ) =

log hγ(X) − log g0(X). For each pair (n, γ), we consider the probability P (Sn(γ) > A − 1). For
each ε > 0 small enough but not changing with A, we approximate the tail probability via large
deviations theory stated as follows. Let ϕγ(θ) = log[E{eθξ(γ)}] and the rate function is

P{Sn(γ) > A− 1} ≤ e−nI(n,γ)

where the rate function is I(n, γ) = θ∗
A−1
n − ϕγ(θ∗) and θ∗ solves identity ϕ′γ(θ∗) = A−1

n . For each
given γ, n× I(n, γ) is minimized at n(γ) = (A−1)/Ehγ{ξ(γ)} and minn n× I(n, γ) = A−1. Thus,
we have that

P{Sn(γ)(γ) > A− 1} ≤ e−A+1.
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We switch the order of summation and integral by taking the sum with respect to n first. We derive
the upper bound of HA by splitting the summation (for some M = κ1/minγ Dh(γ|0) and κ1 large)

∞∑
n=1

P (Sn(γ) > A− 1) =
MA∑
n=1

P (Sn(γ) > A− 1) +
∞∑

n=MA+1

P (Sn(γ) > A− 1).

Therefore, the first term is bounded by

MA∑
n=1

P (Sn(γ) > A− 1) ≤MAe−A+1.

Notice that, as n/A → ∞, the rate function I(n, γ) → − infθ ϕγ(θ) > 0. Therefore, the large
deviations approximation becomes

− 1

n
logP{Sn(γ) > A− 1} → inf

θ
ϕγ(θ) > I(n(γ), γ)

as n/A → ∞ and A → ∞. Therefore, if we choose κ1 sufficiently large depending and M =
κ1/minγ Dh(γ|0), then the second term is

∞∑
n=MA+1

P (Sn(γ) > A− 1) ∼=
∞∑

n=MA+1

e−n infθ ϕγ(θ) = o(e−A)

and therefore
∑∞

n=1 P (Sn(γ) > A − 1) ≤ (MA + 1)e−A. Since Γ is a compact set, then with κ0

sufficiently large

HA =

∫
γ∈Γ

∞∑
n=1

P (Sn(γ) > A− 1)dγ ≤ κ0mes(Γ)Ae−A/min
γ
Dh(γ|0)

Proof of Lemma 3.1. We first switch the sum and integration

HA,θ =

∫
Γ

∞∑
n=1

Pgθ{Sn(θ, γ) > A}dγ.

Furthermore, notice the following approximation (for some κ large)

Pgθ{sup
n
Sn(θ, γ) > A} ≤

∞∑
n=1

Pgθ{Sn(θ, γ) > A} ≤ AκPgθ{sup
n
Sn(θ, γ) > A}.

The first inequality is due to the inclusion and exclusion formula and the second step can be
obtained by standard large deviations analysis, Condition B2 and B3. In addition, the choice of κ
is independent of θ and γ. Then, it is sufficient to show that

lim sup
A→∞

sup
θ∈Θ

1

A
log
[ ∫

Γ
Pgθ{sup

n
Sn(θ, γ) > A}dγ

]
≤ −1.
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We now consider the tail probability Pgθ{supn Sn(θ, γ) > A} for each θ and γ. The tail probability
has a universal upper bound

w(θ, γ) , Pgθ{sup
n
Sn(θ, γ) > A} ≤ e−A

and the equality holds only when the overshoot is zero. Therefore, we have split the integral for M
sufficiently large ∫

|γ−γθ|<MA1/l

w(θ, γ)dγ ≤ κdAd/le−A +

∫
|γ−γθ|≥MA1/l

w(θ, γ)dγ (A.3)

where κd is the volume of the d-dimensional unit ball. We now show that w(θ, γ)eA → 0 as
|γ − γθ| → ∞. Let τA = inf{n : Sn(θ, γ) > A}. We choose M sufficiently large such that
Ehγ{ξ(θ, γ)} = Dh(γ|θ) > 3A. Then, the tail probability has the following upper bound

w(θ, γ) = Ehγ{e−SτA (θ,γ);SτA(θ, γ) > A}
≤ e−APhγ [ξ1(θ, γ) < {Dh(γ|θ) + 1}/2] + Ehγ [e−SτA (θ,γ); ξ1(θ, γ) > {Dh(γ|θ) + 1}/2].

The second term of the above inequality is bounded from the above by

e−{Dh(γ|θ)+1}/2 ≤ e−{1+Dh(γθ|θ)+δ|γ−γθ|l}/2 ≤ e−A−ε0|γ−γθ|l .

For the first term, notice that ξ1(θ, γ) has mean Dh(γ|θ) and bounded second moment. By Cheby-
shev’s inequality (noting that Ehγ{ξ1(θ, γ)} = Dh(γ|θ)), we have that

Phγ [ξ1(θ, γ) < {Dh(γ|θ) + 1}/2] = O(1)A−2Dh(γ|θ)−2 ≤ O(1)A−2|γ − γθ|−2l

Therefore, the integral has an upper bound∫
|γ−γ∗|≥MA1/l

w(θ, γ)dγ ≤
∫
|γ−γ∗|≥MA1/l

O(1)A−2e−A|γ − γθ|−2ldγ.

Since l > (d + 1)/2, the above integral is O(A−2e−A). We insert this bound back to (A.3) and
obtain that

∫
Γw(θ, γ)dγ = O(Ad/le−A) and conclude the proof.
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