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GENERALIZED SPACE FORMS

NEIL N. KATZ AND KEI KONDO

Abstract. Spaces with radially symmetric curvature at base point p are
shown to be diffeomorphic to space forms. Furthermore, they are either isomet-
ric to Rn or Sn under a radially symmetric metric, to RPn with Riemannian
universal covering of Sn equipped with a radially symmetric metric, or else
have constant curvature outside a metric ball of radius equal to the injectivity
radius at p.

The study of radial sectional curvature on pointed Riemannian manifolds yields
generalized Toponogov comparison theorems or generalized Alexandrov convexity
theorems in [1],[2],[6] and [9]. Radially symmetric metrics on Rn or Sn are used as
model spaces taking the place of spaces with constant curvature. Specifically, these
model spaces have metrics of the form dt2 + f2(t)dΘ2 in radial coordinates where
f(0) = 0 and f ′(0) = 1. Additionally, in the case of Rn, f(t) > 0 for all t > 0 and
for Sn, f(`) = 0 and f ′(`) = −1 with f(t) > 0 for t ∈ (0, `). Other results with
lower bounds on radial sectional curvature can be found in [10], [11] and references
therein.

In this note we show that the more general class of spaces with symmetric ra-
dial curvature (defined below) all admit metrics with constant sectional curvature.
Furthermore, they are isometric to either a model space (which we call radially
symmetric), to RPn with a radially symmetric Sn as a Riemannian cover or have
constant sectional curvature outside a metric ball of radius equal to the injectiv-
ity radius (Theorem 3). In this way the model spaces are a generalization of space
forms which are used as models in the original Toponogov comparison theorem. The
theorem is a kind of converse to a result of R.E. Greene and H. Wu ([7] Proposition
4.2).

The authors would like to thank Katsuhiro Shiohama for suggesting the prob-
lem and for helpful discussions. The authors are also grateful to Yukio Otsu and
Yukihiro Mashiko for their valuable comments.

Throughout this note (M, g) will denote a smooth, complete, Riemannian man-
ifold of dimension n≥ 2 and dg(· , ·) its distance function. Fix a point p ∈ M and
let ` := sup{dg(p, q) | q∈M}. A tangent vector v 6= 0 is radial to p if there exists
a minimal geodesic γ : [0, a]→M with γ(0) = p and γ′(a) = v. We say that (M, g)
has symmetric radial curvature k at p if there exists a function k : [0, `) →R such
that for any tangent vector v ∈ TqM radial to p and any other vector w ∈ TqM
linearly independent from v the sectional curvature Kg(v, w) = k(dg(p, q)).
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For all v∈SpM := {u∈TpM | ‖u‖g = 1}, we will denote by ρ(v) the distance to
the cut locus in direction v, and the interior set U := {tv ∈ TpM | 0 ≤ t < ρ(v)}.
The cut locus of p will be denoted by Cut(p). For a constant κ, we will write
snκ(t) = κ−1/2 sin

√
κ t when κ > 0, sn0(t) = t, and snκ = |κ|−1/2 sinh

√
|κ| t for

κ < 0. Henceforth we adopt the convention that all geodesics have unit speed
unless specifically stated otherwise in which case they will have constant speed.

First we prove some simple facts about metrics with radially symmetric curvature
and then prove our main lemma. Finally, we give a proof of the theorem.

Lemma 1. If (Mn, g) has symmetric radial curvature k : [0, `) →R at p, then the
following hold.

(i) The function k is smooth on [0, `).
(ii) If γ1, γ2 : [0, a] →M are minimal geodesics emanating from p and Y1, Y2 are

Jacobi fields along γ1, γ2, respectively with ‖Y1(0)‖g = ‖Y2(0)‖g, 〈Yj , γ′j〉g =
0 (j = 1, 2), and ‖Y ′1(0)‖g = ‖Y ′2(0)‖g, then ‖Y1(t)‖g = ‖Y2(t)‖g for all
0 ≤ t ≤ a.

(iii) Let f : [0, `)→R be the unique solution to the differential equation f ′′+kf = 0
with initial conditions f(0) = 0 and f ′(0) = 1. Take polar coordinates (t,Θ)
on Rn and define a metric h = dt2 + f2(t)dΘ2 on B(0, T ) for t < T =
sup{r > 0 | f(t)>0 ∀t∈(0, r)}. If we fix an isomorphism I :Rn →TpM , then
V = I−1U ⊂ B(0, T ), and expp ◦ I|V :V →M \Cut(p) is an isometry.

(iv) If n ≥ 3 then (V, h) defined in (iii) has the property that for any unit vec-
tors v1, v2 ∈ TxV with 〈v1, v2〉h = 0 and 〈vj , ∂t〉h = 0, for j = 1, 2 then,
〈Rh(∂t, vj)∂t, vj〉h = k, 〈Rh(v1, v2)v1, v2〉h = λ, and 〈Rh(v1, v2)v1, ∂t〉h = 0,
where λ = (1 − (f ′)2)/f2. Furthermore, the sectional curvature of any plane
lies between the two values k and λ.

Proof. There must exist a minimal geodesic γ : [0, `)→M with γ(0) = p. Let E be
any parallel unit field along γ with 〈E, γ′〉g = 0. Then Kg(E(t), γ′(t)) = k(t) for
all 0 ≤ t < ` and (i) follows.

To show (ii), let X be a parallel unit field along γ1 with 〈X, γ′1〉g = 0. If n ≥ 3 we
have that for any parallel unit field Y along γ1 such that {X,Y, γ′} are orthonormal,
〈Rg(γ′1, X+Y )γ′1, X+Y 〉g = 2K(X+Y, γ′1) = 2k(t), hence, 〈Rg(γ′1, X)γ′1, Y 〉g = 0.
Therefore Rg(γ′1, X)γ′1 = kX . Similarly, the same relation holds along γ2. It is
easy to show this holds also when n = 2 and (ii) follows quickly.

Pick x ∈ I−1U and let v = Ix and q = expp v. Set γv(t) = expp(tv) and fix
a parallel unit frame field {E1, . . . , En} along γv with E1 tangent to γv. Take β
to be a minimal h-geodesic from the origin to x. Then Rh(β′, Z)β′ = kZ for any
perpendicular field Z along β. Whence if {E1, . . . , En} is a parallel frame field along
β, fEj is a Jacobi field for any j. We have that for any v∈U , (d expp)v(w) = Y (1),
where Y is the unique Jacobi field along the geodesic γv(t) = expp(tv) such that
Y (0) = 0 and Y ′(0) = w. Thus, the Jacobi fields along geodesics emanating from p
satisfy the same equation as those emanating from 0∈(B(0, T ), h). It follows from
a well known argument that expp ◦ I|V is an isometry.

Finally, (iv) follows from standard calculations using the Gauss and Codazzi
equations and the fact that f ′′ + kf = 0.

The metrics defined in Lemma 1(iii) above give complete manifolds either when
M is non-compact and f > 0, in which case M is diffeomorphic to Rn, or else if
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M is compact and f ′(r) = −1 where f(r) = 0 is the first zero, in which case M is
diffeomorphic to Sn.

Lemma 2. Let (M, g) be a complete n-manifold with symmetric radial curvature
k : [0, `) →R at p such that a := inj(p) < `. Then there are no points conjugate to
p at a distance less than `. Furthermore, for any q∈Cut(p) if b := dg(p, q)∈(a, `),
then k′(b) = 0.

Proof. From Lemma 1(ii) it follows that there are no points with distance to p
greater than the distance to the first conjugate point and the first claim follows as
` = sup{dg(p, q) | q∈M}.

The proof of the second claim will be by contradiction. Suppose that k′(b) 6= 0.
Then for some δ0>0 we have |k′(t)| > 0 for all t∈(b− 2δ0, b+ 2δ0). We will choose
a geodesic γ : [0, `) →M emanating from p, minimal on [0, b] with γ(b) = q, and
construct a vector field Y along γ|[b−δ,b+δ] for some 0 < δ ≤ δ0 as follows. If one
exists, we take γ to be a geodesic loop at p with γ|[0,b] and γ|[b,2b] distinct, minimal
geodesics between p and q. Thus γ′(t) is radial for t∈(b−δ0, b], and −γ′(t) is radial
for t ∈ [b, b + δ0). Let Y be a parallel unit field with 〈γ′(t), Y (t)〉g = 0 and take
δ = δ0.

Otherwise, if there are no geodesic loops at p through q, fix a geodesic γ :R →
M with γ(0) = p and γ(b) = q. There exists ε > 0 such that exp−1

p Bε(q) is
a disjoint union of finitely many connected components O1, . . . ,Om. Take 0 <
δ1 < δ0 such that γ|[b,b+δ1) ⊂ Bε(q) and let ξ1, . . . , ξm : [b, b + δ1) → TpM be
its lifts. Since expp |Oj is a diffeomorphism onto its image, ξj is smooth for all
j = 1, . . . ,m. By continuity there exists j0 and 0< δ < δ1 such that ‖ξj0(t)‖g =
min{‖ξ1(t)‖g, . . . , ‖ξm(t)‖g} for all t∈ [0, δ). Let βt(s) = expp(sξj0 (t)), and Y (t) =
β′t(1) for b ≤ t < b+ δ. Extend Y smoothly to (b− δ, b] so that {Y, γ′} are linearly
independent. We have that γ′(t) is radial for t ∈ (b − δ, b], and Y (t) is radial for
t∈ [b, b+ δ).

Let σ(t) = span{Y (t), γ′(t)} and consider the function η(t) = Kg(σ(t)). It is
smooth on (b − δ, b+ δ). We have for t∈(b − δ, b+ δ),

η(t) = Kg(σ(t)) = k(dg(p, γ(t))),(1)

since by construction σ always contains a vector radial to p. As γ is minimizing on
[0, b], for all t∈ [0, b],

η(t) = Kg(σ(t)) = k(t).(2)

Now q is not conjugate to p along any geodesic of length less than `. Hence there
exists−1 ≤ θ0 < 1 such that for any minimal geodesic γ from p to q, 〈γ′(b), γ′(b)〉g <
θ0. The first variation formula gives that if θ0 < θ < 1 is fixed then for all t > b
sufficiently small, dg(p, γ(t)) < b + θ(t − b). Since (1) holds and |k′| > 0 on
(b − δ, b+ δ), therefore the derivative from the right hand side, |η′(b+)| < θ|k′(b)|.
This and (2) together contradict the smoothness of η, proving the lemma.

Theorem 3. Let (M, g) be a complete n-dimensional Riemannian manifold with
symmetric radial curvature k : [0, `) → R at p. Then one of the following (non-
exclusive) possibilities hold:

(i) The sectional curvature Kg is constant outside Ba(p) where a = inj(p) in
which case M admits a metric with constant sectional curvature (which is
non-positive in the case that M is not compact). Furthermore, (Ba(p), g) is
isometric to a radially symmetric metric on an open ball in Rn.
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(ii) (M, g) is isometric to Rn with a radially symmetric metric.
(iii) (M, g) is isometric to Sn with a radially symmetric metric.
(iv) (M, g) is diffeomorphic to RPn and its universal Riemannian covering is iso-

metric to Sn with a radially symmetric metric.

Proof. Define V ⊂ B(0, T ) ⊂ Rn, the map ϕ : V →M , and the metric h = dt2 +
f2(t)dΘ2 in polar coordinates on B(0, T ) as in Lemma 1(iii). From Lemma 1(iii),
ϕ is an isometry. From Lemma 1(ii) the first conjugate locus of p does not intersect
B`(p). Therefore f(t) > 0 for all 0 < t < `.

We will first consider the case that a = inj(p) < ` ≤ ∞. From Lemma 2,
k′(r) = 0 for all a ≤ r < `. So k(t) ≡ κ for t ∈ [a, `). In the case n = 2 this means
that the curvature outside of Ba(p) is constant. Now assume that n ≥ 3. Take
q ∈ Cut(p) with dg(p, q) = r ∈ (a, `). By Lemma 1(iv), if u ∈ TqM is any radial
vector and x, y ∈ TqM are such that {u, x, y} is orthonormal, then Kg(u, x) = κ,
and Kg(x, y) = λ(dg(p, q)) (with notation as in Lemma 1). The theory of critical
points for distance functions (see the surveys [5] or [8] for definitions and proofs)
gives that if q is a cut point but not a critical point of the distance function to p, then
there exist distinct, radial, unit vectors u, v ∈ TqM with dg(p, q) = r and 〈u, v〉g =
α ∈ (−1, 1). Let u′ = u − αv, and v′ = v − αu. Thus 〈u′, v〉g = 〈v′, u〉g = 0. For
any unit vector w with 〈w, u〉g = 〈w, v〉g = 0, R(u′, w, u′, w) = ‖u′‖2gKg(u′, w) =
(1 − α2)λ(r). On the other hand, R(u′, w, u′, w) = R(u − αv,w, u − αv,w) =
(1−α2)κ−2αR(w, v′, w, u). Applying Lemma 1(iv) we have that R(w, v′, w, u) = 0
and so (1−α2)(κ−λ(r)) = 0, hence λ(r) = κ. Therefore all sectional curvatures at q
are equal to κ. Since regular points are a dense subset it follows that Kg(σ) = κ for
all two dimensional subspaces σ ⊂ TqM and all q ∈M\Ba(p). Furthermore, if M is
non-compact, the constant κ ≤ 0. Since expp(U) is an open dense subset of M and
is isometric to (V, h), it follows that (M, g) has constant sectional curvature outside
Ba(p). Let q be a cut point to p realizing dg(p, q) = inj(p). Since a = inj(p) < l, q is
not conjugate to p so there is a geodesic loop γ : [0, 2a]→M with γ(0) = γ(2a) = p
and γ(a) = q such that γ|[0,a] and γ|[a,2a] are minimal. Let Y be a parallel unit
vector field along γ with g(γ′, Y ) ≡ 0. Define a vector field J(t) = F (t)Y (t) with
F (t) = f(t) for t ∈ [0, a] and F (t) = f(2a− t) for t ∈ [a, 2a]. By Lemma 1(ii),(iii)
J is a once broken Jacobi field. Since q realizes the distance between p and the
cut locus of p, the second variation of the energy of γ is non-negative. The second
variation formula then gives that f(a)f ′(a) ≥ 0. Since f(a) > 0 we conclude that
f ′(a) ≥ 0. Now f ′′+κf = 0 on [a, `), and by Lemma 1(iv), 1−(f ′)2 = f2κ on (a, `).
It follows that f(t) = snκ(t+b) for t ∈ [a, `) where b (the constant of integration) is
such that snκ(a+ b) = f(a) > 0. We have that expp :B(0, `)→M is an immersion,
whence it is easy to construct a smooth metric g̃ on M such that g̃ = g on M\Ba(p)
and g̃ has constant sectional curvature κ on Ba(p). Thus g̃ has constant sectional
curvature everywhere and we have shown that (i) holds.

In the case that M is non-compact and p has no cut points, that is inj(p) = ` =
∞, the first conjugate locus of p is empty so f(t) > 0 for all t > 0. Since ϕ is an
isometry and inj(p) =∞, (ii) follows.

Now we turn to the case that M is compact and inj(p) = `. Let q ∈ Cut(p)
realize a = dg(p,Cut(p)). If q is conjugate to p along a geodesic of length a
then applying Lemma 1(ii), the multiplicity must be maximal and indeed any ge-
odesic emanating from p is minimizing up to length a where it has a conjugate
point of maximal multiplicity. In this case a theorem due to A. Allamigeon [3]
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(Sections 3 and 4) and F.W. Warner [12] (see also [4] 5.29), gives that (M, g) is
homeomorphic to Sn. Next we are going to show that (M, g) is isometric to Sn

with a radially symmetric metric. Define a diffeomorphism Φ : Sn−1
p → Sn−1

q ,
where Sn−1

p and Sn−1
q are the unit hyperspheres centered at the origins of TpM

and TqM , respectively as follows. Let Φ(τ ′(0)) = −τ ′(a), where τ : [0, a] → M
is a minimal geodesic from p to q. Since Cut(p) = {q} the map is well-defined.
For τ ′(0) ∈ Sn−1

p we choose a local coordinate (θ1, · · · , θn−1) on a domain in
Sn−1
p containing τ ′(0) such that 〈∂θi(τ ′(0)), ∂θj (τ ′(0))〉(Sn−1

p , can) = δij . Apply-
ing Lemma 1(ii), for i = 1, . . . , n−1, Yi(t) = f(t)ei(t) are the Jacobi fields along τ ,
for t ∈ [0, a], where {e1, . . . , en−1} are parallel orthonormal fields along τ with
〈ei(t), τ ′(t)〉g = 0 such that ei(0) = ∂θi(τ ′(0)). Since dΦ : TSn−1

p → TSn−1
q

is given by dΦτ ′(0)(Y ′i (0)) = −Y ′i (a) = −f ′(a)ei(a) (i = 1, · · · , n − 1), we see
that Vol(Sn−1

q ) =
∫
Sn−1
p

Φ∗µ = |f ′(a)|n−1Vol(Sn−1
p ), where µ is the volume ele-

ment on Sn−1
q . This implies |f ′(a)| = 1 so f ′(a) = −1 since q is conjugate to

p along τ and f ′(0) = 1. Therefore M has the metric g = dt2 + f2(t)dΘ2 with
f(0) = f(a) = 0, f ′(0) = 1, and f ′(a) = −1, which implies (iii).

The remaining case is when inj(p) = ` < ∞ and there are no points conjugate
to p along any geodesic of length `. It follows that every geodesic emanating
from p is a loop of length 2` minimizing up to length `. Therefore p is conjugate
to itself at distance 2` along any of these geodesic loops and Lemma 1(ii) gives
that the multiplicity is n−1. Call one of these loops γ and for any parallel unit
vector field Y along it with 〈Y, γ′〉g = 0, let k̄(t) = Kg(Y (t), γ′(t)) for t ∈ [0, 2`].
Since dg(γ(t), p) = t for t ∈ [0, `] and dg(γ(t), p) = 2` − t for t ∈ [`, 2`], we have
that k̄(2l − t) = k̄(t) for all t ∈ [0, 2`]. As p is conjugate to itself along γ, there
exists a solution to y′′ + k̄y = 0 with y(0) = y(2`) = 0 and y′(0) = 1. Let
ȳ(t) = y(2`− t). Then the symmetry of k̄ about ` gives that ȳ′′(t) + k̄(t)ȳ(t) = 0.
We have that y(t) > 0 for all t∈(0, 2`) as follows. We know this holds for t∈(0, `]
as p has no conjugate points before distance `. Suppose that y(t0) = 0 for some
t0 ∈ (`, 2`). Then ȳ(2` − t0) = y(t0) = 0 = ȳ(0), a contradiction. It follows that
y′(2`) = −a2 ≤ 0 and so z = (y + ȳ)/(1 + a2) is also a solution of the differential
equation with the same initial conditions as y, thus z = y, so ȳ′(2`) = a2y′(2`).
Hence ȳ = y and in particular −a2 = y′(2`) = −1. By a now familiar argument we
construct a radially symmetric metric on Sn, by letting ḡ = dt2 +y2(t)dΘ2 in polar
coordinates at a point p̄. Note that (Sn, ḡ) has diameter 2` realized by all geodesics
emanating from p. This manifold gives a double cover of (M, g) by identifying the
unit tangent spheres at p̄ and p with an isometry and mapping geodesics emanating
from p of length 2` to geodesic loops at p of length 2`. We conclude that (M, g) is
diffeomorphic to RPn and (iv) follows.

References

[1] U. Abresch, Lower curvature bounds, Toponogov’s theorem and bounded topology I, Ann. Sci.
Ecole Norm. Sup., 19 (1985) 651-670. MR 87j:53058

[2] U. Abresch, Lower curvature bounds, Toponogov’s theorem and bounded topology II, Ann.
Sci. Ecole Norm. Sup., 20 (1987) 475-502. MR 89d:53080

[3] A. Allamigeon, Propriétés globales des espaces de Riemann harmoniques, Ann. Inst. Fourier,
15 (1965) 91-132. MR 33:6549

[4] A.L. Besse, Manifolds all of whose Geodesics are Closed, Springer-Verlag, Berlin-Heidelberg,
1978. MR 80c:53044

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=87j:53058
http://www.ams.org/mathscinet-getitem?mr=89d:53080
http://www.ams.org/mathscinet-getitem?mr=33:6549
http://www.ams.org/mathscinet-getitem?mr=80c:53044


2284 NEIL N. KATZ AND KEI KONDO

[5] J. Cheeger, Critical Points of Distance Functions and Applications to Geometry, in Geo-
metric Topology: Recent Developments, Lecture Notes in Math. 1504, Springer-Verlag,
Berlin-Heidelberg, 1991. MR 94a:53075

[6] D. Elerath, An improved Toponogov comparison theorem for non-negatively curved mani-
folds, J. Differential Geometry, 15 (1980) 187-216. MR 83b:53039

[7] R.E. Greene and H. Wu, Function Theory on Manifolds which Possess a Pole, Lecture Notes
in Math. 699, Springer-Verlag, Berlin-Heidelberg, 1979. MR 81a:53002

[8] K. Grove, Critical Point Theory for Distance Functions, Proc. of Symposia in Pure Math.,
54 Part 3, Amer. Math. Soc., Providence, RI, 1993. MR 94f:53065

[9] Y. Itokawa, Y. Machigashira and K. Shiohama, Generalized Toponogov’s theorem for man-
ifolds with radial curvature bounded below, preprint.

[10] Y. Machigashira and K. Shiohama, Riemannian manifolds with positive radial curvature,
Japan. J. Math., 19 (1994) 419-430. MR 95f:53080

[11] V. Marenich, Manifolds with minimal radial curvature bounded from below and big volume,

Trans. Amer. Math. Soc., 352 (2000) 4451-4468.
[12] F.W. Warner, Conjugate loci of constant order, Ann. of Math., 86 (1967) 192-212. MR

35:4857

Department of Mathematics, Faculty of Science and Engineering, Saga University,

Honjoh 1, Saga 840-8502, Japan

E-mail address: katz@ms.saga-u.ac.jp

Department of Mathematics, Faculty of Science and Engineering, Saga University,

Honjoh 1, Saga 840-8502, Japan

E-mail address: kondok@ms.saga-u.ac.jp

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=94a:53075
http://www.ams.org/mathscinet-getitem?mr=83b:53039
http://www.ams.org/mathscinet-getitem?mr=81a:53002
http://www.ams.org/mathscinet-getitem?mr=94f:53065
http://www.ams.org/mathscinet-getitem?mr=95f:53080
http://www.ams.org/mathscinet-getitem?mr=35:4857

	References

