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Matrix factorization has beenwidely investigated in the past years due to its fundamental importance in several areas of engineering.
�is paper investigates completion and zero prime factorization ofmatrices over elementary divisor rings (EDR).�e Serre problem
and Lin-Bose problems are generalized to EDR and are completely solved.

1. Introduction

In engineering and communication sciences, polynomial
matrices are used in several di�erent areas including circuits,
multidimensional systems, controls, signal processing, and
other areas. �e Serre problem (or Serre �eorem) stands
for a fundamental breakthrough in the understanding of
polynomial matrices, and it is a powerful mathematical tool
for engineers in practical designs. Following the work of
Youla and Gnavi [1] on the basic structure of �-D system
theory, many papers have been published in studying various
prime factorization of multivariate polynomial matrices.

Lin and Bose in 2001 [2] formulated a generalized Serre
conjecture for the polynomial ring �[�1, �2, . . . , ��] over a
	eld �. �ey found out that zero prime matrix completion
and matrix primitive factorization were all related to the
generalized Serre conjecture. So they proposed the existence
problem of zero prime factorization for �-D polynomial
matrices, which is now called Lin-Bose problem and it has
been solved in [3–5].

We are interested in generalizing Serre conjecture and
Lin-Bose problem to elementary divisor rings, which is
de	ned in the next section. For example, let (�1, �2, . . . , ��) be
any row vector with entries in �, and let � be any maximal
common divisor of �1, . . . , ��. We want to know if the row
can be completed to a square matrix whose determinant is�. More generally, we will solve both Serre problem and

Lin-Bose problem for an arbitrarymatrix (not just a row) over
elementary divisor rings.

�e organization of the paper is as follows. In Section 2,
we 	rst give some basic notions and describe Serre Problem
and Lin-Bose problem precisely. In Section 3, we give proofs
for the problems proposed in Section 2. Finally, a brief
conclusion is given in Section 4.

2. Basic Notions and Main Problems

Let � be a commutative ring with a unity element 1 and�ℓ×�(�) the free module of ℓ ×
matrices with entries in �.
For any � ∈ �ℓ×�(�), �(�) denotes the ideal of � generated
by all �×�minors of�, where 1 ≤ � ≤ min(ℓ, 
). Set 0(�) = 0.
�e rank of � is de	ned to be

rank (�) = max {� : 0 ≤ � ≤ �, Ann� (� (�)) = (0)} , (1)

where Ann�(�(�)) = {� ∈ � : �� = 0 for all � ∈ �(�)}.When
rank(�) = ℓ, we say � is of full row rank.

De�nition 1. A commutative ring � is called an elementary
divisor ring (EDR) if, for every 
 ≤ � and every matrix � ∈��×�(�), there exist � ∈ ���(�) and � ∈ ���(�) such that��� = � with � = (���) is diagonal and every ��� divides��+1,�+1.
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When 
 = 1, � is row vector (�1, �2, . . . , ��); the
requirement ��� = � implies that the ideal �1� + �2� +⋅ ⋅ ⋅ + ��� is generated by one element. So, in an elementary
divisor ring, every 	nitely generated ideal is generated by one
element. Note that an elementary divisor ring may not be a
principle ideal domain, nor a unique factorization domain.

De�nition 2. Let � ∈ �ℓ×� (or � ∈ ��×ℓ), where ℓ ≤ 
, be of
full row rank. �en � is said to be

(i) ZLP (or ZRP) if all ℓ×ℓminors of � generate the unit
ideal �;

(ii) MLP if all ℓ × ℓminors of � are relatively prime; that
is, �(�) is a unit in �, where �(�) refer to the maximal
common divisor of all ℓ × ℓminors of �.

De�nition 3. Let �1, �2, . . . , �� ∈ �. � is said to be a common
divisor of �1, �2, . . . , �� if � | ��, � = 1, 2, . . . , �. When � is
divisible by every common divisor of �1, �2, . . . , ��, one says
that � is a maximal common divisor of �1, �2, . . . , ��.

Note that, for any two maximal common divisors of�1, �2, . . . , ��, since they divide each other, they are always
associates of each other; that is, they are di�erent only by a
factor that is invertible in �. Let �(�1, . . . , ��) denote the set
of all maximal common divisors of �1, . . . , ��.
Lemma4. Let� be an elementary divisor ring and �1, . . . , �� ∈�. For any � ∈ �, one has � ∈ �(�1, . . . , ��) if and only if�1� + ⋅ ⋅ ⋅ + ��� = ��.
Proof. First suppose �1�+ ⋅ ⋅ ⋅ + ��� = ��. Since � has a unity
element 1, we have �� = �� ⋅ 1 ∈ ��� ⊂ ��, so � | �� for� = 1, . . . , �. Also, �1�1 + ⋅ ⋅ ⋅ + ���� = � for some �� ∈ �; hence,
for any � ∈ � such that � | �� for � = 1, . . . , �, we must have� | �. �us � ∈ �(�1, . . . , ��).

Next suppose � ∈ �(�1, . . . , ��). �en �� = ��� for some�� ∈ �, � = 1, 2, . . . , �, so �1� + ⋅ ⋅ ⋅ + ��� ⊆ ��. Since � is
an EDR, there exists ! ∈ � such that �1� + ⋅ ⋅ ⋅ + ��� = !�.
�is implies that ! | ��, � = 1, . . . , �, so ! | �; thus � ∈ !� and�� ⊆ !� = �1�+⋅ ⋅ ⋅+���.�erefore, �1�+⋅ ⋅ ⋅+��� = ��.

A direct consequence of the above lemma is that,
in an elementary divisor ring, any collection of elements�1, �2, . . . , �� ∈ � has at least one maximal common divisor,
since the ideal �1� + ⋅ ⋅ ⋅ + ��� is generated by one element.
�is means that, for a unimodular row (�1, �2, . . . , ��), the
maximal common divisors of �1, �2, . . . , �� must be units.

De�nition 5. Let � ∈ �ℓ×�(�) with ℓ ≤ 
, and let�1, �2, . . . , �	 denote all ℓ× ℓminors of �, where " = 
!/(
−ℓ)!ℓ!. Assume that there exists a maximal common divisor�(�) of �1, �2, . . . , �	. Let �� be such that �� = ���, � =1, 2, . . . , ". �en �1, �2, . . . , �	 are called the “reduced minors”
of � with respect to �.

�e original Serre problem and Lin-Bose problems are
about the ring� = �[�1, �2, . . . , ��], a polynomial ring in the
variable �1, �2, . . . , �� over a 	eld �. More precisely, for any� ∈ �ℓ×�(�) (ℓ ≤ �) of full row rank, let �(�) be the greatest

common divisor of all ℓ × ℓminors of �. Suppose all reduced
minors of � generate �. �en Serre’s problem says that there

exists a matrix $ ∈ �(�−ℓ)×ℓ such that det ( 
� ) = �(�). Lin-
Bose problem says that we can decompose � as � = � ⋅ �1,
where � ∈ �ℓ×ℓ(�), �1 ∈ �ℓ×�(�), det� = �(�), and �1 is
ZLP.

In this paper, we extend the above two problems over to
elementary divisor rings. Precisely, we completely solve the
following problems.

Problem 6. Let � be an elementary divisor ring and � ∈�ℓ×�(�), where ℓ ≤ �, is of full row rank. Let � be a maximal
common divisors of all ℓ × ℓminors of �.

(a) (Serre) Is there a matrix $ ∈ �(�−ℓ)×ℓ such that
det ( 
� ) = �?

(b) (Lin-Bose) Is it possible to write� as� = �⋅�1, where� ∈ �ℓ×ℓ(�) with det(�) = � and �1 ∈ �ℓ×�(�) is
ZLP?

3. Main Results

In this section, we give our main results. First, let us give
some basic facts. For more details, we refer to [6]. Let � be
a commutative ring.�en any 	nite number of elements in �
have a maximal common divisor. Let � ∈ �ℓ×�(�) (ℓ ≤ 
)
be of full row rank. Let �1, �2, . . . , ��’s be all of its ℓ × ℓminors
and � the maximal common divisor of ��’s. �en there exists
a matrix%� ∈ ��×ℓ(�) such that �%� = ��ℓ = ���ℓ, where�� = ��� and ℓ is the ℓ × ℓ identity matrix. Furthermore, if all
the reduced minors of� generate the unit ideal �, then there
exists a matrix % ∈ ��×ℓ(�) such that � ⋅ % = �ℓ. Whenℓ ≥ 
, we have% ⋅ � = ��.
Lemma 7. Let � be an EDR. Let � ∈ �ℓ×�(�)with ℓ ≤ �with� being a maximal common divisor of all ℓ × ℓ minors of �.
�en, for every � ∈ ���(�), the matrix � = �� also has � as
a maximal common divisor of its ℓ × ℓminors.

Proof. Let �� be any maximal divisor of all ℓ × ℓ minors of� with �� ̸= �. Let � be any ℓ × ℓ submatrix of �. �en� = ��, where� is a �×ℓ submatrix of�.�en, byCauchy-
Binet formula, we can get that det(�) = ∑Δ �3�, where Δ �
and 3� are ℓ × ℓ minors of � and �, respectively. Since, for
every �, we have � | Δ � and � | det(�), by the arbitrariness
of �, we get � | ��. Since ��−1 = �, by the same reason,
we have �� | �, so �� = ���. �erefore, � is also a maximal
divisor of minors of �.
�eorem 8. Let � be an EDR and � ∈ �ℓ×�(�). Let(�1, �2, . . . , ��) be an arbitrary row of � and � any maximal
common divisor of �1, �2, . . . , ��. �en (�1, �2, . . . , ��) can be
completed to a square matrix

(�1, �2, . . . , ��5 ) (2)

whose determinant is �. Furthermore, the (� − 1) × �matrix 5
may be chosen to be itself completed to a matrix in ���(�).
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Proof. Assume without loss of generality that (�1, �2, . . . , ��)
is the 	rst row of �; then according to the de	nition of an
elementary divisor ring, there exist �1 ∈ ��ℓ(�) and �1 ∈���(�) such that

�1��1 = diag {�1, �2, . . . , ��} . (3)

By Lemma 4 �1 is a maximal common divisor of (�1, �2, . . . ,��). Assume that det(�1) = 7 and det(�1) = V are units in �.
Let

� = diag {1, 7−1, . . . , 1} �1,
� = �1 ⋅ diag {1, V−1, . . . , 1} . (4)

�en, det(�) = det(�) = 1, � ∈ ;�ℓ(�), � ∈ ;��(�), and
�(�1, �2, . . . , ���� )� = diag {�1, �2, . . . , ��} , (5)

where�� is the submatrix of� formed by the remaining rows
a�er removing (�1, �2, . . . , ��) from �.

Set 5 = �−1(?(�−1)×1 �−1)�−1. �en

�(�1, �2, . . . , ��5 )� = ( �1 01×(�−1)?(�−1)×1 �−1 ) . (6)

Note that det(�) = det(�) = 1. �us

det(�1, �2, . . . , ��5 ) = det( �1 01×(�−1)?(�−1)×1 �−1 ) = �1. (7)

So 5 is ZLP and can be completed to matrix in ���(�).
By Lemma 4, �� = �1� + �2� + ⋅ ⋅ ⋅ + ��� = �1�; we have

that � = �1� and �1 = �@, where �, @ ∈ �. �en

(�, 0) ( @ 1 − @�
−1 � ) = (�1, 0) . (8)

�is proves the theorem.

In the above theorem, � is an arbitrary maximal common
divisor, but � is not UFD so the maximal common divisors
are not unique. If � is a beforehand given maximal common
divisor, is the above theorem also correct? �e following
theorem gives a positive answer.

�eorem 9. Let � be an EDR and � ∈ �ℓ×�(�) with ℓ ≤ �.
�en there exist � ∈ �ℓ×ℓ(�) and �1 ∈ �ℓ×�(�) such that� = � ⋅ �1, where det(�) is a maximal common divisor of allℓ × ℓminors of � and �1 is ZLP.
Proof. Since � is an elementary divisor ring, there exist � ∈;� �(�) and � ∈ ;��(�) such that

��� = (�1, 0) , where �1 = diag {�1, �2, . . . , �ℓ} , (9)

and every �� is a divisor of ��+1, and 0 ∈ �ℓ×(�−ℓ)(�).
By Lemma 7, det(�1) = �1�2 ⋅ ⋅ ⋅ �ℓ is a maximal common

divisor of all ℓ × ℓminors of �. Partition �−1 as
(�1�2) , where �1 ∈ ��×� (�) , �2 ∈ �(�−ℓ)×� (�) . (10)

Let � = �−1�1. Since �−1 ∈ ;��(�), by Laplace expansion,�1 is ZLP. Since � = �−1(�1, 0)�−1, we have det(�) =
det(�−1�1) = �1�2 ⋅ ⋅ ⋅ �ℓ. Hence � = � ⋅ �1, as claimed by
the theorem.

�eorem 10. With the same notation as in the proof of the
above theorem, the maximal divisor of all � × � minors of � is�1 ⋅ ⋅ ⋅ �� for 1 ≤ � ≤ ℓ.
Proof. First, we take care of the 1 × 1 minors of �, which is�1��� as � = �−1�1, where �−1 = (���). Assume that 7 is a

common divisor of ���, 7���� = ���. �en

det (�−1) = �∑
�=1

���� �� = 7 �∑
�=1

�������� = 1, (11)

where� �� is (ℓ−1)×(ℓ−1)minors of�−1 and7���� = � ��.�en
we can get that 7 is a unit of �. It follows that the maximal
divisor of all 1 × 1minors of � is �1.

Now let � ≥ 2. Suppose that the result is correct for (�−1)×(� − 1)minors. We investigate this result for � × �minors. Let51, . . . , 5 be all the �×�minors and D1, . . . , D� all the (�−1)×(�−1) submatrix of51, . . . , 5, where
 = �!/(�−�+1)!(�−1)!
and � = �!/(� − �)!(�)!. �en, by the Laplace expansion,

det (5�) = �∑
�=1

����,�D��. (12)

But the common divisor of ��� is a unit of �, and the common
divisor of D1, . . . , D� is �1 ⋅ ⋅ ⋅ ��−1, so the common divisor of51, . . . , 5 is �1 ⋅ ⋅ ⋅ ��. �e theorem follows by induction on�.

Besides, we can also make some improvements for the
above theorem, which can be seen as the Serre problem
generalized to elementary divisor rings.

�eorem 11. Let � be an EDR and � ∈ �ℓ×�(�) (ℓ ≤ �) of
full row rank. �en, for any maximal common divisor � of allℓ × ℓ minors of �, there exist � ∈ �ℓ×ℓ(�) and �1 ∈ �ℓ×�(�)
such that � = � ⋅ �1 with det(�) = � and �1 is ZLP.
Proof. Assume � and �� are two maximal common divisors
of all ℓ×ℓminors of �. By Lemma 4, �� = ���, which means
there exist �, @ ∈ � such that � = ��� and �� = �@. Note thatℓ(�) = 0 as � is of full row rank. �en � and �� are not zero-
divisors. Also, any two maximal common divisors of all ℓ × ℓ
minors of � are associates of each other; that is, there exists a
unit E in � such that � = E ⋅ ��.

By �eorem 9, there exist �2 ∈ �ℓ×ℓ(�) and �2 ∈��×�(�) such that � = �2 ⋅ �2, where �1 = det(�2)
is a maximal common divisor of all ℓ × ℓ minors of �,
and �2 is ZLP. Set � = �2 ⋅ diag{E, 1, . . . , 1}. �en �1 =
diag{E−1, 1, . . . , 1} ⋅ �2. �us the theorem is proved.

Remark 12. �e above two theorems are di�erent from
each other, as in �eorem 11 � is beforehand given, but in
�eorem 9 � is an arbitrary one.
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By now, we proved that Lin-Bose problem over an
elementary divisor ring is correct. Next we deal with the Serre
problem.

�eorem 13. Let � be an elementary divisor ring and � ∈�ℓ×�(�) with ℓ < �. �en � can be completed to a square
matrix ( �� ) whose determinant is a maximal common divisor
of all ℓ × ℓminors of �. Furthermore, the (� − ℓ) × �matrix �
may be completed to a matrix in ���(�).
Proof. From �eorem 8, we have that ��� = (�, 0), where� ∈ ;� �(�), � ∈ ;��(�), � = diag{�1, �2, . . . , �ℓ}, and
det(�) = �1�2 ⋅ ⋅ ⋅ �ℓ. Set � = �−1(?(�−1)×1 �−1)�−1. �en
we have

�(��)� = ( � 01×(�−1)?(�−1)×1 �−1 ) . (13)

�is implies that

det(��) = det(� 0
0 �−ℓ) = det (�) . (14)

Furthermore, 1 is a maximal common divisor of all (� − ℓ) ×(� − ℓ) minors of �. From above argument, the (� − ℓ) × �
matrix � may be chosen to be itself completable to a matrix
in ���(�) (;��(�)).

In this theorem � is a particular maximal common
divisor.When � is an arbitrarymaximal commondivisor, this
theorem is also correct.

�eorem 14. Let � be an EDR, let � ∈ �ℓ×�(�) be of full
row rank, and let � be any maximal divisor of all ℓ × ℓminors
of �. �en � can be completed to a square matrix ( �� ) whose
determinant is �. Furthermore, the (�− G) ×�matrix�may be
chosen to be itself completable to matrix in ���(�).
Proof. FromLemma 4, any twomaximal common divisors of
all minors of � are associates. From �eorem 8, there exist� ∈ ;� �(�) and � ∈ ;��(�) such that ��� = (�, 0), where� = diag{�1, �2, . . . , �ℓ}; every �� is a divisor of ��+1, and0 ∈ �ℓ×(�−ℓ)(�). By Lemma 7, det(�) is a maximal common
divisor of all ℓ × ℓ minors of �. Assume � = H ⋅ det(�); H
is a unit in �. Set � = � ⋅ diag{H, 1, . . . , 1}. �en ��� =(�, 0), where � ∈ ���(�) and det(�) = �. Setting � =
�−1(0(�−ℓ)×ℓ �−ℓ)�−1, we obtain the result.

�eorem 15. Let � be an EDR and let �, D ∈ ��×�(�) be of
full row rank. Assume det(�D) ̸= 0, and

�1��1 = �1 = diag {�1, . . . , ��} ,
�2D�2 = �2 = diag {!1, . . . , !�} ,

�3�D�3 = �3 = diag {I1, . . . , I�} ,
(15)

where ��, �� ∈ ���(�) for J = 1, 2, 3. �en �� | I� and !� | I�
for all 1 ≤ � ≤ �.

Proof. By �eorem 11, there exist � ∈ ��×�(�) and �1 ∈;��(�) such that � = ��1. �en det(�) = det(�) =�1 ⋅ ⋅ ⋅ ��. For D, we also have D = $D1, and det(D) = det($) =!1 ⋅ ⋅ ⋅ !�, where $ ∈ ��×�(�) and D1 ∈ ;��(�). It follows that�D = ��1$D1 and det(�D) = det(�$) = �1 ⋅ ⋅ ⋅ ��!1 ⋅ ⋅ ⋅ !�.
Now for �D, there exist � ∈ ��×�(�) and % ∈ ;��(�)

such that �D = �%. �en det(�D) = det(�) = I1 ⋅ ⋅ ⋅ I�. So�1 ⋅ ⋅ ⋅ ��!1 ⋅ ⋅ ⋅ !� = I1 ⋅ ⋅ ⋅ I�. So �� and !� all divide I1 ⋅ ⋅ ⋅ I� for� = 1, . . . , �.
We prove the theorem by induction on �. If � = 1, it is

obvious. Let � ≥ 1. Suppose that the result is correct for � = �;
we investigate this result for � = � + 1. By the de	nition of
EDR and the assumption, we may set

�2 = �1�1,
�3 = �1�1�2,

...
�ℓ = �1�1�2 ⋅ ⋅ ⋅ �ℓ−1,
��+1 = �1�1�2 ⋅ ⋅ ⋅ �ℓ,

I1 = �1@1,
I2 = �1@1@2,

...
Iℓ = �1@1@2 ⋅ ⋅ ⋅ @ℓ,

Iℓ+1 = �1@1@2 ⋅ ⋅ ⋅ @ℓ+1,

(16)

where ��, @� ∈ �. By the above, �1�2 ⋅ ⋅ ⋅ �ℓ+1 | I1I2 ⋅ ⋅ ⋅ Iℓ+1; it
follows that

(�1 ⋅ �1�1 ⋅ �1�1�2 ⋅ ⋅ ⋅ �ℓ�1�2 ⋅ ⋅ ⋅ �ℓ) |
(�1@1 ⋅ �1@1@2 ⋅ ⋅ ⋅ �ℓ@1@2 ⋅ ⋅ ⋅ @ℓ+1) . (17)

Hence

(�1 ⋅ �1�2 ⋅ �1�2 ⋅ ⋅ ⋅ �ℓ) | (@1 ⋅ @1@2 ⋅ ⋅ ⋅ @1@2 ⋅ ⋅ ⋅ @ℓ+1) . (18)

Since �2 | I2, �3 | I3, . . . , �ℓ | Iℓ, we conclude that
�1 | @1@2,

�1�2 | @1@2@3,
...

�1�2 ⋅ ⋅ ⋅ ��−1 | @1@2 ⋅ ⋅ ⋅ @�.
(19)

So there exist L1, L2, . . . , Lℓ−1 such that

�1L1 = @1@2,
�1�2L2 = @1@2@3,

...
�1�2 ⋅ ⋅ ⋅ �ℓ−1Lℓ−1 = @1@2 ⋅ ⋅ ⋅ @ℓ.

(20)



Mathematical Problems in Engineering 5

�at is,

�1 ⋅ �1�2 ⋅ �1�2 ⋅ ⋅ ⋅ �ℓ | @1 ⋅ �1L1 ⋅ ⋅ ⋅ �1�2 ⋅ ⋅ ⋅ �ℓ−1Lℓ−1
⋅ @1@2 ⋅ ⋅ ⋅ @ℓ+1. (21)

�us

�1�2 ⋅ ⋅ ⋅ �� | @1 ⋅ L1L2 ⋅ ⋅ ⋅ Lℓ−1 ⋅ @1@2 ⋅ ⋅ ⋅ @ℓ+1. (22)

Now, assume that �ℓ+1†Iℓ+1. �en �1�2 ⋅ ⋅ ⋅ �ℓ†@1@2 ⋅ ⋅ ⋅@ℓ+1, and �1�2 ⋅ ⋅ ⋅ �ℓ | @1 ⋅ L1L2 ⋅ ⋅ ⋅ Lℓ−1. But
@1 | @1@2 ⋅ ⋅ ⋅ @ℓ+1,
L1 | @1@2 ⋅ ⋅ ⋅ @ℓ+1,

...
Lℓ−1 | @1@2 ⋅ ⋅ ⋅ @ℓ+1.

(23)

�erefore, we have �1�2 ⋅ ⋅ ⋅ �ℓ | @1@2 ⋅ ⋅ ⋅ @ℓ+1, contradicting
our assumption. So �ℓ+1 | Iℓ+1, and our theorem is proved.

�eorem 16. Let � be an EDR and let �1, �2 ∈ �ℓ×�(�) (ℓ ≤
) be of full row rank. Suppose�1 = �2M, whereM ∈ ��×�(�)
is MLP. �en �1 is MLP if and only if �2 is MLP.

Proof. Let �1 and �2 be maximal common divisors of all ℓ×ℓ
minors of�1 and�2, respectively. Let� be any ℓ×ℓ submatrix
of �1, and � = �2M, where M is a
 × ℓ submatrix of M. By
Cauchy-Binet formula, we have det(�) = ∑�2�"�, where the
sum is all �2� and "�, which are ℓ × ℓ minors of �2 and M,
respectively. Since �2 | �2� for every �, we have �2 | det(�).
Because det(�) is an arbitrary ℓ×ℓminor of �1, we have �2 |�1. As M is MLP, from Lemma 7, there exist N ∈ ��×�(�)
such that MN = 3�, where 3 are ℓ × ℓ minors of M. �en,
from �1 = �2M, we get that 3�2 = �1N. By Cauchy-Binet

formula, �1 | 3��2 for every �. But gcd(3�1, 3�2, . . . , 3��) = 1 asM is MLP, so �1 | �2.
�erefore, if�1 isMLP, then�1 is a unit and so is�2, which

means that �2 is also MLP. By similar reasoning, when �2 is
MLP, so is �1.
�eorem 17. Let � be an EDR and � ∈ ��×�+1(�) is of
full row rank. If � is ZLP, then there exists a ZRP matrix�0 ∈ ��×�−1(�) such that ��0 = 0.
Proof. Let � = [M V], and set � = M−1V ∈ ��×1(�).
�ere exist �1 ∈ �� �(�) and �1 ∈ � such that �1��1 =
diag(�1, 0, . . . , 0) as � is an $��, where �1 ∈ �. �en

� = �−11 diag (�1, 0, . . . , 0) �−11 . (24)

Set D = �−11 diag(�1, 0, . . . , 0) and � = �1. �en � = D�−1;
that is, D�−1 = M−1V, and V� = M(M−1V�) = M(D�−1)� = MD.
It follows that

[M V] [−D� ] = 0. (25)

Let �0 = [ −�� ]. �en �0 ∈ ��×�−1(�) and ��0 = 0. Let�1, �2, . . . , �� be the (
− 1) × (
− 1)minors of �. �en there
exist � ∈ �\{0} such that �� = ��� (1 ≤ � ≤ 
) as D�−1 = M−1V.
Hence, if � is ZLP, then �0 is ZRP.
4. Conclusions

�emain results in this paper can be summarized as follows:
(a) the Serre problem and Lin-Bose problems were solved
over an elementary divisor ring; (b) by using the properties
of EDR, some interesting results about ZLP matrices are
proved. �ese results could provide engineers with useful
information for 	nding desired matrix decomposition.
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