
GENERALIZED SIDELOBE CANCELLER FOR

MAGNETOENCEPHALOGRAPHY ARRAYS

John C. Mosher1, Matti S. Hämäläinen2, Dimitrios Pantazis3, Hua Brian Hui3, Richard C.
Burgess1, and Richard M. Leahy3

1 Cleveland Clinic Neurological Institute, Epilepsy Center, Cleveland, OH USA

2 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA

3 Signal & Image Processing Institute, University of Southern California, Los Angeles, CA USA

Abstract

In the last decade, large arrays of sensors for magnetoencephalography (MEG) (and

electroencephalography (EEG)) have become more commonplace, allowing new opportunities for

the application of beamforming techniques to the joint problems of signal estimation and noise

reduction. We introduce a new approach to noise cancellation, the generalized sidelobe canceller

(GSC), itself an alternative to the linearly constrained minimum variance (LCMV) algorithm. The

GSC framework naturally fits within the other noise reduction techniques that employ real or virtual

reference arrays. Using expository human subject data with strong environmental and biological

artifacts, we demonstrate a straightforward sequence of steps for practical noise filtering, applicable

to any large array sensor design.

Index Terms

Array signal processing; magnetoencephalography; spatial filters; adaptive arrays

1. INTRODUCTION

We review briefly the linear model, approximations, and statistical assumptions commonly

used in MEG processing [1], [4], [6]. Our fundamental linear model is simply

(1)

where d is the m × 1 vector of measured data, measured at m external channels for 1 time

sample, L is the m × p matrix representing the lead-field model, relating m external

measurements to the amplitudes of p current dipoles throughout the source volume of interest,

j is the p × 1 vector of the signed amplitudes of the dipoles, and n is the m × 1 vector which

represents additive “noise” (anything not explicitly in the model Lj).

For each sensor in the array, we calculate the lead field matrix L for a dense mesh of thousands

of current dipoles within the brain volume (cf. [7] for a review and discussion on head model

calculations). The number of sensors is about 100–300, and L therefore represents a system of

highly underconstrained system of equations, m « p.

Because MEG and EEG are extracranial measurements made at a distance from the neural

sources, fundamental quasistatic electromagnetics limit the amount of information that can be
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recorded by these roughly helmet-like arrays of sensors. The density of the sensors is effectively

redundant, such that L has a very high condition number, and we can in general create a

surrogate overconstrained matrix A that represents the lead field matrix, with corresponding

linear parameters x representing the sources in the surrogate model. Since we are focussed on

data filtering and not source estimation, the use of a surrogate head model A is particularly

appropriate. We will discuss a method for forming A in the Results Section. The combined

total array collects data for n time slices to yield the spatio-temporal data matrix D, modeled

as

(2)

We assume that both source j and noise n can be considered random vectors with known first

and second order moments. We may specify or estimate the first and second moments of n

with the assumption that E(n) ≡ 0 and E(nnT) ≡ Cn. Similarly, we may specify or estimate

either E(jjT) ≡ Cj or E(ddT) ≡ Cd, and both are assumed zero-mean for convenience here. We

make the common assumption of independence between signal and noise, linking the two

covariances into the model of data covariance,

(3)

We assume these matrices are decomposable and invertible as , and

.

In many arrays, a specific physical subset of the array is designated as a reference array,

typically placed at a distance from the head in order to reduce the possibility of recording neural

activity. We will designate the other portion of the array closest to the head as the primary

array.

2. METHOD

2.1. The Generalized Sidelobe Canceller

The high-dimensionality of the MEG array allows us to exploit the overconstrained head model

A. For the first step, because A is not of full row-rank, we can easily design its left null space

operator, ŪA. We apply this spatial “blocking” operator to the data in order to synthesize the

reference time series,

(4)

In other words, the result is a spatio-temporal virtual reference time series Dr devoid of any

desired neural activity in the head model A. This matrix does, however, contain a subset of the

linear combinations of the noise sequences in the rows of N.
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In the second step, we find a linear fit of the temporal patterns between the reference time

series and the original data, i.e., we model a linear relationship between the rows of D and

Dr through a reference weighting matrix Wr as

(5)

where E is the error in this model. The weights are fit as an ordinary least-squares estimation

between the synthetic reference and full array,

(6)

The result is an estimation of the noise-only sequences in the data, . To complete this

step, we then filter the original data by removing this estimate,

(7)

In this expression, we recognize the idempotent projection operator

(8)

where V is the orthonormal matrix spanning the space of . A compact expression for the

GSC estimate is therefore

(9)

Thus a virtual reference time series, void of any desired neural activity, has been used to create

a subspace of the noise, and the data matrix has been temporally projected away from this space

using the orthogonal complement projection operator π⊥. Because the reference time series

are synthesized using knowledge of the source model, this technique is termed a generalized

sidelobe canceller (GSC), introduced by [3], first applied to electrophysiological data by [8],

and further demonstrated for MEG in [5]. See [13] for an excellent overview of this and other

beamformer techniques.

2.2. Other Methods

The GSC generates a virtual reference array void of neural activity, then adapts the data in this

array to the primary array. In [14], we effectively generated (6) from a physical reference array

known to be absolutely void of neural signals, yielding a multiple sidelobe canceller [13]. In

most other physical reference arrays, however, the proximity of the sensors to the brain may

allow neural activity to be recorded, and therefore direct application of (6) to such data could

result in the cancellation of desired signals. Hence such systems generally provide the user

with non-adaptive reference weights, presumably fitted from empty room data, i.e. (6) is
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generated from noise priors. In signal space projection (SSP) [11], the dominant noise basis

vectors are used to parse the data array into virtual primary and reference arrays, again yielding

a form of (6) based on subspaces of noise priors. Finally, in noise whitening, we premultiply

the data by  to invertibly suppress the stronger noise spaces, yet allow strong signals to

pass, as compared to SSP that truncates this space.

We next exploit the use of the overconstrained head model. The generalized least-squares

solution for X is found as the ordinary least-squares solution of the noise-whitened data

(10)

If (3) is true, i.e. Cd = (ACxAT + Cn), then we may identically substitute the data covariance

to yield

(11)

also known as the linearly constrained minimum variance [3], [12]. If the sample covariance

is formed from D and used in (11), then one can show that F = AX̂ is identically (7). Finally,

signal space separation (SSS) and its temporal extension (tSSS) [9], [10] use multipolar models

of A and the space outside of A to fit the data, with tSSS followed by a partial adaptation of

(6). Due to the limited space here, the proofs of these latter statements will be provided in a

future publication.

3. RESULTS

We demonstrate the effectiveness of the proposed algorithm by applying it to human data

acquired in the presence of substantial external and human artifacts. The data were acquired

in a relatively lightly shielded room in an urban environment, such that the MEG

magnetometers recorded substantial external disturbances. Additionally, the human subject in

this example had lightly magnetized implants and dental work that created additional artifacts

inside the shielded room.

The data were acquired on an MEG instrument comprising 102 magnetometers and 204 planar

gradiometers. We intentionally restricted ourselves here to just the instrument’s smaller

magnetometer-only array, in order to demonstrate the applicability of this procedure to other

relatively modest-sized arrays. The data were recorded at 1000 samples per second, with an

analog high pass of 0.3 Hz and an analog low pass of 333 Hz. In post processing, the data were

properly decimated to 200 samples per second for 40,600 samples total.

The subject’s left and right median nerves were stimulated in a standard somatosensory evoked

field protocol, for 266 repetitions for each hand over a total of about 200 seconds. The

continuously recorded raw data are shown in Fig. 1. The data were dominated by large external

magnetic disturbances.

Just prior to the human experiment, two minutes of empty room data were acquired to establish

the noise covariance prior. An eigenanalysis of this data revealed a strong rank eight noise
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space. We filtered the raw recordings by projecting away from this subspace, using the

conventional SSP approach [11]. Separately, we whitened the data using the entire noise

covariance matrix. The results of the whitened data are shown in Fig. 2, which were similar to

the SSP-filtered data (not shown for brevity). The filtered data were now visibly dominated by

a periodic signal of approximately four to five seconds wavelength, consistent with the

respiration rate of the subject. Apparent movement artifacts were also visible at about 125,

175, and 200 seconds in the data.

With no additional artifact rejection of this data, we directly averaged the 266 trials of whitened

data to yield the results shown in Fig. 3. Although an average response is becoming apparent,

much artifact remains, which we conjecture is due to the strong respiration and movement

artifacts.

We next built a relatively simple head model of a single sphere set 50 mm above the subject’s

coordinate origin, defined in the typical manner by connecting the subject’s pre-auricular points

and intersecting this line from the nasion. We synthesized a rough head shape of dipolar grid

points by radially mapping the sensor centers inwards for several different depths, yielding

4,080 dipolar grid points spanning the interior volume of the helmet. For each point we

generated the corresponding unconstrained dipole model, yielding a head model 102 × 12,240

columns [4], [6], [7]. A singular value decomposition of this matrix suggested a truncation of

rank 70 was adequate, where the singular values were nearly four orders smaller than the

dominant values. Thus the virtual reference array was of 32 dimensions, generated from

remaining dimensions of the truncated head model.

The data were broken into seven second segments of 1400 data points, to yield 29 contiguous

non-overlapping segments. This length was chosen based on experiences of [10] and [14],

which suggest lengths of several seconds. Longer sequences in general are too dynamically

changing for the adaptive filter to work as well, as we observed with this data set in separate

tests not shown here. The GSC was applied otherwise unaltered to each segment of data, using

(9). Processing time was only a few seconds on standard laptop. The resulting filtered data

were now visibly whitened with little apparent artifact (not shown for brevity), and the same

averaging was again applied to this filtered data to yield the results of Fig. 4. We now observe

a dramatically smoother averaged data set, and the left and right median nerve responses are

qualitatively visible in the figure. To confirm these results here as simply as possible, we

separately ran MaxFilter (Elekta Neuromag) [2], [10], employing all 306 channels of data with

a multipolar head model and temporal extensions (i.e. tSSS), to achieve nearly the same average

waveforms (not shown for brevity).

4. Summary

Our demonstration here was kept intentionally simple, both for brevity and to highlight the

primary parameters of the proposed adaptive filter. The head model was a simple spherical

model with an approximate volume grid inside the helmet, and the model was truncated to rank

70 of 102 total dimensions. Future work will use more realistic head models and source

locations, with more explicit justification of the truncation to build the virtual reference array.

The data were parsed into non-overlapping segments of seven seconds; future work will further

examine methods for selecting the segment length in a more continuous sequence of

overlapping segments. As briefly discussed above, the GSC method can be shown in a natural

framework of physical reference sensors, virtual reference sensors, noise whitening and

maximum likelihood (generalized least-squares) estimation, each with similar assumptions of

signal or noise spaces and signal-to-noise ratios, and the results of each of these methods can

be compared.
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For expository purposes, our example data here was the relatively well-known somatosensory

evoked field response, locked to a known stimulus trigger. Of greater interest is the detection

of interictal spikes, transient epileptic events that are often difficult to detect in raw recordings,

even after whitening.
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Fig. 1.

Raw recording from 102 magnetometers for 200 seconds, while 266 stimuli were applied

separately to each left and right median nerves. Data were visibly dominated by external

disturbances outside a lightly shielded room.
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Fig. 2.

Using empty room data, the raw data were whitened. Data were now dominated by respiration

artifacts, due to metal implants in subject. Transient movement artifacts by the subject were

also now visible.
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Fig. 3.

After whitening, average of the left and right median nerve data, from 266 stimuli. The left

hand was stimulated at T=0, and the right hand was stimulated at T=375 ms. The responses

are visible 25 – 50 ms after stimulus.
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Fig. 4.

After filtering with the GSC algorithm, average of the same data. The two median nerve

responses are now seem more clearly across the array, and the data are visibly smoother.
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