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Abstnd. A class of shift-like dynamical systems is presented that displays a wide 
variety of behaviours. Three examples are presented along with some general definitions 
and results. 

A correspondence with Turing machines allows us to discuss issues of predictability 
and complexity. These systems possess a type of unpredictability qualitatively stronger 
than that which has been previously discussed in the study of low-dimensional chaos, 
and many simple questions about their dynamics are undecidable. 

We discuss the complexity of various sets they generate, including periodic points, 
basins of attraction, and time series. Finally, we show that they can be embedded in 
smooth maps in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2, or smooth Rows in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR’. 
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70K99,70-04,58FO9,58F11/12/13 
PACS numbers: 0210,0290,0545 

1. Introduction 

In the dynamical systems literature, ‘chaos’ is usually exemplified by the shift map, 

u : X + X :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- (1) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = AZ is the set of bi-infinite sequences of some finite alphabet A. The most 
famous occurrence of this is in Smale’s ‘horseshoe’ map [l, 21: whenever a map folds 
some open set into itself in a way like figure l (a) ,  the set of non-wandering points is 
a square Cantor set, in which each point corresponds to a sequence or ‘itinerary’ in 
{O,l)‘  describing which half (upper or lower) of the square the point is in at each 
iteration of the map forward or backward in time. This is a homeomorphism. and 
the action of the map then induces the shift on two symbols. 

We can portray the horseshoe as a map of the unit onto itself, as in figure l (b) ;  
figure l(c) shows the ‘baker’s map’ 131, which is also conjugate to  the shift on two 
symbols. In this case, the left and right halves of a point’s sequence are simply the 
binary expansions of its x and y coordinates respectively. 

As a straightforward generalization of the shift, we could consider a map in 
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Figure 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( n )  The Smale horseshoe. ( 6 )  The 
Smale horseshoe, abbreviated as a map of the 
unit square. (c) The 'baker's map', similarly 
portrayed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

which we shift left or right by a variable amount, depending on a finite number of 
places in the sequence: 

@ : a  r* crF@)u 

where a E Z: and F : Z +  Z has a finite domain of dependence (DOD)~ the set nf 
integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi such that F ( a )  depends on up We could further generalize, and allow a 
finite number of cells in the sequence to change: 

@ : a  ++ d ' " " (a  8 G ( a ) )  (2) 
where 

(1) F:AZ- tZ  and G : A L + ( A U  {@})'both have a finite D ~ D ,  

(2) every sequence in the image of G has a value of 4 except for a finite number 

(3) for a EA' and g E (A  U {@I)', a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'Bg (read 'a  replace 9') is defined as 
of cells, and 

follows: 

(i.e. G specifies what modifications to perform on the sequence.) Such a system Q 
will be called a generalized shift (on A )  and is determined by the functions F and G. 
(Note that since F and G depend on a finite number of cells in a, they take a finite 
number of different values: in particular, Fis  bounded above and below.) Here @ is 
just an auxiliay character for the notation. 

In other words, the dynamics works as follows: depending on a finite number of 
cells in the sequence, we change some of them according to G, and then shift left or 
right by an amount F. Unlike the standard shift, we do not obviously have invariant 
subshifts, since the sequence is being modified as well as shifted; in this paper we 
will look just at the 'full shift' A'. 
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The set of cells that are modified by G (integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s.t. gj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# 4 for some g in Im G) 

will he referred to as the domain ofeffect (DOE). It turns out that it plays many of the 
same roles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADOD. 

This class of systems is reasonable to  study because it is large enough to display 
many types of behaviour, and small enough for the following lemma to hold. 

Lemma 0. Any generalized shift on n symbols is conjugate to a piecewise linear 
map of the square Cantor set into itself, by the homeomorphism induced by the 
horseshoe or baker's map; this map will have a finite number of linear components 

k snlDoDuDoEi+maxlFI 

each of which is measure-preserving. 

Proof. Let D=OODUDOE, and partition the Cantor set into nlDl subsets, cbarac- 
terized by their sequences' values on D. Each of these is connected, as long as the 
origin is contained in D. Each of these is first mapped onto another one by G, and 
then shifted by F. When it is shifted, one coordinate is stretched by n"l; then to fold 
it back into the square, it must be cut into at most nlFi pieces. Then the number of 
components k (n'D')(n""x'F1) as stated. QED. (The homeomorphism induced by the 
baker's map is probably the most convenient, as it produces maps which preserve 
the directions of the x and y axes.) 

Conversely, it is possible to show (41 that any C2 area-preserving diffeomorphism 

We also have the following reduction lemma. 
of R2 which preserves this Cantor set is homeomorphic to a generalized shift. 

Lemmo 1. Any generalized shift @ on a finite alphabet A is conjugate to some @' 
on the two-symbol alphabet {0,1}. 

Proof. We simply map letters of A onto sufficiently large blocks of Os and Is: since 
JAJ s 2" for some m, construct some function E : A +  (0, 1)" and let 

8:{0, l } L+AL :a i -E - l (a , j . .  . am(i+l)-l). 

Then let 

F'(a) = mF(%a) 

and 

G'(a)  = %-'G(%I). 

So we can take A = {O, 1) with no loss of generality. QED. 

In the following sections, we first present three examples of GSS with various sorts 
of behaviour, and do what we can to describe them. We then give an introduction to 
Turing machines and the languages they produce, and show that GSS and Turing 
machines are essentially equivalent. We use this equivalence to show the unde- 
cidability of many simple dynamical questions about GSS, such as questions about 
their periodic points, basins of attraction, ergodicity, etc. We then discuss the 
qualitative nature of their unpredictability and show how it is different, and 
stronger, than the standard kind of 'chaos'. Finally we show that these systems can 
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be suspended in smooth maps and flows, and we close with a discussion of whether 
such systems might be found in nature. 

In the examples below we will take A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {O, l}, and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOOD for both F and G as 
well as the DOE will typically be the set of integers between -r and r for some small 
r. (Unless the DOO is kept as small as possible, things get out of hand.) Throughout, 
a 'language' is simply a set of sequences; see [SI for an introduction to various sorts 
of languages. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. Examples 

We now present and study three examples. Throughout, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACP is the dynamics defined 
above, n = IAl is the number of symbols in the alphabet, and w is the width of the 

(= 2r + 1 in these cases.) We use the product measure on the space of sequences X, 
and the standard metric 

; a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+hp Af tho e m ~ l l P d  mnt;nnn.sr nf ;dnnnrr tho+ rAnt.,in. rhn -.- 
"Y", L.... L.... .,a&.. "L L.... I..LYLI..Ib U"..LL..Y"YY Y U l  "L L.LL.+j..L" L I M . 1  C".,,',,,,a U,+ """ 

d(x ,  y )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (1 - S(x i ,  y;))n-"'. 

2.1. Example 1 

Let F and G depend only on a,, and let G only modify a, (DOD = DOE = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 )  .) Then 
let F(0)  = +1, F(l) = -1, G(0)  = 1, and G(1) = O ;  i.e.' 'if the cell at the origin is a 0, 
change it to a 1 and shift left; if it is a 1, change it to a 0 and shift right'. 

immediately to the right of the decimal point; we will denote these (1).1(0) and 
(1).(0) respectively. In fact, it is easy to  show that these are the only periodic points, 
and that as fixed points of the conjugate map in the plane they are hyperbolic. 
Figure 2 shows the evolution of a random initial sequence; it shows that the effect of 
the map is to make the origin bounce back and forth between the nearest 
boundaries between Os and 1s; pushing them back one space each time. Thus the 

There ?re. two fired points, . . . 1 1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA___._I_ im ~ . . . . . . 1 1 1  nnn . . , whPw .. .._._ is 

Figure 2. A simulation of example 1 from random 
initial conditions. Black = 0, white = I .  lnstead of 
shifting the sequence and keeping the DUD and DOE 

in the centre. we shift a 'pointer' that marks where 
the origin is and keep background sequence con- 
stant. As the evolution progresses. we pass closer 
and closer to the two fixed p i n t s ,  (1).1(0) (moving 
left) and ( l ) . (O)  (moving right.) 
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generic behavior alternates between the neighbourhoods of the two fixed points, 
coming closer (according to  the standard metric on sequences) and staying longer 
each time. 

This is a comparatively ‘unchaotic’ kind of behaviour; the time B ( d )  (B for 
‘busy’) it takes to shift a total distance of d goes as 

B(d )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdZ 

like a random walk. This corresponds to a sub-exponential divergence of close initial 
conditions; normally 

B(d )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= d / v  =(In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn/A)d 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU is the speed of the shift (cells per unit time), n is the number of symbols i n  
the alphabet, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the Liapunov exponent. Here A approaches zero in the 
long-time limit. 

This behaviour is easy to explain qualitatively. If we use the Smale homeo- 
morphism from sequences to points in the Cantor set, we get a non-invertible map 
of the unit square into itself as shown in figure 3. Clearly every point in the square is 
‘hyperbolic’ in that either the x or y direction is getting stretched, and the other 
compressed (corresponding to  shifting left or right); but the evolution of almost 
every point involves switching which eigenvector is which, so that the expansion and 
contraction is not uniform. We see that one half of the square is getting squished, 
and the other half squashed; moreover, almost every point spends an equal amount 
of time in these two domains. Thus any eigenvector gets halved as often as it gets 
doubled-this explains why things take a long time to diverge so that B(d )  is 
supra-linear. (In terms of the sequence, we shift left and right equally often, so we 
do not get far very quickly.) The exact form of B(d)  depends on the statistical 
distribution of the squishings and squashings; in this example it is quadratic in d, 
while in the next we will see that B ( d )  can be exponential. 

Since we do not have a uniform hyperbolic structure, we do not have a Markov 
partition (71: local stable and unstable manifolds are getting mapped onto each 
other, and so are ill-defined as t +m.  In particular, if we record the value of a, (or 
of F(a) ) ,  the set of possible sequences produced by the dynamics is not a subshift of 
finite type, or even a regular or context-free language [8]:  it is the set 

{“l” . . . V’”-’P*. . .} 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsi+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>s, for all i > O .  This simply describes the fact that the map oscillates 
between the two nearest boundaries, pushing them back or annihilating them on 

Figure 3. The map of the plane corresponding to example I ,  showing the two fixed 
points. 
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each bounce, so that each oscillation takes longer than the last. (We discuss this 
language in the section on time series below.) 

This example is in a rather restricted subclass of generalized shifts: 

Definition. Let (F) he the semigroup of integers generated by the image of F in  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ. 
Then we call a generalized shift stagnant if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

vi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( F ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi #o:  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(DoE)  n DoD = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

For instance, @ is stagnant if DOO = DOE = { O } ,  as in this case. We call these systems 
'stagnant' since information cannot really move around: F and G never get to 
depend on the cells that they modified before, except to modify the same ones 
again. Each cell evolves independently of its neighbours, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx H G(x) (although the 
time at which it does so may he complicated) so the system cannot do anything very 
I l r ,G,GsrnLg, . 

2.2. Example 2 

Let D o D = D o € =  {-I,& +l}, with F and G as follows: 

a-cana*i F G 

0.00 +I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.11 
0.01 +1 1.11 
0.10 + I  0.01 
0.11 -1  0.11 
l . W  -1  0.00 
1.01 -1 0.10 
1.10 + I  1.01 
1.11 - 1  0.01 

This map corresponds to the map of the square shown in figure 4, and so, unlike 
-..---I- 1 :t :- 1 1 I- ..-" th _.._ h ..-:+ha- Er-r :I 1 ,XI- h-.,n thn f-Il-.r,:"n l nmmn c*a,,p,c I ,  L, 1 3  1-1 ,C"C" L ' L V u p  I I C I I . . r L  1 I."L " A"., ..r . LLL"C  L1.C L""""1.1~ LC.IIIII',. 

Lemma 2. If @ is a generalized shift, the following are equivalent: 
(1) @ is 1-1; 

(2) Q, is onto; 
(3) @ is measure-preserving as a map of the unit square. 

Figure 4. The map of the plane corresponding to example 2 

t It seems likely that we can calculate the average B ( d )  analytically for systems with DoD = DOE = (0 )  by 
mapping them onto a type of random walk. 
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Proof. From lemma 0, we can construct a map 6, conjugate to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@, of the Cantor set 
into itself with a finite number of components, each of which is measure-preserving. 
Then 6 and @ are 1-1, onto, and measure-preserving iff none of these components 
overlap. QED. 

I know of no simple criterion in terms of F and G for 0 being 1-1, although it is 

This map has three fixed points: (0).1(0), (1).01(0), and (1).(0). In studying fixed 
certainly decidable by constructing 6. 

or periodic points the following definition is useful. 

Definition. For a point x E 2, the shift number (for time t) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S,(x)= c, F(@'x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

O l i O  

the 'net amount of shifting' that takes place during t iterations of @ on x .  If x is 
periodic with period T, we define 

S ( x )  = S,(x). 

The shift numbers S ( x )  of the fixed points are +1, -1, and -1 respectively. S ( x )  
tells us about the behaviour of the map near the periodic orbit. 

Lemma 3. Let x be periodic with period T. Then the eigenvalues of D@' near the 
orbit of x are ns(x) and n-s(z', 

Proof. Let dx E (A U {@))', and define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAldx  as 

Then d(x,  x @ d r )  6 ldxl where d is the usual metric on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, Then if 

it is easy to see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAldxl < ~ - ( r + r m = x  IFII 

@yx @ dx) = @'x @ d,(.' dx. 

In other words, S,(x) measures the amount of shifting that the sequence undergoes 
far away from the DOD and DOE; cells that are never brought within r of the origin are 
simply shifted, not modified, and the dynamics never depends on them. Specifically, 
if x is periodic with period T, 

@'(X @ dx) = x @ ds'"'&. 

Then perturbations to the left or right are shifted away from or toward the origin by 
S(x ) ,  so the eigenvalues are KS("' and nS(") respectively. OED. 

For example, the eigenvalues of the periodic points of this map are 2 and 1/2. 

Theorem 4. The set of periodic points is of non-zero measure iff there exist periodic 
x with S ( x )  = 0. 

Proof. First we prove that there can only be a countable number of periodic points 
x with S(x)  # 0. As in lemma 3, we have that cells sufficiently far from the origin are 
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simply shifted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ( x )  over the course of the orbit, i.e 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl i l> r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ T max IFI. 

But if S(x )  # 0, this means that x must have a periodic head and tail; i.e. x must be 
of the form AbC where b is a finite word of length c w  + T max zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIF(, A and C are 
semi-infinite sequences, and A and C are periodic with wavelength S ( x )  (or a factor 
of S(x ) .  There are only a countable number of such 'rational' sequences. 

Now suppose there is an x with S ( x )  = 0. Only a finite set of cells, of width 
m S w + T max IF(, ever influences the dynamics. Therefore if y coincides with x in 
that region, i.e. d ( y ,  x )  < n-"', y will also be periodic with the same period. To put 
it differently, there is a finite word b of length 1 c m such that all sequences of the 
form AbC are periodic with period T. But this is an open 'cylinder' set P of periodic 
points, with measure 

( @ ' ( x ) ) ~  

p ( P )  = n-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 n-m. 

QED. 

So periodic points with S ( x )  # 0 are isolated, while an x with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(x) = 0 is associated 

To calculate the total measure of all of P's images under @ (all the periodic 
with a block of periodic points of non-zero measure. 

orbits associated with x ) ,  we need the following. 

Theorem 5. Suppose @ is a .l-1 generalized shift, and let P be an open set of 
periodic points x of T, with S(x)  = 0 for all x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE P. Suppose further that F and G are 
constant on P and on all of P's images. Then all of P's images are disjoint, so that 
the total measure of the orbit of P is T p ( P ) .  

Proof Clearly @'P = P. Suppose P n @'P # 0 for some i < T, i > 0. Now since F is 
constant on all of P's images, S, is also, for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ;  but P and WP overlap, so 
Si(P)  = Si(@'P). But then we have 

&.(P) = Si(P)  + Sj(W'P) = 2Si(P). 

In fact, since @"'P n @(n+')iP # 0 for any n, we have by induction 

Snj(P)  = nSj(P) for any n. 

But S,(P) = 0, so S,(P) is bounded by T max IFI; so Sip must be 0. 

3y E (A  U {@})= :Vx E P : @ ( x )  = x  @ y  

Now let x E P. We have Si@)  = 0, so 

where y = G ( P )  (since G is constant on P). From the definition of 'e', it is easy to 
see that 

@ ( x )  = x  @ y  = x  @ y @ y = wyx @ y ) .  

x = x  By = WQ), 

But is 1-1, so 

Then x is of period i < T and we have a contradiction. So all the images are 
disjoint. QED. 



Generalized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshifts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This example does in fact have periodic cylinders: in fact, any sequence of the 
form X0.02‘1Y for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 is periodic. Here are the first few: (the first two are shown in 
figure 5 in the unit square, along with the isolated periodic points). 

cylinder zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.001 
0.oooo1 
0.09  
0.081 
0.0’9 
0.0‘21 
0 . 0 ~ ~ 1  
0.0‘61 
0.0‘9 
0.029 

period 

2 
8 
28 
96 
328 
1120 
382 4 
130 56 

4 0.25 
3.5 0.359 375 
3.43 0.453 125 
3.417 0.533 203 
3.4146 0.W1563 
3.41429 0.659 912 
3.414 22 0.709 717 

445 76 3.414216 0.752228 
152 192 3.4142139 0.788513 

O.O=l 519616 3.4142136 0.819485 
0 . P 1  1774080 3.41421357 0.&15921 

These converge fa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 2+\/;; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

(p(orbit,) = T p ( f i )  = T K d #  = T2-‘Ut”.) 

We see that the time to traverse a distance d grows as 

T a x d  

with K’= 2 + fi in this case. This value of K is so simple that there must be an 
explanation for it. In fact, looking at the system in figure 6, we see that the generic 
behaviour is a fractal build-up to the left of a sort of ‘scaffolding’. Using the labelling 
in that figure, we get the following recurrence relations on the ‘busy times’ (ignoring 
terms linear in i): 

a, = bi_, i a,-, 

bi =ai  f 2b,-t 

where a, and bi approximate B(2i) and B(2i + 1) respectively. If we write 

a, = mbi-, bi = paj 
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F w  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Example 2, showing the fractal build-up to the left. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA portion is magnified and 
labelled, showing the recursion relations in the text. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

we obtain a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= fi and @ = 1 + V??; then 

- 
K = d$ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv 2  f fi . 

As we will see in the next example, this nice scaling is not always available. In 
general, it is not clear that K is algebraic or even computable, even when it exists. 

How can we estimate K in general? Since F and G are constant on P and all its 
images (since they each lie entirely inside one of the map's eight components) we 
know that all its images are cylinder sets of length d. We also know that the D ~ D  and 
DOE are always inside the specified area of the cylinder. But there are only nd 
cylinder sets distinct under the shift, and each one can only be in d - 2r positions 
and still contain the DOD. Then the system can only be in one of (d - 2r)nd different 
states before leaving or falling into a periodic orbit. Since the period cannot exceed 
this number, we have 

T(d )  < (d - 2r)n" so K S n .  (3) 

This also serves as an upper limit to  the 'busy function', B ( d ) .  
Amusingly, although almost every point is periodic, we have the following for 
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the expectation of the period: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= TM(orbitd) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT2p(Pd) = (L) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK2 = m 

d=d, d d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

whenever, as in this case, 

K’ 3 n. 

In the absence of a stronger limit for K than (3), we can expect this phenomenon to 

be fairly common. 
Why is the set of periodic points of measure l? Watching this system’s 

behaviour, we see that ‘barriers’ exist: if we imagine the position of the origin as a 
pointer moving back and forth on the sequence (as the figures are  drawn), there are 
certain environments which it cannot penetrate from certain directions. For 
instance, a 1 surrounded by Os cannot be penetrated from the left; it also cannot he 
penetrated from the right under certain condiduns; see figure 7. 

We make the following definitions. 

Definition. A set S is bounded-recurrent under a map @ if, for any x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE S, the set 
(i:@’x E S}, the set of times it falls back in S, has bounded gaps; i.e., x may leave S, 
hut only for an amount of time bounded by some finite t. 

Definition. A strong barrier on the left (right) is a finite word b such that the set of 
sequences {AbC}, where A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC are semi-infinite sequences and b appears to the 
left (right) of the DOD, is bounded-recurrent under @. 

Fipre 7. The first four periodic cylinders of example 2, with periods of 2,s. 28 and 96. 
We see the operation of the barrier 01, which is always effective on the right and is 
effective of the left if the nearest one to the right of the D ~ D  is an even number of cells 
away. 
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Definition. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA weak barrier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the left (right) with domain D,  where D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc AZ+ is 
a set of semi-infinite sequences of non-zero measure, is a finite word b such that 
the set of sequences AbC where b appears to the left (right) of the D ~ D  and 
C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE D (A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE D )  is bounded-recurrent under zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@. (A strong barrier is a weak barrier 
with d =AZ ' . )  

Then we have the following. 

Theorem 6. Let CP be a generalized shift. Suppose that @ has, on both the left and 
the right, either a strong barrier or a weak barrier b with domain d such that for 
every d.C ( A d )  where d is a finite word extending to the left (right) of the D"D and 
C(A) is a semi-infinite sequence, there exists a finite word U of bounded length such 
that ubd.C E D (A.dbu E D ) .  Then almost every point in A' is periodic under @. 

Proof. Let x E AL. Let the two barriers be bL and bR,  We will treat the one on the 
left. 

With probability 1, any finite word appears an infinite number of times in x to 
the left of the origin: therefore x can be written A,bLC, ,  A,b,C2, etc., where b, 
appears farther to the left each time: i.e., A,+,  C A ,  and C,,, 2 C,. 

If bL is strong, its first appearance suffices to bound the motion. If b ,  is weak 
with some domain D, we need C, E D  for some i. But by hypothesis, even if C, # D,  
there is a finite probability that one of the next occurrences of b,  will be 1u1 cells to 
the left of C, and will in fact be followed by U ;  i.e. that there will be some j with 
C, = ub,C, and so C, E D. The probability of this is n-(l"l+lbLi). If this probability 
fails, the same argument applies to C,, and so on. Since the length of U is bounded 
by some m, the probability of all of these failing is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p lim (1 - n-(m+bl.l))* = 0 
k-- 

where the occurrences of bL are labelled by k. So with probability 1, 

3 i : C ; E D  

The same argument holds for bR. 
So almost all points are bounded on the left and right: if the bounds of the gaps 

in the bounded recurrence are t ,  and t R .  the motion has to stay within an area of 
width d + (rL + t,)max (FI where d is the distance between b ,  and by(.  Then it must 
have a finite period bounded by equation (3). OED. 

The conditions of the theorem are in fact satisfied by this system: 01 is a strong 
barrier on the right, and a weak barrier on the left. Its domain can be studied in 
figure 7. If l".OOC is not in D,  0011".00C is (U = 0); 1".01C is not in D,  but 011".01C 
is (U = E ,  the empty word), Almost any configuration will evolve to one of these two 
subsets; these correspond to the two left-moving fixed points, (1).(0) and (1).01(0), 
moving toward the barrier. 

Note that not all domains of non-zero measure satisfy the condition of the 
theorem; for instance, if D is an open set specified by the values of the sequence at 
the D ~ D ,  nothing can be added on the left to bring a sequence into D if it is not 
already. 
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2.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExample 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As in example 2, but as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA211 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m -1 011 
001 +1 101 
010 +1 111 
011 -1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAooo 
100 +1 001 
101 -1 010 
110 +1 011 
111 -1 001 

This map is also 1-1, and corresponds to the map of the square shown in figure 
8. The simulations shown in figure 9 show highly complex behaviour, including 
intermittent periodicity in the neighbourhood of various periodic points. These show 
up in the 'moving pointer' diagrams as propagating structures reminiscent of 'gliders' 
in cellular automata zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9].  

The first few periodic orbits (observed empirically) are: 

(0)1.1(0) 1 (fixed) +1 
(1).01(0) 1 (fixed) -1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(0)lO. lOl(0) 7 -1  
(0)10.100(1) 7 -1  
(10)0.1m(10) 16 2 
(1o")O. lo" '2( lo") 15 + " n + 1 (for all " 2 1) 

Some of these are visible in figure 9. 
The points in the infinite family given above, starting with the period-16 point, 

are not 'fundamental' in that they are actually generated in some sense from the 
fixed point (O)l.l(O). Close inspection of figure 9 reveals that the period-17 point 
that occurs briefly in fact consists of the fixed point propagating to the right until it 
collides with a 1 (note that its normal environment is a sea of Os), going through a 
complicated transition, and then reappearing, delayed by 13 steps. The fact that this 
particular fixed point can make a transition back to itself after colliding with a 

certain obstacle allows us to write down an infinite number of periodic points, in 

Figure 8. The map 01 the plane corresponding to example 3,  showing the two fixed 
points. 
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M 

I 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L1 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 103m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAio5( io3) 
period- I8 
compound 

Figure 9. A simulation of example 3 with random initial conditions. The fint few 
‘elementary’ periodic points are shown at right. 

which we allow it to propagate arbitrarily far in between collisions. We could even 
use any periodic sequence of gap sizes in between the obstacles. The period-7 
points can also be used to construct more complicated examples. Several questions 

arise here. 
(1) How can we formalize this notion of ‘fundamental’ versus ‘compound 

periodic points? Is there a well defined notion of which periodic point a given 
sequence is in the ‘vicinity’ of, perhaps based on the simplest one agreeing with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx on 
the D ~ D  for a full period? 

(2) Is the set of periodic points dense, so that any sequence is at least 
temporariiy invoived in periodic motion of some period? 

(3) When do such interactions exist that allow families of compound points to be 
constructed, so that an infinite number of periodic points exist? 

(4) Is the number of fundamental points finite, so that the set of periodic points 
can be described in a finite way, using them as a sort of ‘basis’? 

Even for this particular Q, these questions (2). (3) and (4) are still open; (2 ) ,  as 

w e  WUI sec 111 LIK IITXL SBCLLUII, is niiuwii io ua U I I U ~ C I U ~ U I ~ .  IL S C ~ I I I S  I IKCIY L L I ~ L  (J) 

and (4) would be as well, if they could be stated in a well defined way. 
Empirically, this system has no barriers, and no invariant proper subsets. 

In fact, it seems to be ergodic. No proof of any of these statements is presently 
available. 

We have calculated the busy function B ( d ) ,  averaged and maximized over all 

initial conditions for d up to 9: 

:,, ... :...L. * .̂._ :.- , I ._ L >..:,l-L,- r I:, .. ._.L..,I\ 

d B(d)  

1 1  
2 4.5 
3 11.0 
4 18.55 
5 29.22 
6 46.33 
7 70.94 

9 142.61 
n 103.26 

B ( d ) / B ( d -  I )  

4.5 
2.4 
1.686 
1.5752 

1.5312 
1.4556 

1.5856 

i . w n  

1 
16 
33 
74 
133 
244 
443 
634 
883 

16 
2.0625 
2.2424 
1.7973 
1.8346 

1.4311 
1.3927 

1.8156 



Generalized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshifts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA213 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
It is not clear whether or not 

E ( d )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKd 

for some K, as it was in example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. R Durrett (private communication) conjectures 
that all ergodic generalized shifts are essentially diffusive, i.e. 

B(d )  = dZ for large d. 

These systems are extremely difficult to model statistically; they may he thought of 
as a 'random walk in an interacting environment' (RWIE), but except for 'stagnant' 
systems like example 1 it is impossible to take sensible averages. We will see in the 
next section that statistical quantities are either non-existent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor uncomputable in 
general. 

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATuring machines 

3.1. Review 

A Turing machine [lo] is a dynamical system in its own right, but it is rarely studied 
from that point of view. It is visualized as a finite-state machine moving left and 
right on a tape, on which is written a string of symbols in some finite alphabet (we 
can again assume this is (0, 1) without loss of generality). At each time step the 
machine reads the symbol at its present position on the tape and, depending on that 
symbol and on its internal state, 

(I) changes its internal state, 
(2) changes the symbol on the tape at that point, and 
(3) moves one space left or right to its next position. 
If we have some finite set of states S, then, we can describe the Turing machine 

with three functions: 

E , : S X { o , l } ~ S  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F,:s x (0, l}+ (0, 1) 

F3:SX (0, ]}-+{+I, -I}. 

Then as a dynamics on the internal state s E S, the tape T E {O, l}', and the 
machine's position i E B on the tape, we have 

s - f i ( s ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  
?;-+F,(s, 7;) 
i-i + &(s, 7;). 

The set 

9 = S  x (0 , l ) "X E =  {(s, T ,  i)) 

(s, 6, 6. F3) 

is called the set of 'instantaneous descriptions', and we will refer to the quadruple 

as a Turing machine M. 
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The significance of these systems lies in their ability to perform computations: 

Turing showed that they are capable of performing any finitely describable 
calculation, at least according to any method of description anyone has come up 
with. To he more precise, for any finite program P in any existing computer 
language, he it FORTRAN, Pascal or whatever, there exists a Turing machine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=(S, F,, Fz. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) such that its evolution corresponds to the running of that 
program, perhaps with some ratio between instructions in P and time steps in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. In 
fact, mathematicians regard a given calculation as possible (‘computable’) if a 
Turing machine can perform it. 

This property of a class of systems, usually called ‘computational universality’, 
allowed Turing to prove some very powerful results about what can or cannot he 
predicted about a Turing machine’s behaviour. Most important is the ‘halting 
problem’. Suppose we label some of the states in.S as terminal states, representing 
final states of the machine announcing that its work is complete. Then an obvious 
question to ask is: 

Given a Turing machine and an initial instantaneous description, 
can we predict whether it will arrive at a terminal state in a finite 
amount of time, or run forever? 

To put this more sharply, we define the function 

H :  ( M }  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 9- {halts, does not halt) 

to encode the question ‘does the machine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM halt when given the initial instan- 
taneous description I E 9?’ and ask 

Is there an algorithm to evaluate H that is guaranteed to run in a 
finite amount of time? 

Turing’s answer is 

NO 

In other words, 

H :  { M }  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 9- {halts, does not halt} is not recursive. (5 )  

Here we are using the following definition 

Definition (13, 141. An algorithm is recursive if there is a Turing machine that 
performs it that is guaranteed to halt in a finite amount of time. A function is 
recursive if it can be calculated by some recursive algorithm. (If the function is real, 
we require a recursive algorithm which accepts an integer n as input and produces 
the first n digits of the result.) 

We can also define a set A as recursive if there is a recursive algorithm to tell 
whether a given x is in A or not: i.e., if we define the ‘characteristic function’ xA as 

then xA is recursive. 
A little reflection shows that the unsolvability of the halting problem is not 

surprising. I can arrange a program to search through the integers to coun- 
terexamples to Fermat’s Last Theorem, so that it will halt if and only if such a 
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counterexample exists. Then solving the halting problem would he equivalent to 
solving the conjecture itself. If there were a general algorithm for the halting 
problem, mathematics would he very easy. 

Furthermore, it is possible to construct 'universaP Turing machines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM which can 
simulate any other Turing machine N ,  by accepting its description N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (S, F,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, F,) 
in code on its initial tape. The behaviour of these universal machines includes in 
some sense the behaviour of all Turing machines, including itself! Since specifying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*I...:- A"+" n I_.._ +" +,. "- L, ^^ ... ^,I ... ̂  "-- 
LllCll llllll'al " - L a  a n I I U u I I I D  tu q J C C L L J L 1 , ~  all '* .la WG,,, w c  call >'ay 

3M such that H,+,:${halts, does not halt} is not recursive. (6) 

Note the distinction between (5) and (6): (5) says that there is no algorithm that 
works for all M to predict the evolution of a given initial state, while (6) says that 
there are specific M which are unpredictable, even with an algorithm specific to M. 
(There are certainly many M for which a specific algorithm does exist.) A universal 
machine with seven internal states and an alphabet of four symbols [lo] is shown in 
figure 10. 

So some Turing machines are predictable, while some are not. As it turns out, 

this in itself i s  undecidable! In other words, 

{M : H M  is recursive} is not recursive. (7) 
Many problems related to the basic halting problem are also undecidable, such 

as [13]: Does M halt for all inputs? For no inputs? For an infinite number of inputs? 
For a set of inputs of non-zero measure? Do two Turing machines M and N halt for 
the same inputs? In addition, there is no recursive function f (M, x )  that gives an 
upper hound on the number of steps x takes to halt under the Turing machine M (if 
it does halt.) -. 

lne  most powerhi iorm oi the haiting probiem is itice's iheorem. 

Definition. A partial recursive function is a function that can he calculated by a 
Turing machine, with no restrictions on whether or not it halts. In other words, 
suppose we have a Turing machine M: we put it in some initial state with some input 
I on the tape, and let it run. It defines a function FM as follows: if M halts, the 
J G q u V r r L c  "11 ,,.C ,',p n.7 lllr "YLYYL .&#\',, U B I "  .L .L .,U111 1.Y.Ll L 1 . l . l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'M 1" Y I . Y I L . . L I Y  

for that input. Then: 

Rice's Theorem. Let C be a class of partial recursive functions. Then C is not 

recursive unless it is the empty set, or the set of all partial recursive functions, 

"_-..^I-^ _- +ha +a-- ir tho  -.at-..+ F ( I \  snrl if i t  ~ _ . I P I  h m l t a  than F ~ ;Q nsnr ln f i nnA  

In other words, any property that partial recursive functions can have, like being 
1-1, or onto, or having an infinite domain or range, or being recursive, is 

undecidable unless it is trivial (i.e. true for all partial recursive functions or for 
none,) This proves all the undecidahilities mentioned above in one swell foop. 

Corresponding to partial recursive functions, we have a wider class of sets 
containing the recursive sets. 

Definifion. A set is recursively enumerable (RE) I f  there Is a recursive aigorithm (i.e. 
Turing machine) which prints out a growing list of elements in the set, and which 
will eventually print out any given element. In other words, a set A is RE iff it is a 
union of countably many finite sets Ai such that there is a recursive procedure for 
producing each one. 
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3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.-. . . . . . . . . . . . . . . . . . . . . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U 
i 

2 HAITI  

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 10. a map of the plane conjugate to Minsky’s universal Turing machine with 
internal states S = ( I ,  . . . , 7) and tape alphabet (I = (y, 0, 1, A) and the following 
transitions: 

~ ~ ~ 

1 2 3  4 5 6 1  

y OL OL/1 yL y L  yR yR OR 
0 OL yR HALT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyR/5 yL/3 AL/3 yR/b 
1 1L/2 AR AL 1L/7 AR AR 1R 

A IL yR/6 1L/4 1L 1R 1R OR12 

where L and R indicate shifting left and right, and the internal state stays the same 
unless a new one is indicated (reprinted from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]) .  

It then turns out that the domains, ranges, images and inverse images of partial 
recursive functions are RE sets. Thus any non-trivial property of RE sets is 

undecidable by Rice’s theorem. It also turns out that ‘type 0 languages’, the 
languages producible by a finite generative grammar [SI, are identical to RE sets. 

Now in terms of dynamical systems, these questions concern things like basins of 
attraction: for instance, B = { x  :H&) = ‘halts’} is the set of initial conditions that 
end up in the ‘halt’ state, corresponding to  a completed program. These basins are 
arbitrary RE sets; (5) and (6) show that these basins are, in general, non-recursive; 
i.e., there is no algorithm that will tell us, in a finite time, whether or not a point is 
in them. Statement (7) shows that there is no algorithm to tell us whether or not 
there is an algorithm! We see from Rice’s theorem that questions like ‘does B have 
measure greater than p’ or  ‘is B dense’ (in the space of sequences) are also 
undecidable. We will show later on that this represents a kind of chaos qualitatively 
different from that which is usually studied in dynamical systems. 
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We also find that statistical questions about Turing machines are extremely hard 

to answer. The most dramatic case is Chaitin’s number S2 [U], the probability that a 
given universal Turing machine will halt, given random input-this is simply the 
measure of the basin of attraction to the ‘halt’ state. Chaitin has shown that this 
number is uncomputable because it could act as an ‘oracle’ for the halting problem; 
knowing the first few thousand or ten thousand digits would suffice to answer most 
unsolved questions in mathematics! Attempts to average over all possible Turing 
machines with a given number of internal states and tape symbols can succeed only 
up to the smallest universal machine, after which such averages will contain R and 
hence be uncomputable. Thus it is very difficult to speak coherently about a 
‘generic’ or ‘random’ Turing machine. 

The reader may be curious about generalizations of Turing machines: being able 
to move more’ than one space at a time, having more than one tape or tape ‘head, 
moving on a two- or more-dimensional lattice, etc. In fact, the Turing machine has 
remarkable closure properties: all of these seemingly more powerful versions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be 
simulated by a single ordinary Turing machine. This is another manifestation of the 
Turing machine’s universality; it may take a long time, but it is capable of any 
computation whatsoever. 

3.2. The map from Turing machines to generalized shifts 

We now have the following map from Turing machines to generalized shifts. 

Theorem 7. For any Turing machine M, there is a generalized shift zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (F,  G )  
conjugate to M by a map ‘8. 

Proof. We wish to absorb the internal states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS into the tape so that we will have a 
dynamics on the tape alone. Let our alphabet A ’ = S U A  where S is M’s set of 
internal states and A is M’s tape alphabet. Then a state of the Turing machine can 
be mapped onto a sequence a E A’= in the following way: 

SS:$-A’‘:(s, (t ;) ,  i ) *a  =.  . . t j+,.st j t ;+, . . . . 
Then we let the DOD = DOE be {-1,0, l), and define F and G as follows: 

F(a)  = F3(s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 )  
( @ ) . t ’ s ’ ( 4 )  if F(a )  = 1 

G(a)  = { ( @ y . t ; - , t , ( @ )  if F(a )  = -1 

where s’ = F,(s, 1.) and t’ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF2(s, t;). 
Then a little inspection shows that 

M = K’Q‘8. 

as we require. In fact, S and A do not even have to be disjoint for this construction 
to work; so the number of symbols we need in the generalized shift is 

IA‘I = max(lSI, IAI). 

We can then reduce this CJ to a generalized shift on two symbols if we wish by 

lemma 1. QED. 



218 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMoore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
It should be clear that a reversible Turing machine becomes a 1-1 generalized 

shift under this construction. Charles Bennett [12] has shown how to construct for 
any Turing machine, a reversible one which performs the same computations. 
Therefore 1-1 generalized shifts are just as powerful as generalized shifts in general. 

We also have the following. 

Theorem 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAny generalized shift zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ on an alphabet A can be simulated by a Turing 
machine with a number of internal states 

n" -1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IS1 G (IIm FI + 1) - + 2(max IF1 - 1) 

n - 1  

and a number of time steps per time step of CP 

~ / t  s 2(w - 1) + max IF1 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn =(AI and w = I D O D ~ .  

Proof. This is done by constructing a Turing machine which scans the D ~ D ,  

ascertains which of the nw possible states it is in, replaces them according to G, and 
then moves to its next position according to F. Let the Turing machine have the 
following set of internal states, where all U; E A :  

S={r,r , , , r , , , ,  , . . . , r . , . , . . . . ~ . ,  I v a , , a 2 , . . . , u w - , )  

u { w ~ , , w ~ , ~ * ,  . . . , ~ ~ , ~ ~ . , , ~ ~ . ,  l v u , , u * , . . . , u w - , } x ( I m F )  

U {Rz. R,, . . . , R m x m  b, L,, . . . , Lmaxc-~il. 

Then let these states have the following transitions: 

U +1 
U + I  
n +1 

.aw..,a)) G,(a, .  . .a,_,o) - I  

S S  - I  
R, -1 
E, f l  

SI + I  
R I  -1 
Y +1 
n +1 
n -1 
a -1 

These states work as follows: starting in the state r, the machine moves from left 
to right, reading the value of the tape on the DOD. It then goes to the state w G a . .  . cw-,  

where G is the word the D ~ D  is to  be replaced with, and writes it onto the tape 
moving from right to left. It then moves F spaces left or right to its new position 
using the L and R states (if it has more than one step to go) and restarts the loop. 

Then the evolution CP will be carried out in the stated amount of time. OED. 
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3.3. Undecidable properties of generalized shifa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorems 7 and 8 establish that generalized shifts and Turing machines are identical 
in their computational power, since each class can he simulated by the other. This 
allows us to prove the following theorem about the complexity of dynamical sets 
associated with GSS: first we have the following. 

DGnition. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% of sets of sequences is block-arbitrary if for any RE set S there 
exists some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE % and some cylinder set V c Z such that A i l  V is homeomorphic to 
S. 

In other words, the set of sets in % is not completely arbitrary, hut for any RE set 
we can find a member of % homeomorphic to it inside some block. We will use the 
following homeomorphism: if V specifies the cells a-, , . . a,, define 

a,++a,+,+,(i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 0 ) .  

This removes the specified area, and glues the two pieces of the sequence together. 
In particular, if we let V he the area corresponding to the Turing machine's internal 
state as constructed in theorem 7, then H removes it and leaves us with the tape 
sequence. 

Now we can prove the following. 

Theorem 9. The following sets associated with a given generalized shift @ are 
block-arbitrary. 

(1) For any open cylinder set A (except the whole space), the set 

B~ = { X  I 3 t > o : @ k  E A } .  

(2) For any periodic point p ,  the set of x that converge t o p .  
(3) The set of periodic points (in fact, S ( x )  is an arbitrary partial recursive 

function into the integers). 
(4) The set of barriers. 

Proof. Let R be an arbitrary RE set (or type 0 language). Then there is some Turing 
machine M which halts on the set R. We will then show that for each of the sets 
mentioned above there is a generalized shift @ which has R as that set. 

(1) Consider a cylinder set A ;  it corresponds to specifying a certain finite word w 
in the sequence. Map M to a generalized shift in such a way that the sequence does 
not enter A during the running of the program (this is easy-expand the D ~ D  to 
include w,  and use values of the sequence other than w to encode the internal states 
s.) Then use G to add the following transition: simply stamp the word w on the 
sequence when we reach the halt state. Thus @ falls into A if and only if M halts. 

(2) Similarly to (l), hut have the halt state lead into a periodic loop where G 
lays down a periodic pattern on the sequence and Fshifts steadily in one direction or 
the other. (There are techniques to have the Turing machine 'watch itself' for 
periodic behaviour, so we can arrange that M itself never falls into a loop by 
mistake .) 



220 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMoore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(3) Expand the tape alphabet of M from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx T. Let the initial state have 

the same sequence in each component, and let M work on the second component, 
calculating some partial recursive function S from sequences into the integers. If it 
halts with a result, it can then go back to where the original word is written on the 
first component of the tape, and re-copy it S spaces to the right o n  the tape, erasing 
the original; it can then go back and redo the computation. Thus a sequence x will 
periodic if and only if it halts, and it will have a shift number of S ( x )  if it does. 

{T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU U L L L L a L L y  I" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{d,, vu, L I . I I I a "  E L L  ,,,U . I Ia.CLIII IL >,,,,y,y ,c iJL" , r  L l l C  u,,g,rr,'lr ("U 

both components) and move to the right (left) of it. Then a word is a left (right) 
barrier if and only if M halts on it. 

If we look closely, we find that we have proven that as sets of tape configurations 
of a Turing machine, these sets are arbitrary; but we have to specify some initial 
machine state to carry out these programs. Thus when this state is absorbed onto the 
t q e  to form a G S  IS cozstruc!ec! &eve, we wi!! be specifying reme cy!inder se? V.  
This is why, in the GS, these sets are block-arbitrary rather than completely 
arbitrary; we use the homeomorphism from the GS sequence to the tape configura- 
tion defined above. QED. 

( A \  C:-;l-.l.. tn (I\ I...+ i n r t - ~ r l  In+ +I.- mnnh:ma -:-el.. *ha -L.-:--n /-- 

In any case, it is clear that these sets are arbitrarily complicated, since we can 
always find a block of the Cantor set on which they are homeomorphic to arbitrary 

RE sets. 
More specific classes can be identified; for instance, if Q has left and right 

barriers, then a given pair of barriers is associated with a type 1 (context-sensitive) 
language [SI: since the motion of the pointer is bounded, the equivalent Turing 
machine becomes a 'linear bounded automaton', or LBA. 

In any case, we have the following corollaries. 

Theorem 10. The following questions about a generalized shift Q are undecidable. 

dense? Of measure l? Of measure greater than p for a given p? 

set of points converge top? 

l? 

(1) Given a point x and an open set A,  will x fall into A, i.e. is x E BA? Is BA 

(2) Given a point x and a periodic point p ,  will x converge t o p ?  Will a dense 

(3) is sei periodic poinis on a given Dense? Of nieaSuie 

(4) Does Q have barriers? 
(5) Does Q have sensitive dependence, i.e. is Q chaotic? 
(6) What is the form of the busy function B(d )  for large d? Does it exist for all 

d? 

Proof. (1) through (4) follow directly from theorem 9 and Rice's theorem; (5) 
follows from theorem 11 (stated below), which states that Q bas sensitive 
dependence iff it has no periodic x with S ( x )  = 0, and the fact that the set of such x 
is an arbitrary RE set since S is an arbitrary partial recursive function. (6) is then 
intimately related to (4) and (5); for instance, unless Q has sensitive dependence 
B!d)  is undefined for greater than a certain d.  QED. 

These undecidabilities can be thought of as properties of one part of the phase 
space of a FS, or about the return map to V. 

We add a note here about the difficulty of establishing undecidability for certain 
global properties, e.g. the set of periodic points as whole. We would like to remove 
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the phrase ‘on a given cylinder’ from question (3) above, but to do that we have to 
think much harder about the actual dynamics of the Turing machine, as opposed to 
the task it carries out. For instance, imagine a Turing machine which generates the 
binary expansion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn on the tape. Clearly it is not intended to fall into a periodic 
loop, so it has no periodic points that start with the right initial machine state (i.e. in 
the cylinder V). However, some of its intermediate states will involve things like 
keeping track of how many digits it has produced, performing additions and 
multiplications, moving markers on the tape, etc. It is not at all clear that we can 
assure ourselves that these intermediate tasks cannot fall into loops; in fact it seems 
quite likely that they can. Thus periodic orbits could arise from sub-tasks we do not 
really care about; controlling the dynamics of these sub-tasks would be a highly 
non-trivial programming problem. (Showing that global ergodicity is undecidable 
suffers from the same difficulties.) 

3.4. Recursive enumerability and finite-time behaviour 

To clarify the nature of these sets, it is nice to show directly that they are recursively 
enumerable. For the set of periodic points, we simply consider points in order of 
increasing period: I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 (fixed points), f = 2, etc. For each of these finite periods f, 
only a finite number of cells m s w + t max zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIF1 are relevant to the dynamics, as in 
theorem 4. Then we need only consider points of the form AbC, where Ibl= m and 
A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC are each periodic with period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ( x )  s f max IFI; but there are a finite 
number of such points x, each of which we can check individually by iterating Q f 
times and seeing if they’re the same. So we can find all the fixed points, all the 
period-2 points, etc. 

For a basin of attraction of some open set A,  we simply iterate backwards for 
one step, two steps, etc.; at each stage there are a finite number of pre-images 
bounded by p‘ where p s n y  is the maximum index of the map. Then we can find all 
x such that @(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE A, Q’(x) E A, etc. 

So we see that the finite-time behaviour of these systems is recursive; but the 
complexity grows with each time step so that the long-time behaviour is not 
recursive, but only recursively enumerable. Then questions about the long-time 
behaviour are undecidable. This is similar to the behaviour of cellular automata 
[15, 181. 

4. Discussion of unpredictability 

At this point, many readers may not be clear on the nature of these systems’ 
unpredictability, or may doubt that anything different from the usual ‘chaos’ is being 
claimed, In fact it is radically different, in a well defined sense. 

The shift map U is chaotic in that two initially close initial conditions diverge 
exponentially, so that errors in the description or preparation of the system are 
magnified as we follow its evolution into the future. This means that initial data with 
an error of size d serve to accurately predict the system only for a time 

I = log(D/6)/A (8) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD is the size of the system (-1 for the shift) and A is the Liapunov exponent, 
the log of the largest eigenvalue of the map. (For the standard shift on n symbols, A 
is simply logn.) We may call this property sensitive dependence on initial conditions 

However, if the initial data for the shift were known exactly in terms of its 
symbolic description, prediction would be no problem: to know the value of a 
particular cell f time steps in the future, simply look up the cell t spaces to its right. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.-*.+.,:- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIp-cp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAth& :- :m...nrl:..+a ...,.-e--. -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA----,:--.A --#-..LA:--- - - ~  
111 I CUI L I . 1 1  UU..YI L11.D 1.7 LLll ..III..C"IIIIC pL"UGa", 1," C"rrlp,K"LCu L'l,cu,a,,u,,s a,c. 

required. It is the equivalent of a closed-form solution x ( t )  to a differential equation: 
to get x at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 just plug t into the formula. In this sense the shift map is very 
simple and 'unchaotic'. 

Now consider a generalized shift or Turing machine. We have the following 
theorem. 

Theorem 11. A generalized shift 
cylinders, i.e. periodic points x with S ( x )  = 0. 

Proof. We have shown in equation (3) that if the busy function B ( d )  exceeds a 
certain maximum, the system has fallen into a periodic orbit with S(x) =O.  
n.er&re, if no such orhits exigt, z!! i&iz! x. 
Then if between two close initial conditions there is a discrepancy d cells away from 
the origin, it will wander into the DOD in a finite time t = B ( d ) ,  whereupon the 
difference between the two will.be of order 1. 

Specifically, if the initial distance between two sequences is 6, they will almost 
always diverge completely in an amount of time 

t -B(- iog,Sj  (9 
since the size of an error d cells away from the origin is K d  according to the 
standard metric. QED. 

(71. 

has sensitive dependence iff it has no periodic 

pxists and is fi&e for ~ 1 1  

Here we have a more general form of (8); the divergence is suhexponential since 
B ( d )  is supra-linear (recall that B ( d )  = d for the shift) hut the qualitative features 
are the same. So these systems often share this sense of unpredictability with the 
shift map. 

However, these systems also have a much stronger form of unpredictability; even 
if the initial conditions are known exactly, the long-time behaviour is undecidable. 
You can always simulate the evolution step-by-step to see what will happen, hut you 
can never 'jump ahead'; there is no short-cut. In other words, sensitive dependence 
means you need more and more information to go into the future; this 'algorithmic 
chaos' or 'complexity' means you need to do more and more complicated 
computations. 

For instance, theorems 9 and 10 establish that even if the symbolic description of 
a point is known exactly, it is undecidable whether or not it is periodic, whether or 
not it lies in a certain basin of attraction, etc. Sets of periodic points and attractors 
then become non-recursive sets, with a kind of structure much more complex than 
fractals or multifractals. Even qualitative properties like sensitive dependence (and 
presumably ergodicity) become undecidable, so that no finite classification of 
generalized shifts according to these properties can every exist. (These questions can 
be completely answered for certain subclasses of generalized shifts, hut only if we 
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restrict ourselves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso much that they are incapable of computation: e.g. the stagnant 
ones.) 

In physical terms, the behaviour of these maps is hard to pin down because they 
have no well-defined scaling behaviour. This means that at any scale in time or in 
resolution of the phase space, there is always more qualitative behavior just around 
the corner; no finite experiment is sufficient to divine the nature of the basins of 
attraction or of the set of periodic points. This again corresponds to the fact that 
these sets are recursively enumerable but not recursive; you can produce longer and 
longer lists of points or orbits, but no regularity will ever emerge and allow you to 
caputre the entire set in one swell foop. 

These properties clearly put these systems at a more ‘chaotic’ level than systems 
like the horseshoe map or baker’s transformation, even though they can he 

components and with everything rational. 
If the reader still doubts, she may consult figure 10, where we exhibit a map of 

the plane that is equivalent to a universal Turing machine designed by Minsky [lo]; 
it has a basin of attraction B consisting of those finite programs that eventually halt! 
This is clearly not a set with a simple description, like a fractal or multifractal. It 
would not be hard to construct a point, with finitely described, rational coordinates, 
which searches for counterexamples to Fermat’s Last Theorem as it evolves. Is it in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B or not? Also consider the fact that if you knew what fraction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ of initial points 
ended up in the ‘halt’ area, you would be able to answer any finitely stateable 
existence problem of mathematics. 

‘Vy..,Y’..’II r.-nr-rnnt*,i 2s pie..$uise m2pn =f !he sA,j& a finite ncmber of 

5. Time series 

In theorem 9, we showed that periodic points and basins of attraction are arbitrary 
recursively enumerable sets, since they correspond to the set of initial configurations 
on which some Turing machine will halt. Their properties are thus the properties of 
the beginning and end of a computation, i.e. the domain and range of some partial 
recursive function. It is this kind of property that Rice’s theorem refers to, and 
identifies as undecidable. 

However, many properties dealing with the Turing machine itself, as opposed to 
the computation it eventually performs, are decidable. (Recall from above the 
difficulty with proving undecidability for various global properties that involved the 
Turing machine’s internal workings.) In fact, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtime series generated by a Turing 
machine (for instance, its internai state, or the vaiue of the tape at the current 
position of the ‘head‘) are described by a somewhat simpler kind of language, the 
context-sensitive languages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8]. Among other things, they are recursive, i.e. there is 
an algorithm to check a string for membership. 

We can immediately see how such an algorithm would work; the Turing machine 
can only move a distance f in time t, so to check whether it can produce a certain 
time series we just have to simulate n‘ different initial conditions for f steps and see 
if it does or not. Thus the time it takes to check whether a series of length t is 

producible or not is bounded by 

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< tn‘ 
although there are clearly more efficient methods than just simulating every possible 
hitla! mndition a!! the way through, 
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We can also characterize the set of time series as the intersection of two 

context-free languages, which we’now define [8]. 

Definition. A Push-Down Automaton (PDA) is rather like a Turing machine, in that 
it consists of a ‘box’ with a finite number of states and a ‘tape’ it can use as memory; 
but the tape is only a one-sided ‘stack’ and the box is only allowed access to the end 
of it. It can read the top character, and can add or remove a finite number of 
characters. The other difference is that its dynamics on the set of instantaneous 
descriptions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS x A L +  

is not deterministic, but is controlled by characters on an ‘input tape’. The set of 
words on this input tape that cause the PDA to begin and end with an empty stack is 
then a context-free language. 

With coding tricks like those used in the previous section, we can absorb the box 
onto the stack, and produce a (non-deterministic) dynamics called a generalized 
one-sided shift (COS). Like a GS, depending on the values of the sequence on some 
finite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADOD it may be shifted left or right, and a finite number of cells may be changed 
or added at the end. The itinerary defined by the sequence’s values on the O ~ D  is 
then a context-free language. (See [5] for a discussion of GOSS and one-dimensional 
maps that are conjugate to them.) 

Now suppose we would like to know the time series produced by some GS Q, 
partioned by the DOD. We give a construction of two COSS, QL and aR, such that the 
intersection of their two languages is the time series language of @. We do this as 
follows: each COS keeps track of one side of the sequence. When the D ~ D  moves to  
the right (say), QR shifts its one-sided sequence to the left, removing cells, and QL 

shifts its one-sided sequence to the right, adding more cells to simulate the 
introduction of new cells that were previously to the right of the DOD. Then the 
intersection of the allowed itineraries of QL and aR is just the set of allowed 
itineraries of Q. 

As an example, we find two context-free languages whose intersection is the 
language generated by example 1 above. The two GO% are as follows: 

QR: .oa H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.a, . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo-.xoa 

QL: . la c) .a, .oa H .x la .  

(Here a is a one-sided sequence, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E (0, 1) is a new digit.) This shows how Os 
turn to 1s and shift left, and 1s turn to Os and shift right. These two GOSS are identical 
to each other if we switch the 1s and Os. 

Now we ask what itineraries QR (say) generates. If we start with .la, new digits 
will be brought in until a 0 appears; suppose n 1s appear first. Then the itinerary 
consists of Is for n steps, and we are  left with .O”+’a. Now the sequence will shift 
right for m steps, during which time the itinerary consists of Os, until the first 1 in a 
is brought to the D ~ D .  But clearly m 3 n + 1, or m > n. So we have a cycle of 1s 
followed by a larger number of Os. So the language generated by ’& is 

(oT’~” ,  . . I si <si+’ ,  i even}. 

By the symmetry between QL and QR, we known that QL produces the same 
language, but with the Os and 1s reversed; i.e. 

( 0 ~ ~ 1 ~ ~ ~ .  . . I s i<s iC1 ,  i odd}. 
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The intersection between the two is then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{CV’lSW’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, 

the same language that was discussed above. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6. Smooth maps and flows 

So far our maps have been defined on blocks of the Cantor set, with gaps in between 
on which they are undefined. We can close these gaps as we did in the figures, but 
then they become discontinuities between blocks. We add a few comments here 
about ‘filling in’ these gaps and making the map smooth, and embedding the 
resulting map in a Row on some manifold. 

Theorem 12. For any invertible COS ‘3, there exists a C” diffeomorphism f on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARZ 
whose action on a Cantor set is conjugate to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp. 

pruof, First, any GOS Is io one @! whose oou is eniireiy io ihe righi of 
the origin. This is because we can shift the DOD to the right by  conjugating with the 
shift map: 

cp‘ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo-‘cpd. 

Then, using Q’, lemma 0 gives us a piecewise linear map 6 on the Cantor set in the 
unit square. But since the DOD is to the right of the origin, the only dependence of F 
and G is on the y coordinate; so the map’s components are all horizontal blocks. 
Call them the b,. 

Now the images of the bj with F >  0 are single blocks of the Cantor set, squished 
horizontally; but those with F < 0 are squashed vertically and broken into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2? blocks 
by the reverse shift. We need to extend the map smoothly across the vertical gaps in 
the b, so that their images are simply connected. 

We can do this most easily if we use the horseshoe map as our conjugacy in 
lemma 0. It can he extended to a diffeomorphism in a disk, as shown in figure 11 
(here we have turned it on its side, to shift to  the right). Then any iterates of 
horizontal blocks are disjoint if they are disjoint on the Cantor set; i.e. if they do 
not overlap as blocks, the gap images connecting them will not overlap either. This 
is proved as follows: consider two iterates o-Pbj and u-qbj, with (say p < q. Then 
iterate the diffeormorphism backwards (shift to the left) until you have b, and 
u--(q-p)bt These are clearly disjoint if they are disjoint as blocks, since b, has no gap 
image to overlap b,’s gap images. 

So we have successfully smoothed the map across the vertical gaps in the b,; now 
the only gaps left are those between the b,, which are horizontal strips. We can 
extend the map to these as shown in figure 12, by stretching them around until they 
connect the top and bottom edges of the blocks’ images. The blocks’ images 
themselves do not overlap, since the COS is invertible; and the gaps’ images can 
always be drawn without any overlap, for the following reason. Label the blocks’ 
images B j ,  I = 1,. . . , k from top to bottom, and label the gaps’ images Gj, 
i = 1, . . . , k - 1. Then draw the gaps’ images in order, connecting E ,  to E,,  B,  to 
B,, etc. At each stage we have to connect the bottom edge of Bj to the top edge of 
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Figure 11. ( a )  The honeshoe embedded in a 
diffeomorphism of a disk. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b )  Two disjoint images of 
horizontal blocks (one after one iteration, the other after 
two). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. ..... ........,...., .,,..,............ .. ........ .., .. .................... ... ... ... .... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. Stretching the map to connect the blocks. 
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E,+, ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwithout crossing the already defined image 

or any of the other E,. But Ai and all the E, are homeomorphic to  disks; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso there is 
no difficulty in finding a path through the remaining space (the complement of their 
union) to connect the next gap. Clearly this can be done as smoothly as we want, up 
to C". 

Now what we have is a smooth map ffrom the unit square zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[0,1J2 into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARZ, since, 
like the horseshoe, some of the gaps will have to fall outside the square. We can 
extend this to a neighbourhood of the square by thickening the image, until it gives 
us a diffeomorphism of a disk D into itself; we can extend this outside with any map 
that matches it smoothly on the boundary, to all of RZ or just to a diffeomorphism of 
a larger disk D' onto itself. QED. 

We can turn this into a flow in R3: 

Corollary. Since the map we just constructed is homotopic to the identity, there 
exists a smooth flow in a torus D' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS' which has f as its PoincarC section; this can 
be extended to a Row in R3. 

For non-invertible GSS, we need one more dimension. 

Theorem 13. For any GS CP, there is a 4-manifold M and a smooth flow U on M such 
that the Poincare map of the attractor is conjugate to CP,  

Proof. First we need to smooth the map. If the GS is not invertible, we lose nothing 
by stretching the gaps over the blocks, since the blocks overlap anyway. Thus we 
can smooth the map using some algorithm like the following: 

First of all, make the map continuous by linearly interpolating in the gaps. In a 
gap between two blocks, the map f is defined along two opposite edges; in between 
we can write 

f(xt Y )  = x f ( L  Y )  + (1 -x) f (O,y) 

where x and y are affine variables defined to vary between 0 and 1 in the gap. In the 
corner gaps between four squares, the map is defined in the corners: then write 

f ( x , y ) = x y f ( L  l)+x(l-y)f(l ,O)+(l-*lyf(O, 1)+(1-x ) (1 -Y) f (o>  0). 

Then we have extended f to a continuous function throughout the square. 
Now extend f to a smooth function by smoothing the above construction. If we 

extend the blocks some distance into the gaps first, we can cap the discontinuities in 
the first derivative with some integrated sigmoid function, which can be as smooth as 

we like (up to C); see figure 13. 
Thus we have obtained a smooth non-invertible map f in RZ. Now define a 

branched ?-manifold M' on RZ X [0, 11 by identifying 

( ( x ,  Y L  0) - (f(A Y ) .  1). 

Define a semiflow on this manifold by dzldf = 1 where z is the third coordinate; 
clearlyfis the PoincarC section of this flow at z = 0. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. Smoothing the gaps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby linear interpolation, then 
extending the blocks somewhat into the gaps, then smoath- 
ing with a sigmoid function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We can then thicken this branched manifold by some amount zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE in a fourth 
direction, and contract along an invariant foliation in that direction to  cause the 
branches of M' to approach each other exponentially. This gives us a smooth flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU 

on some 4-manifold M, in which M' is an collapsing of the attractor along the stable 
foliation. QED. 

Increasing the dimension by 2 in this way is just like the Lorenz flow: a 
non-invertible 10 map is the Poincar6 map of a flow on a branched 2-manifold, 
which approximates the attractor of a flow in R3. (Finally, if we wish to embed M' in 
R" for some n,  we can do it with n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 9 according to standard embedding theorems 
1191, although the construction hardly seems convoluted enough to require a 
dimensionality higher than 4 or 5.) 

In any case, extending the map through the gaps will re-inject them into the 
square, thus increasing the non-wandering set in a complicated way. 

We should mention again here that invertible GSS are capable of all the same 
computations that non-invertible GSS are [12]; for instance, the universal Turing 
machine shown in figure 10 could, with a considerable amount of work, be encoded 
as an invertible G S .  So: 

Corollary. There exist smooth flows in R3 that are conjugate to universal 
computers. 

7. Conclusion 

It would he nice if we could establish that some physical systems do in fact possess 
this kind of unpredictability. Several comments are in order here. 

Firstly, dynamical systems with many degrees of freedom that are computation- 
ally powerful, such as neural nets or cellular automata [16), have already been 
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discussed in physicst. Some cellular automata have been shown to have long-time 
behaviour not characterized by regular or unambiguous context-free languages [17], 
and several computationally universal (i.e., having power equivalent to a universal 
Turing machine) cellular automata are known, such as the 'game of life' [21] as well 
as some one-dimensional examples [22]. Various types of neural networks are 
known to be computationally universal [lo], and neural networks do occur in 
nature; one has written this paper, using another one built by some more. Some 

other physical systems known to be computationally universal are gases of hard 
spheres [23] and electrical circuits. It is fair to say that no one knows whether 
hydrodynamics, e.g. the Navier-Stokes equation, is capable of computation. 

These systems, on.the other hand, require only two dimensions, or three for a 
flow; they encode an entire computer into two coordinates, by using the symbol 
addresses of a point in a Cantor set as the 'tape' of a Turing machine. The main 
consequence of this is that..these systems are extremeiy fragiie, since any 
perturbation will destroy an infinite number of cells on the tape. They are not 
hyperbolic since initial conditions diverge sub-exponentially$, and so they are not 
structurally stable; whether their codimension in some sense is finite or infinite 
remains to he explored. (Certainly those with periodic blocks have codimension 
infinity, since some iterate of the map is the identity on an open set.) However, 
many non-hyperboiic sysiems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoccur in Xaiure. Finaiiy, ii is worih mentioning ihai 
the 30 flows constructed above can be expressed as billiards, or particle motion in a 
smooth (C") 3~ potential [25]. 

Chart. Comparing the two types zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof chaos discussed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 
1 ype of chaos Sensitive dependence Aigoriihmic compiexity 

Systems with many degrees the weather neural nets 
of freedom 

Kind of unpredictability errors grow undecidability 

Unpredictable if you have imperfect knowledge perfect knowledge 

of the inilial conditions 

Low-dimensionai systems   ID maps 
2 2 D  Rows 
(non-invertible) 

Maps on sequences shift 

Languages produced regular (type 3) 

Sets produced fractals 
I" " I.".:"" ..,"..."".A", ". 
Statistics well behaved 

Kind of understanding can finitely 
describe and classify 

2 2 ~  maps 

2 3 D  flows 

generalized shift, Turing machine 

unrestricted (type 0) 

non-recursive sets 

uncomputahle 

not much-have towork 
hard on each system 

,..r..-i.il.l.. ~"....."~..,.,~, \.--"ll..Cl, C'.Y'..C.'YIL., 

t l n  fact, we could use the Smale homeomorphism to  construct maps of the plane conjugate to 
one-dimensional cellular automata; however, these would bc nowhere differentiable. except for CA$ 

equivalent to shifts 120). 
$ It is possible to show directly using Turing machine methods that, if a GS has an overall linear drift zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto 
one side (e.g. if the DOD drifts to the right) then it cannot do anything useful or interesting, i.e. it can only 
produce regular languages. But this corresponds to the hyperbolic case: so hyperbolic css have a Markov 

partition [h]. 
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In addition to these issues, other directions for further work include: 
(1) Formalizing the questions about periodic points raised at the end of section 

2.3. 
(2) Discussing the formation of the generalized shift structure through a series of 

bifurcations. This is likely to be quite difficult; it is already known that an infinite 
number of non-universal routes to chaos exist in two-dimensional maps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[24]. If the 
set of periodic points i s  non-recursive, the bifurcations are likely to be also. 

dynamics, such as billards or optical systems. 
(3) Fiiidiiig simple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfii;i:i-bimensiana! phq’sica! systems Fkh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa geiieiakzed s:lifi 

We close with a chart comparing the two types of chaos we have discussed. 
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