Generalized Skewing for Functions with Continuous and Nominal
Attributes

Soumya Ray
David Page

SRAYQCS.WISC.EDU
PAGEQBIOSTAT.WISC.EDU

Department of Computer Sciences and Department of Biostatistics and Medical Informatics, University of Wis-

consin, Madison, WI 53706

Abstract

This paper extends previous work on skew-
ing, an approach to problematic functions in
decision tree induction. The previous algo-
rithms were applicable only to functions of
binary variables. In this paper, we extend
skewing to directly handle functions of con-
tinuous and nominal variables. We present
experiments with randomly generated func-
tions and a number of real world datasets to
evaluate the algorithm’s accuracy. Our re-
sults indicate that our algorithm almost al-
ways outperforms an Information Gain-based
decision tree learner.

1. Introduction

Decision tree learners, such as ID3 (Quinlan, 1983) or
CART (Breiman et al., 1984a), use greedy strategies
for tree induction. Given a set of examples and a par-
tial tree, a new split variable is selected based on a
criterion such as GINI gain or Information Gain, such
that the partitioned data has improved class label pu-
rity. Subsequently, this choice is not revisited. This
strategy is computationally efficient, and often yields
good results. However, it is known to suffer from the
problem of “myopia”. This refers to the situation that
arises when, due to the nature of the target function,
the split criterion is unable to discriminate between
variables that are relevant and those that are not. In
these cases, the learning algorithm makes a random
choice, which is often incorrect.

The traditional method of handling myopia is through
depth-£ Lookahead (Norton, 1989), which exhaustively
searches over the next k choices that can be made by

Appearing in Proceedings of the 22™% International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

the learning algorithm, and makes the best choice over
this sequence. This approach has the disadvantage
that the size of the search space is exponential in £,
and the search has to be repeated at each choice point.
Therefore, it is only feasible for very small values of .
Moreover, it is also prone to overfitting (Murthy &
Salzberg, 1995).

Our previous work introduced an approach called
skewing (Page & Ray, 2003; Ray & Page, 2004), which
attempts to solve the myopia of tree learners by modi-
fying the split selection function. Myopia is at its worst
for “hard” Boolean functions. For these, no variable
has gain even given a complete data set (one copy of
each possible example), or given an arbitrarily large
sample drawn according to the test distribution. The
skewing approach relies on the following observation.
Hard functions are hard only for some distributions. If
we can obtain data drawn according to a different dis-
tribution, or skew the data we have, hard functions can
become easier to learn. Given a large enough dataset,
if the “skewed” distribution differs significantly from
the original, it is possible to isolate the relevant fea-
tures from the irrelevant ones, even when the target
function is hard. Unlike Lookahead, the skewing al-
gorithms introduced in previous work incur only ei-
ther a constant or O(n) runtime penalty (depending on
which skewing algorithm is used) over a standard tree
learner, such as ID3 using Information Gain, where n
is the number of variables. We applied the approach to
learn decision trees, and observed significant benefits
in accuracy compared to ID3 using Gain when learning
hard Boolean functions. Further, on average, skewing
did not hurt the accuracy of ID3; consequently, on ran-
domly generated functions, it resulted in a small but
consistent improvement in performance.

Our previous work, however, was restricted to func-
tions described by Boolean attributes. In principle,
nominal and continuous variables can be transformed
into binary-valued attributes using methods such as 1-

Generalized Skewing for Functions with Continuous and Nominal Attributes

of-N or binning. Indeed, we evaluated skewing on data
sets from the UCI machine learning repository (Blake
& Merz, 1998) by first transforming the data into bi-
nary valued attributes using such techniques. How-
ever, such transformations have potential problems.
Information is lost when continuous variables are dis-
cretized using these techniques. Further, such trans-
formations can greatly increase the dimensionality of
the data. We have previously noted that the accu-
racy of the skewing approach tends to decrease as the
dimensionality of the problem grows. Finally, these
transformations impose strong dependencies among
the transformed attributes, which were absent in the
original data. These dependencies also can lead tree
learners astray. Because of these problems, we would
like the skewing approach to apply directly to func-
tions described by nominal and continuous attributes.
In this paper, we describe an extension to the previ-
ously proposed skewing algorithm that achieves this
goal. We present experimental results for our algo-
rithm on several real-world data sets, as well as re-
sults on randomly generated hard functions that are
described by nominal and continuous variables. Our
results indicate that our algorithm is able to effectively
learn hard functions with nominal and continuous vari-
ables from modest amounts of data.

2. Review of the Skewing Approach

The motivation for the skewing procedure (Page &
Ray, 2003) lies in the following observation. Consider a
uniformly distributed dataset over a hundred features,
T1,...,T100, Where the target function is two variable
exclusive-or, say xgg @ x199- This task is clearly very
difficult for a top-down greedy tree learner; no variable
will have non-zero gain even given a complete data set,
or truth table. Now, suppose the data are distributed
differently from uniform as follows: all variables are
independent as in the uniform case, but every variable
has probability i of taking the value 0. In this case,
it can be shown that with a large enough sample the
class distribution among examples with x99 = 0 will
differ significantly from the class distribution among
examples with g9 = 1, in such a way that xgg will
have gain, and similarly for x199. On the other hand,
every variable other than zgg or x1¢qg is likely still to
have nearly zero gain. Hence unless a highly improba-
ble sample is drawn, a greedy tree learning algorithm
will choose to split on either x99 or 2109, at which point
the remainder of the learning task is trivial.

Following the example above, we want to reweight the
data so that it exhibits significantly different frequen-
cies. However, known methods of reweighting, such

as boosting (Freund & Schapire, 1997), or methods of
resampling, such as bagging (Breiman, 1996), do not
achieve this (Page & Ray, 2003). Instead, we reweight
by picking a “favored setting”, 0 or 1, for each vari-
able. This setting is picked uniformly at random and
independently for each variable. Then, the weight of
each example where variables match their favored set-
tings is multiplied by a constant for each matching
variable. This reweighted data effectively simulates a
sample from a different distribution, but it can mag-
nify idiosyncracies in the original data. Therefore, we
repeat the process some constant number of times with
different favored settings for the variables, and search
for a variable that consistently has gain. The selected
variable is likely to be a part of the target function.
Yet, in contrast to lookahead, the run-time has been
increased only by a small constant.

When the total number of variables grows large, the
accuracy of the preceding algorithm drops. Because
weights are being multiplied across all variables, with
many variables, some data points get extremely high
weights due to chance. The algorithm then overfits
these data points. To address this, we proposed an al-
ternative called “sequential skewing” that skews based
on one variable at a time (Ray & Page, 2004). Sequen-
tial skewing incurs a O(n) run-time penalty over Gain,
in contrast to the constant time penalty incurred by
the original algorithm. However, for high-dimensional
problems, we observed that sequential skewing was
more accurate than the original algorithm.

3. Generalized Skewing

The algorithms described above are applicable to
binary-valued variables only. In this section, we de-
scribe how the idea of hard function extends to func-
tions described over continuous variables. Then we
describe how we extend skewing to handle this case.
Next, we describe our approach to the nominal case.

3.1. Continuous Variables

When examples have continuous variables, algorithms
such as C4.5 (Quinlan, 1997) and CART (Breiman
et al., 1984b) determine a set of possible splitpoints
from the data for every such variable. They then con-
sider partitioning the data into two sets based on the
criteria * < s and x > s, for every continuous vari-
able z and every splitpoint s. The (z,s) combination
with the highest gain is then selected. The concept
of hard functions—those for which relevant variables
show no gain—arises in this continuous setting in a
straightforward way. Consider a function such that
Pr(f = 1|z < s) = Pr(f = 1) for every continuous

Generalized Skewing for Functions with Continuous and Nominal Attributes

Figure 1. A hard function over two continuous variables.
The function is defined by f = (x1 - 22) > 0. For every
possible splitpoint for x1 or x2, about half the examples less
than the split are positive while half are negative, and the
same is true for examples greater than the split. Note that
in real-world problems, there are also likely to be irrelevant
variables, not shown here.

variable x and every possible split s. Such a function
is shown in Figure 1. “Chessboard” functions are fa-
miliar examples of such functions. In such cases, the
correct (x,s) pair has gain only by chance according
to measures like Information Gain or GINI Gain.

We can generate some such hard functions as follows.
Let each continuous variable take on values in (—1,1)
with the correct splitpoint at 0, and map values greater
than 0 to 1 and values less than 0 to 0. This maps an
example over continuous values to an example over
Boolean values. Now if the Boolean valued examples
are labeled according to a hard Boolean function, then
the corresponding labels over the continuous examples
creates a hard function as well. Note that this proce-
dure implies that each Boolean hard function can be
used to generate infinitely many hard functions over
continuous variables. This procedure will not, how-
ever, generate many other hard continuous functions,
such as those with multiple splitpoints for each axis.

A complication arises with hard continuous functions,
such as chessboard functions, that does not arise with
hard Boolean (or nominal) functions. Since in practice
we have only a finite training sample, for any vari-
able z, relevant or irrelevant, a splitpoint close enough
to the maximum or minimum value for z almost al-
ways shows gain. To see this, let z be a continuous
variable, and suppose without loss of generality that
the example with the highest value for z is positive.
Assuming no other example takes exactly this same
value for x, splitting between this value and the sec-
ond highest value will yield a pure node and hence
provide non-zero gain. If the example with the second
highest value for x happens to be positive also, the
gain will be yet higher. These “spurious splits” are

25

05

I — -
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Random Variable x

Figure 2. Beta distributions with a = 4 and b = 8 (solid
line) and with a = 8 and b = 4 (dashed line). Larger values
of a and b result in a higher peak and stronger skew.

unique to the case of functions described by contin-
uous variables. Therefore, hard continuous functions
are especially hard to learn for greedy tree learners,
because not only do the correct splitpoints not show
gain, some spurious splitpoints almost always do. In
other words, these functions are hard to learn even if
no irrelevant variable is present.

Applying the sequential skewing approach to functions
defined over continuous variables is not as straight-
forward as the case for Boolean variables, because
the relevant splitpoints are unknown. If they were
known, this case would be identical to the case of func-
tions described by Boolean variables. We could make
the distribution around a split s different by choos-
ing “greater than s” as the “favored setting”, and
reweighting accordingly. Since the correct splitpoint
is unknown, we attempt to alter the input distribu-
tion so that it is asymmetric about ewvery splitpoint.
Further, we wish to down-weight the (possibly) spuri-
ous splits — those with extreme values for the variable.
An appropriate distribution that has these properties,
and is familiar in machine learning, is the g distribu-
tion with parameters a and b such that a # b. The
probability density function for the beta distribution,
for any a,b > 0, is defined on = € (0,1) as follows:

F(a’ + b) a—1

———T —)0t
OO

Bap(T) =
Here I'(y) = [;° a¥"'e "dx. Figure 2 shows two ex-
ample g distributions. Other asymmetric unimodal
distributions may work as well, provided they have rel-
atively low probabilities near the extreme values, but
we have not tested other distributions.

To skew based on a (distribution, we rank the values
of the continuous variable x in our data. The ranks

Generalized Skewing for Functions with Continuous and Nominal Attributes

are then translated uniformly into the (0, 1) interval.
An example is reweighted with the value of the 8 pdf
at the translated rank of the value taken by variable
z in that example. Translating the ranks instead of
values ensures that outliers in the data will not affect
the spread of the weights. Further, in practice, we use
two distributions to reweight the data: (3,5 and G 4.
This is for two reasons: first, if the true splitpoint is
translated to the mean of 3, s, it is possible for it to not
show gain. Using two distributions prevents this effect,
since the mean of 3, is not the same as that of 5 .
Second if the true splitpoint is translated to a value
close to 1, we may not discover it using (Bqp,a < b,
since it down-weights this region.

3.2. Nominal Variables

When considering a nominal variable as a split vari-
able, one possibility is to consider the entropy before
and after partitioning the data on every value taken
by the variable, as done by C4.5. This approach is
biased towards variables with many values; therefore,
in practice, an ad-hoc corrective factor is introduced
based on the number of values a variable can take.
The combined split criterion is known as GainRatio
(Quinlan, 1997). A second possibility is to consider
possible subsets of values of the variable, and intro-
duce binary splits of the form z € S and x ¢ S, where
S is some subset of values for x. This is the proce-
dure followed by the CART algorithm. In this case,
the subset S of values which gives the highest gain for
some nominal variable can be computed using an effi-
cient algorithm (Breiman et al., 1984b). In either case,
a variable x shows gain on the data iff for some value
v, Pr(f = 1|z = v) # Pr(f = 1). In our algorithm, we
adopt the procedure followed by CART. We note that
this procedure can also be used by the C4.5 program
if invoked with a special command-line argument.

The concept of Boolean hard functions extends to
functions over nominal variables in a straightforward
way. Consider a function f such that Pr(f = 1|z; =
vj) = Pr(f = 1) for every variable x; and every value
v;. In such a case, none of the variables will show
any gain (according to either the GainRatio criterion
or the CART criterion), and the function will be hard
to learn for a greedy tree learner when variables irrel-
evant to the target are present. An example of such
a function is shown in Figure 3. Some such nominal
hard functions can be generated using the following
procedure. Assume that each nominal variable takes
on 2r values. Divide these values into two random sets
each of size r. Map one of the sets to 0 and the other
to 1. This establishes a mapping from an example
over nominal values to an example over Boolean val-

color shape f
blue circle 0
blue ellipse 0
blue square 1
blue rectangle || 1
green circle 0
green ellipse 0
green square 1
green rectangle || 1
red circle 1
red ellipse 1
red square 0
red rectangle || 0
magenta circle 1
magenta ellipse 1
magenta square 0
magenta | rectangle 0

Figure 3. A hard function over two nominal attributes,
color and shape. The function is defined by f = color €
{blue, green} @ shape € {circle, ellipse}. For every subset
of values for color or shape, half the examples are positive
and half are negative, as is the case for f, so that neither
attribute has gain. Note that in real-world problems, there
are also likely to be irrelevant variables, not shown here.

ues. Now if the Boolean-valued examples are labeled
according to a hard Boolean function, then the corre-
sponding labels over the nominal examples creates a
hard function as well. Note that this procedure im-
plies that each Boolean hard function can be used to
generate many hard functions over nominal variables.

When given a function over nominal variables, we can
employ the sequential skewing approach as follows. As
in the Boolean case, we would like to calculate Gain
under a data distribution that is significantly differ-
ent from the input. One way to obtain (i.e., simulate)
such a distribution is by altering the input distribu-
tion Pr(xz = v) for each variable z and value v. We
first choose a random ordering over the values of the
variable, x, we are using to skew. Each value is then
mapped to a “weighting factor” inversely proportional
to the rank of that value in the random ordering cho-
sen. Weighting factors are normalized so that they
sum to 1. An example is then reweighted with the
weight of the value taken by z in that example. If
x has only two values, this procedure is identical to
the sequential skewing algorithm (Ray & Page, 2004)
with the parameter s = % In this special case, one re-
ordering is sufficient (the other order would produce
the same results). However, when = has more than
two values, and the distribution of values for z is not
uniform in our data, the ordering of values chosen the
first time may not produce a significantly different dis-
tribution. Therefore, the ordering and weighting pro-
cedure is repeated a small constant number of times,
with a different ordering of values chosen each time.

Generalized Skewing for Functions with Continuous and Nominal Attributes

To further ensure a difference, one of the orderings we
use is antagonistic to the input, i.e., the values are or-
dered so that the least prevalent gets the most weight.
After reweighting, we follow the sequential skewing al-
gorithm (Ray & Page, 2004) to combine the results
over different distributions and pick a split variable.

To apply this algorithm in practice, we may need to
deal with missing values. When calculating gain, we
follow the approach of C4.5: we estimate a distri-
bution over the values of the variable from the data
points where the values are observed, and use this to
weight the gain. We may also need to reweight data
points where the variable we are skewing has its value
missing. In our approach, we assign these points the
“expected skew”. For nominal variables, this is the
distribution over the variable’s values multiplied by
the weight associated with each value. For continuous
variables, this is the value of the 8 pdf at its mean.

4. Experiments

In this section, we present experiments comparing the
performance of a tree learner using the Information
Gain criterion and the Generalized Skewing criterion
for selecting split variables. We first compare the ac-
curacy of these methods on synthetic data, followed
by results on various real-world datasets from the UCI
repository. For all experiments, the base tree learner
is comparable to C4.5 with the “subset-splitting” op-
tion. For the synthetic data experiments, no prun-
ing is needed since there is no variable or label noise.
For the real-world data, we greedily post-prune the
trees based on their accuracy on a held-aside valida-
tion set. The 3 distribution parameters input to the
Generalized Skewing algorithm were a = 8 and b = 16.
For nominal variables, values were reordered 5 times.
These parameters were chosen before the experiments
were performed and were held constant across all ex-
periments. An important direction for future work is
to measure the algorithm’s sensitivity to these choices.

4.1. Experiments with Synthetic Data

In experiments with synthetic data, we test the con-
tinuous and nominal variable components of the Gen-
eralized Skewing algorithm separately. To test our ap-
proach for continuous variables, we generate examples
described by 30 and 100 continuous variables. Each
variable takes on values uniformly in (—1,1). We ran-
domly select 6 of these variables, and set the “true
splitpoint” for these variables to 0. Each example
is translated to a Boolean assignment by identifying
z; < 0 with 0 and x; >= 0 with 1 for the 6 relevant
variables, and labeled according to a Boolean function

over 6 variables. If the labeling function is hard, the
corresponding function over continuous variables will
also be hard. We generate independent train and test
sets using this procedure for each target function we
test. Each test set has 10,000 examples, and we vary
the size of the train set to generate a learning curve.

Figures 4 and 6 show learning curves measuring ac-
curacy using the two split criteria as the size of the
training sample is varied, when the examples are la-
beled according to Boolean functions drawn uniformly
at random from the set of all Boolean functions. Fig-
ures 5 and 7 show the results when the labeling func-
tions are drawn uniformly at random from the set of
Boolean functions over 6 variables that are hard for
greedy tree learners. For each sample size, we average
over 100 runs, each with a different target and with a
different sample of the specified sample size. From the
figures, we observe a consistent modest improvement
in accuracy over the standard Gain algorithm when
the target is drawn uniformly at random, while there
is a large improvement when the target is hard.

Next, we test our algorithm for nominal variables. Ex-
amples are generated according to a uniform distribu-
tion over 30 and 100 nominal variables. Each nominal
variable can take on 2r values, r randomly chosen from
1 to 5. We partition the values of 6 randomly chosen
variables into two equal sized disjoint sets, Sy and S7.
Each example is translated to a Boolean assignment
by identifying values in Sy with 0 and values in S
with 1. Each example is then labeled according to a
Boolean function over 6 variables, where each Boolean
variable corresponds to a chosen nominal variable. If
the Boolean function labeling the examples is hard to
learn from examples described by Boolean variables,
the corresponding function described by nominal vari-
ables will also be hard to learn for a greedy tree learner.
As before, we generate independent train and test sets
using this procedure for each target function.

Figures 8 and 10 show learning curves for the accuracy
of the tree learner using the two split criteria as the
size of the training sample is varied, when the labeling
functions are drawn uniformly at random from the set
of all Boolean functions. Figures 9 and 11 show the
corresponding results when the labeling functions are
drawn uniformly at random from the set of Boolean
functions over 6 variables that are hard for greedy tree
learners. In addition to the two methods being tested,
we also report the accuracy of ID3 using the sequential
skewing algorithm (Ray & Page, 2004), when examples
are described by 30 nominal variables. Since this algo-
rithm is only applicable to Boolean variables, we first
transform each training sample so that each nominal

Generalized Skewing for Functions with Continuous and Nominal Attributes

100

90 r

Accuracy (%)

60 -

50

Figure 4. Random Continuous Targets, 30-v examples

100

90 r

Accuracy (%)

60 -

50

Figure 5. Hard Continuous Targets, 30-v examples

100

90 r

Accuracy (%)

60

50

Figure 6. Random Continuous Targets, 100-v examples

100

90 r

Accuracy (%)

60

50

Figure 7. Hard Continuous Targets, 100-v examples

80 r

70+ AT

80 r

70

Gain/Generalized Skewing
Gain ——

200 400 600 800 1000
Training Sample Size

Gain/Generalized Skewiﬁg
Gain -

/

80 -

70 t

200 400 600 800 1000
Training Sample Size

Gain/Generalized Skewing
Gain -

80 r

70

200 400 600 800 1000

Training Sample Size

Gain/Generalized Skewiﬁg
Gain -

200 400 600 800 1000
Training Sample Size

variable with N values is represented by N Boolean
variables (the 1-of-N transformation).

From the figures, we observe that the skewing ap-
proach with nominal variables is able to outperform
the standard Gain-based approach both when the tar-
gets are randomly drawn and when they are hard.
The improvement in accuracy is large when the target
is hard, and is smaller, though consistent, for a ran-
domly drawn target function. We also observe that
the sequential skewing algorithm, while outperform-
ing Information Gain on hard targets, does not do
well on random targets. Further, the accuracy im-
provement for this algorithm on hard targets is lower
than that of the proposed algorithm. This behavior is
likely caused by the fact that the sequential skewing
algorithm is working on higher dimensional data sets
as compared to the Generalized Skewing algorithm or
the standard Gain criterion (~180 variables on aver-
age, compared to 30 for the others). When the target
is hard, we observe that there is some variability in
the accuracy of Generalized Skewing algorithm. This
variability seems mainly to be a consequence of sample
size. With a training sample size of 5000 examples, we
observed that the Generalized Skewing algorithm ob-
tained an accuracy of 96 &= 4% in the 30-variable case,
and 90 £ 10% in the 100-variable case.

We have also run the Generalized Skewing algorithm
successfully on small “Chessboard” functions with
multiple splits per axis. This result has limited practi-
cal significance, but it indicates that the proposed al-
gorithm can successfully handle functions that would
be very hard to learn with standard tree learners.
Thus, we conclude that, in the ideal (no noise) case,
given modest amounts of data drawn according to a
uniform distribution, our approach is almost always
able to recover the target function, even when the tar-
get is hard for a standard decision tree learner. Fur-
ther, it scales well to high dimensional problems —
there is only a small drop in observed accuracy as the
example sizes are increased from 30 to 100 dimensions.

4.2. Experiments with Real World Data

In this section, we present the results of experiments
on a number of real-world data sets. Among our
data sets, we chose several where tree induction al-
gorithms and logistic regression are known to perform
poorly (Perlich et al., 2003). Note that we do not
know if the target function is hard for any of these
data sets. However, the fact that greedy tree induc-
tion algorithms and logistic regression (which employs
a linear inductive bias) do not have very high ac-
curacy on some of them indicates that it is possible

Generalized Skewing for Functions with Continuous and Nominal Attributes

100

90 r

Accuracy (%)

60 |

50

8oL

70 £ i

Gain/Generalized Skewing
Binarized Sequential Skewing -
Gain -~

Training Sample Size

500 1000 1500 2000 2500 3000

Figure 8. Random Nominal Targets, 30-v examples

100

90 r

Accuracy (%)

60 |

50

80 r

70

Gain/Generalized Skewing

/

Binarized Sequential Skewing -~

Gai /

500 1000 1500 2000 2500 3000

Training Sample Size

Figure 9. Hard Nominal Targets, 30-v examples

100

90 r

80

Accuracy (%)

60 -

50

Figure 10.

100

90 r

Accuracy (%)

60

50

70

80 r

70

Gain/Generalized Skewing
Gain

Training Sample Size

Random Nominal Targets, 100-v examples

500 1000 1500 2000 2500 3000

Gain/Generalized Skewind
Gain

500 1000 1500 2000 2500 3000

Training Sample Size

Figure 11. Hard Nominal Targets, 100-v examples

that a subfunction in the target (or the target itself)
may be hard. The datasets we use are: Contracep-
tive Method Choice (CMC), German Credit (German),
Cleveland Heart Disease (Heart), voting-records (Vot-
ing), pima-indians-diabetes (Diabetes), breast-cancer-
wisconsin (BCW), Glass, Promoters, Yeast, Abalone,
Credit and Spam from the UCI repository (Blake &
Merz, 1998); Internet Shopping (Int. Shop.) and In-
ternet Privacy (Int. Priv.) from previous work (Perlich
et al., 2003); and ribosome binding site prediction in
E. coli (RBS) (Opitz & Shavlik, 1996).

We compare standard Gain and Gain with Generalized
Skewing. We use 10-fold stratified cross-validation (ex-
cept Promoters and Glass, which are very small, where
we use 3 folds) and report the average accuracy of each
algorithm and the size of the tree constructed by each.
We also report the ratio of the time taken by Gener-
alized Skewing to the time taken by Gain to induce a
tree on each data set. To investigate whether there is
any benefit in applying the skewing approach directly
to functions over continuous and nominal variables, we
also report the accuracy obtained by Gain and sequen-
tial skewing, each working on a binarized version of
each data set. This version was obtained by first bin-
ning each continuous variable into 16 bins, and then
representing each nominal variable with v values using
[log, v| binary variables. These results are shown in
Table 1.

From Table 1, we observe that Gain with Generalized
Skewing outperforms standard Information Gain in all
but 3 cases. Further, in all but 4 cases, the General-
ized Skewing algorithm constructed a tree that was
smaller than the standard algorithm (sometimes much
smaller). In one case (Promoters), both methods con-
structed identical trees in all iterations. While the in-
dividual accuracy differences are not significant, using
a sign test across datasets, we find that the General-
ized Skewing algorithm is significantly different from
Gain at the 95% confidence level. Further, General-
ized Skewing always induces a tree within a factor of
5n of the time taken by standard Gain, as predicted,
where n is the number of attributes (the factor 5 arises
from the number of times each nominal variable is
skewed). Comparing Generalized Skewing to sequen-
tial skewing, we observe that Generalized Skewing has
improved accuracy in all cases but one. Though se-
quential skewing is able to outperform Gain on bina-
rized data in most cases, it often does not do even as
well as standard Gain. Thus, we conclude that if the
data contains continuous or nominal attributes, it is
preferable to handle them directly, using Generalized
Skewing, rather than first binarizing and then employ-
ing sequential skewing.

Generalized Skewing for Functions with Continuous and Nominal Attributes

Table 1. Accuracies and tree sizes of Gain (G) and Gain with Generalized Skewing (GS) on real-world data sets. Also
shown are accuracies of sequential skewing (SS) and Gain (BG) on the binarized versions of each data set, and the time
taken by Generalized Skewing to induce a tree for each data set, relative to the same time for Gain.

Data Set Accuracy (%) Tree size (Nodes) | Time
Ratio
GS G SS BG GS G GS/G
Glass 82.28 81.64 78.04 74.77 6.4 6.6 2.4
BCW 94.83 94.80 93.57 92.42 14.5 14.3 1.1
Promoters 78.30 78.30 74.70 74.70 15.0 15.0 1.0
Credit 84.93 84.78 84.64 84.64 11.8 225 11.8
RBS 83.48 81.73 82.31 81.30 20.6 23.6 25.6
Heart 75.25 74.92 74.59 72.94 23.8 23.8 3.7
Voting 96.09 95.40 96.32 95.63 20.0 24.0 9.6
Diabetes 72.08 72.00 72.01 72.14 31.5 35.2 12.3
German 74.20 72.50 72.50 71.10 57.1 2.7 63.0
Spam 92.39 92.13 85.35 85.35 96.6 96.9 25.6
Abalone 77.28 76.00 75.46 75.10 92.1 120.2 10.1
Yeast 69.95 69.41 68.40 66.71 167.6 177.6 10.5
Int. Priv. 63.87 64.42 63.33 63.32 207.0 179.8 40.0
CMC 69.79 67.35 64.71 63.54 147.6 217.1 14.1
Int. Shop. 66.33 66.68 65.04 64.74 384.6 410.4 27.2

5. Conclusion

We have extended the skewing approach to handle
hard functions over nominal and continuous variables.
Experiments with synthetic and real data demonstrate
that the new Generalized Skewing algorithm is usu-
ally more accurate than standard Information Gain,
while also constructing smaller trees. A primary di-
rection for future work is to test the skewing approach
in biomedical domains where we expect that hard func-
tions are likely to occur. To do this, we are incorpo-
rating this algorithm into a Bayesian Network learning
framework, that we can use to learn genetic regulatory
networks from data.

Acknowledgements

The first author was supported by NIH Grant 1RO01
LMO07050-01 and by grants from the University of Wis-
consin Graduate School. The authors wish to thank
the anonymous reviewers for their helpful comments.

References

Blake, C., & Merz, C. (1998). UCI repository of machine
learning databases.

Breiman, L. (1996). Bagging predictors. Machine Learning,
24, 123-140.

Breiman, L., Friedman, J., Olshen, R., & Stone, C.
(1984a). Classification and regression trees. Monterey:
Wadsworth and Brooks/Cole.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J.
(1984b). Classification and regression trees. Wadsworth
International Group.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic
generalization of on-line learning and its application to
boosting. Journal of Computer and System Sciences, 55,
119-139.

Murthy, S. K., & Salzberg, S. (1995). Lookahead and
pathology in decision tree induction. Proceedings of the
Fourteenth International Joint Conference on Artificial
Intelligence (pp. 1025-1031). Morgan Kaufmann, San
Francisco, CA.

Norton, S. (1989). Generating better decision trees. IJCAI-
89 (pp. 800-805). Los Altos, CA: Kaufmann.

Opitz, D. W., & Shavlik, J. W. (1996). Generating accu-
rate and diverse members of a neural-network ensemble.
In D. Touretzky, M. Mozer and M. Hasselmo (Eds.), Ad-

vances in neural information processing systems, vol. 8,
535-541. Cambridge, MA: MIT Press.

Page, D., & Ray, S. (2003). Skewing: An efficient alterna-
tive to lookahead for decision tree induction. Proceedings
of the 18th International Joint Conference on Artificial
Intelligence. Morgan Kaufmann, San Francisco, CA.

Perlich, C., Provost, F., & Simonoff, J. S. (2003). Tree In-
duction vs. Logistic Regression: A Learning-curve Anal-
ysis. Journal of Machine Learning Research, 4, 211-255.

Quinlan, J. (1983). Learning efficient classification pro-
cedures and their application to chess end games. In
R. Michalski, J. Carbonnel and T. Mitchell (Eds.), Ma-
chine learning: An artificial intelligence approach. Palo
Alto, CA: Tioga.

Quinlan, J. (1997). C4.5: Programs for machine learning.
Kaufmann.

Ray, S., & Page, D. (2004). Sequential skewing: An im-
proved Skewing algorithm. Proceedings of the 21st In-
ternational Conference on Machine Learning. Morgan
Kaufmann, San Francisco, CA.

