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SUMMARY

Many models for the study of point-referenced data explicitly introduce spatial random effects
to capture residual spatial association. These spatial effects are customarily modelled as a zero-
mean stationary Gaussian process. The spatial Dirichlet process introduced by Gelfand et al.
(2005) produces a random spatial process which is neither Gaussian nor stationary. Rather, it
varies about a process that is assumed to be stationary and Gaussian. The spatial Dirichlet process
arises as a probability-weighted collection of random surfaces. This can be limiting for modelling
and inferential purposes since it insists that a process realization must be one of these surfaces.
We introduce a random distribution for the spatial effects that allows different surface selection
at different sites. Moreover, we can specify the model so that the marginal distribution of the
effect at each site still comes from a Dirichlet process. The development is offered constructively,
providing a multivariate extension of the stick-breaking representation of the weights. We then
introduce mixing using this generalized spatial Dirichlet process. We illustrate with a simulated
dataset of independent replications and note that we can embed the generalized process within a
dynamic model specification to eliminate the independence assumption.

Some key words: Dirichlet process mixing; Dynamic model; Latent process; Non-Gaussian; Nonstationary;
Stick breaking.

1. INTRODUCTION

Distributional modelling for point-referenced spatial data usually introduces spatial random
effects to capture residual spatial association. These spatial effects are often modelled as a
zero-mean stationary Gaussian process. The stationarity or the Gaussian assumption may be
inappropriate. Flexible and computationally tractable modelling to eliminate the stationarity
assumption includes the spatially varying kernel approach of Higdon et al. (1999) and the local
stationarity approach described in an unpublished North Carolina State University technical
report by M. Fuentes and R.L. Smith; however, both are still within the setting of Gaussian
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processes. The fundamental paper of Sampson & Guttorp (1992) introduces a nonparametric
specification for the covariance function, as does follow-up work by Damian et al. (2001) and
Schmidt & O’Hagan (2003) but all still employ a Gaussian Process in the likelihood.

The Gaussian assumption can be criticized when the spatial variability is attributable to more
than one latent process, so that, for example, a mixture of Gaussian processes might be more
appropriate; see Brown et al. (2003) for a recent example or Palacios & Steel (2006) for the devel-
opment of a class of models able to cope with heavy tail behaviour. Recently, Gelfand et al. (2005)
proposed a spatial Dirichlet process mixture model which adopts a stationary and Gaussian base
measure. However, the resulting random stochastic process is nonstationary and its joint finite-
dimensional distributions are not normal. The use of this specification to model the distribution of
the spatial component in a spatial random effects model leads to a fully Bayesian semiparametric
approach that, for fitting purposes, relies on well-known results and algorithms developed for
Dirichlet process mixing; see, among others, Escobar & West (1995) and MacEachern & Müller
(1998).

Since the spatial Dirichlet process is essentially a Dirichlet process defined on a space of
surfaces, with probability one its realizations are discrete probability measures with countable
support (Ferguson, 1973; Sethuraman, 1994). Thus, mixing against a Gaussian kernel yields an
error specification that can be characterized as a countable location mixture of normals. However,
the spatial Dirichlet process insists that, given the countable collection of surfaces, we actually
sample only one of them and then the process realization is that surface. In this paper, we introduce
a random distribution for the spatial effects that allows different surface selection at different
sites. Moreover, we can specify the model to preserve the property that the marginal distribution
of the effect at each site still comes from a Dirichlet process. We refer to these new random
probability measures as generalized spatial Dirichlet process models; the customary Dirichlet
process specification is included as a special case.

Our formulation envisages a setting in which few random surfaces are needed to achieve
an adequate random spatial effects model; the novel modelling ingredient is a latent covariate
that determines surface selection. Hence, resulting realizations are complex functions of these
surfaces. As an illustrative example, in brain imaging, with regard to the neurological activity
level, researchers imagine healthy brain images, i.e. surfaces, as well as diseased or impaired
brain images. For an actual image only a portion of the brain will be impaired; we can envisage
surface selection according to a latent indicator of where the brain is diseased.

An advantage of working with generalized spatial Dirichlet processes in such settings is that we
need not define the latent covariate: we need not specify the number of components or surfaces.
The posterior inference will provide information about this and may illuminate the interpretation
of the covariate. Lastly, it is evident that the spatial Dirichlet process is not well equipped to
handle such situations. For instance, in the brain imaging illustration, the spatial Dirichlet process
is likely to require a different random surface for each image to be analysed.

Replicated observations are typically needed for a fully nonparametric approach
(Sampson & Guttorp, 1992; Damian et al., 2001) and this is true in our case as well. How-
ever, with replications that arise across discretized time periods, we can shed the independence
assumption by embedding our methodology within a dynamic model, retaining the temporal
dependence. These methods allow the possibility to infer about the random distribution function
that is operating at any given location, at any time, in the region. Nonparametric spatial pre-
diction can be pursued not only at new locations for each replicate, but more generally through
the generation of an entire new predictive surface at a future time. Also, though we develop our
model in the context of spatial data, the theory is general and can be used when our responses are
indexed by covariates in usual regression settings. Hence, we offer an alternative for most of the
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problems where mixtures of products of Dirichlet processes (Cifarelli & Regazzini, 1978) and/or
the dependent Dirichlet processes of an unpublished Ohio State University technical report of S.
MacEachern have been employed; see for example De Iorio et al. (2004).

We are aware of only two other recent approaches that also consider mixture models for
spatial data where the weights are allowed to vary across locations. Fernandez & Green (2002)
confine their attention to Markov random fields over lattices and Poisson-distributed data, and
only the weights in the mixture vary from one location to another. We work with general point-
referenced data allowing both the weights and the parameters of the mixed distribution to vary
spatially. Griffin & Steel (2006) present an implementation of the dependent Dirichlet process
using Sethuraman’s constructive representation, providing a random marginal distribution at each
site. The marginal stick-breaking weights are the same at each location, but they are randomly
permuted according to the realizations of a latent point process, so that at each site the resulting
weights are assigned to different surfaces, inducing spatial dependence. Instead, we present a
process model for joint surface selection for any number and choice of locations, and also allow
the marginal components to vary in space. Our construction may also be viewed as a multivariate
stick-breaking specification. Moreover, the closeness between the random distributions is ruled
directly by the topology of the space, rather than by realizations of an underlying point process.

2. A BRIEF REVIEW OF THE SPATIAL DIRICHLET PROCESS

Denote the stochastic process by {Y (s) : s ∈ D}, D ⊆ Rd , and let s(n) = (s1, . . . , sn) be the
specific distinct locations in D where observations are collected. Assume that we have replicate
observations at each location so that the full dataset consists of the collection of vectors Yt =
{Yt (s1), . . . , Yt (sn)}T, t = 1, . . . , T .

For a measurable space (�,B), the Dirichlet process (Ferguson, 1973, 1974) specifies random
distributions on � denoted by DP(νG0) where ν > 0 is a scalar precision parameter and G0

is a specified base distribution defined on (�,B). A random distribution function on (�,B)
arising from DP(νG0) is almost surely discrete and admits the representation

∑∞
l=1 plδθ∗

l
, where

δz denotes a point mass at z, p1 = q1, pl = ql
∏l−1

r=1(1 − qr ), l = 2, 3, . . . , with qr , r = 1, 2, . . . ,
independently and identically distributed as Be(1, ν). The θ∗

l ’s are independent and identically
distributed as G0 and are also independent of the qr ’s, r = 1, 2, . . . (Sethuraman, 1994).

To model YD ≡ {Y (s) : s ∈ D}, one can conceptually replace θ∗
l with a realization of a random

field θ∗
l,D = {θ∗

l (s) : s ∈ D}. The process G0 might be a stationary Gaussian process with each
θ∗

l,D being a realized surface over D from G0. The resulting random process or distribution, G,
for YD is denoted by

∑∞
l=1 plδθ∗

l,D
. The interpretation is that, for s(n) as above, G induces a random

probability measure G(n) on the space of distribution functions for {Y (s1), . . . , Y (sn)} with G(n) ∼
DP(νG(n)

0 ), where G(n)
0 is the n-variate distribution for {Y (s1), . . . , Y (sn)} induced by G0. The

representation of G clarifies that the spatial Dirichlet process is a nonstationary, non-Gaussian
process that is centred around a stationary process. In addition, G induces a random distribution
G{Y (s)} for each s, and hence the set GD ≡ {G{Y (s)} : s ∈ D}. For a stationary G0, the choice
of the covariance function determines whether process realizations are almost surely continuous
(Kent, 1989). Again, from the representation of G, the continuity of θ∗

l,D implies that G{Y (si )}
and G{Y (s j } are such that the difference between them tends to 0 almost surely, as ||si − s j || → 0.

Mixing a pure error process with the variance τ 2 with respect to G creates a random process F
that has continuous support; that is, if k is a density function on R1, for any s, f {Y (s) | G, τ 2} =∫

k{Y (s) − θ(s) | τ 2}G{dθ(s)}, i.e. Y (s) = θ(s) + ε(s), where θ(s) arises from the above spatial
Dirichlet process prior model and ε(s) is a pure error term. When k is the N (0, τ 2) density, the joint
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density of Y = {Y (s1), . . . , Y (sn)}T, given G(n) and τ 2, using the almost sure representation of G(n),
is almost surely of the form

∑∞
l=1 pl Nn(Y | θ∗

l , τ 2 In), i.e. a countable location mixture of normals.

3. THE GENERALIZED SPATIAL DIRICHLET PROCESS MODEL

3·1. Model details

In Gelfand et al. (2005), the spatial Dirichlet process is defined using a countable collection
of random surfaces over D generated by a zero-mean base spatial process. For any collection
of n locations, the joint distribution uses the same set of stick-breaking probabilities, inducing
common surface selection for all locations in the collection; it is not possible to capture the
situation in which spatial effects can be selected from different surfaces at different locations.
This limitation is common to other recent work relating to dependent Dirichlet processes; see, for
example, De Iorio et al. (2004). We introduce a random distribution for the spatial effects such
that the surface selection can vary with the location and the joint selection of surfaces for the n
locations can vary with the choice of locations. Moreover, we can still preserve the property that
the marginal distribution at each location comes from a usual univariate Dirichlet process.

Again, we start with a base random field G0, which for convenience we take to be stationary
and Gaussian. Again, we draw a countable collection of independent realizations from G0. Then,
we define a random probability measure G on the space of surfaces over D as that measure whose
finite-dimensional distributions almost surely have the following representation: for any set of
locations (s1, . . . , sn) ∈ D, and any collection of sets {A1, . . . , An} in B(R),

pr{Y (s1) ∈ A1, . . . , Y (sn) ∈ An} =
∞∑

i1=1

· · ·
∞∑

in=1

pi1,...,inδθ∗
i1

(s1)(A1) . . . δθ∗
in

(sn)(An), (1)

where the θ∗
j ’s are independent and identically distributed as G0, i j is an abbreviation for i(s j ),

j = 1, . . . , n, and the weights {pi1,...,in } determine the site-specific joint selection probabilities.
In fact, conditionally on the locations, the {pi1,...,in } have a distribution defined on the infinite-
dimensional simplex P = {pi1,...,in � 0 :

∑∞
i1=1 · · · ∑∞

in=1 pii ,...,in = 1} independent of that for the
θ ′s.

The weights need to satisfy a consistency condition in order to define properly a random
process for Y (·). To be specific, it is necessary that, for any set of locations (s1, . . . , sn), n ∈ N,
and for all k ∈ {1, . . . , n},

pi1,...,ik−1,ik+1,...,in = pi1,...,ik−1,·,ik+1,...,in ≡
∞∑
j=1

pi1,...,ik−1, j,ik+1,...,in · (2)

In addition, we insist that the weights satisfy a continuity property; we want the random laws
associated with the locations s1 and s2 near to each other to be similar. Equivalently, for the
locations s and s0, as s → s0, pi1,i2 = pr{Y (s) = θ∗

i1
(s), Y (s0) = θ∗

i2
(s0)} tends to the marginal

probability pi2 = pr{Y (s0) = θ∗
i2

(s0)} when i1 = i2, and to 0 otherwise. Analogously, if we con-
sider three locations (s1, s2, s3), when s3 is close to s2 say, we require pi1,i2,i3 to be close to pi1,i2

if i2 = i3 and to 0 otherwise. Extension to the n locations is clear and we refer to this property
simply as almost sure continuity of the weights. The name is suggested by the almost sure con-
tinuity of the paths of a univariate spatial process, as defined in Kent (1989) or Banerjee et al.
(2003). If we also assume the random field G0 to be almost surely continuous, a univariate spatial
process θ(s), s ∈ D, being said to be almost surely continuous at a point s0 if θ(s) → θ(s0) with
probability one as ||s − s0|| → 0, we are able to establish the following proposition whose proof
is given in Appendix 1.
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PROPOSITION 1. Let {Y (s), s ∈ D} be a random field, whose random finite-dimensional dis-
tributions are given by (1) for all n ∈ N. If the set of weights {pi1,...,in } and the base random
field G0 are almost surely continuous, then, for all s0 ∈ D, Y (s) converges weakly to Y (s0) with
probability one as ||s − s0|| → 0.

In fact, the proof demonstrates almost sure convergence of the random probability measures.
Note that Proposition 1 is an extension to our case of analogous results given in S. MacEachern’s
technical report and in Gelfand et al. (2005).

Conditional on the realized distribution G, the process has first and second moments

E{Y (s)|G} =
∞∑

l=1

pl(s) θ∗
i (s)

var{Y (s)|G} =
∞∑

l=1

pl(s) θ∗2

l (s) −
{ ∞∑

l=1

p1(s) θ∗
l (s)

}2

,

and, for a pair of sites si , s j ,

cov{Y (si ), Y (s j )|G} =
∞∑

l=1

∞∑
m=1

pl,m(si , s j ) θ∗
l (si ) θ∗

m(s j )

−
{ ∞∑

l=1

pl(si ) θ∗
l (si )

}{ ∞∑
m=1

pm(s j ) θ∗
m(s j )

}
· (3)

With almost surely continuous realizations from the base process and of the weights, (3) shows
that the generalized spatial Dirichlet process is mean-square continuous.

Suppose G0 is a zero-mean stationary Gaussian process with finite variance σ 2 and correlation
function ρφ(si − s j ). Then E{Y (s)} = 0 and var{Y (s)} = σ 2 but

cov{Y (si ), Y (s j )} = σ 2ρφ(si − s j )
∞∑

l=1

E{pll(si , s j )}·

Note that
∑∞

l=1 E{pll(si , s j )} < 1, unless pll ′(si , s j ) = 0, for l 
= l ′, as it is in Gelfand et al. (2005)
or, more generally, in the single-p-dependent Dirichlet process discussed in S. MacEachern’s
technical report. The implication is that, in allowing local surface selection, for a given pair of
locations, we expect weaker spatial association under our generalization than under the spatial
Dirichlet process.

3·2. Mixing using a generalized spatial Dirichlet process

The generalized spatial Dirichlet process will be used to model the distribution of the spatial
component θ(s) in a random effect model of the type Y (s) = u(s) + θ(s) + ε(s), where u(s) is
a constant mean term, typically assumed to be a regression term X (s)Tβ for some vector of
covariates X (s) and some vector of parameters β, and ε(s) is a Gaussian pure random error
component with mean zero and variance τ 2. Again, denote by G(n) the finite-dimensional distri-
butions defined by (1), for any finite set of locations s(n) = (s1, . . . , sn), n ∈ N. Then, since G(n)

is almost surely discrete, with probability one the joint distribution of Y = {Y (s1), . . . , Y (sn)}T,
given G(n), u and τ 2, is

f (Y |G(n), u, τ 2) =
∞∑

i1=1

· · ·
∞∑

in=1

pi1,...,in Nn
(
Y | θi1,...,in + u, τ 2 In

)
,
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where u = {u(s1), . . . , u(sn)}T and, for simplicity, we have suppressed the locations in pi1,...,in

and set the vector θi1,...,in = {θi1 (s1), . . . , θin (sn)}T. Immediately, we obtain E(Y |G(n), u, τ 2) =∑∞
i1=1 · · · ∑∞

in=1 pi1,...,inθi1,...,in + u and �Y |G(n),µ,τ 2 = τ 2 In + �s
θ , where (�s

θ )i, j = cov{θ(si ),
θ(s j )|G(n)} is given by (3).

If the mean vector u describes a continuous surface over D, it is easy to prove that a statement
analogous to Proposition 1 holds for the convolved process Y . In fact, the normal density is
a bounded continuous function of the mean. Then the bounded convergence theorem applies
and, together with almost sure convergence of the random probability measures G(n) proved
in Proposition 1, this implies that, with probability 1, Y (s) converges weakly to Y (s0) for any
s, s0 ∈ D, as ||s − s0|| → 0.

4. THE SPATIALLY VARYING PROBABILITIES MODEL

We now turn to an illustrative specification of pi1,...,in for any choice of n and s1, . . . , sn .
We provide a constructive approach which can be viewed as multivariate stick-breaking, em-
ploying computationally convenient Gaussian thresholding. Attractively, with such thresholding,
we never need to work with the p’s. In fact, we assume that {Zl(s), s ∈ D, l = 1, 2, . . . } is a
countable collection of independent stationary Gaussian random fields on D having variance 1
and correlation function ρZ (·, η). We further assume that the mean of the lth process, µl(s), is
unknown and we put a convenient prior on it, so that the distribution of Zl(s) can be viewed as
random. With these assumptions, given s1, . . . , sn , we let

pi1,...,in = pr
{

Z1(s1) < 0, . . . , Zi1−1(s1) < 0, Zi1 (s1) � 0;

Z1(s2) < 0, . . . , Zi2−1(s2) < 0, Zi2 (s2) � 0; . . . ; (4)

Z1(sn) < 0, . . . , Zin−1(sn) < 0, Zin (sn) � 0|{µl(si )}
}

.

Since the distribution of the Z’s is random, so is the induced distribution of the p’s.
To clarify the multivariate stick-breaking implicit in (6) consider the stochastic process

{δ∗
Al (s), s ∈ D, l = 1, 2, . . . } defined by δ∗

Al (s) = 1 if Zl(s) ∈ Al(s), and δ∗
Al (s) = 0 if Zl(s) 
∈

Al(s), where {Zl(s), s ∈ D, l = 1, 2, . . . } is a latent random field. Let

ql,u1,...,un (s1, . . . , sn) = pr{δ∗
Al (s1) = u1, . . . , δ

∗
Al (sn) = un| δ∗

Ai (s j ) = 0, i < l, j = 1, . . . , n}.
If we choose Al(s) = {Zl(s) � 0}, it follows that

ql,u1,...,un (s1, . . . , sn) = pr{δ∗
{Zl (s1) � 0} = u1, . . . , δ

∗
{Zl (sn) � 0} = un| µl(s1), . . . , µl(sn)},

because of the independence of the processes {Zl(s)} over the index l. For example, for n = 2,
we obtain ql,0,1 = pr{Zl(s1) < 0, Zl(s2) � 0|µl(s1), µl(s2)}. If the µl(s) surfaces are independent,
l = 1, 2, . . . , then so are the ql,u1,...,un (s1, . . . , sn)’s.

Since Zl(s) is assumed to be Gaussian, at any location s we obtain

ql,1(s) = pr{Zl(s) � 0} = 1 − �{−µl(s)} = �{µl(s)},
where �(·) denotes the univariate standard normal distribution function. If the µl(s) are such that
the �{µl(s)} are independent Be(1, ν), l = 1, 2, . . . , then, for each s, the marginal distribution of
θ(s) is a Dirichlet process with probabilities that vary with location. If the µl(s) are a continuous
realization, Zl(s) will resemble Zl(s ′) when s is close to s ′. For the special case in which
µl(s) = µl , for all s, with �(µl) independent Be(1, ν) then, marginally, the θ(s) follow a Dirichlet
process where the weights are the same for each s but the marginal distributions are not the same
since θ∗

l (s) 
= θ∗
l (s ′).
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The impact of using a thresholding function on prediction is discussed in §6. In this re-
gard, Gaussian modelling has been routinely used, for example in the binary regression setting
(Albert & Chib, 1993). Moreover, as a model for second-stage random effects, there will be little
posterior sensitivity to this choice.

Following the discussion preceding Proposition 1, we require two properties for this construc-
tion: the random finite-dimensional distribution G(n) should satisfy the Kolmogorov consistency
condition and the continuity property should be satisfied, in that, if location s is near s ′, the
probability of choosing the same sample surface for s and s ′ is high. In Propositions A1 and
A2 in Appendix 1, we prove that these conditions are satisfied. Note, however, that (6) is not
invariant to simultaneous permutation of the indices of the i j and s j , as would be the case in the
usual Dirichlet process. However, the assumed exchangeability of the surfaces ensures that the
distributions for the random p’s are exchangeable.

Finally, spatially varying weights have recently been considered by Griffin & Steel (2006), who
work in the framework of dependent Dirichlet processes. They proceed from the assumption that
the distribution of a DP(ν G0) is unaffected by a location-specific permutation, {π(s), s ∈ D}, of
the atoms {θ∗

l (·), ql(·), l = 1, 2, . . . } in Sethuraman’s constructive representation. In particular,
when n = 2, for any integers l and m, under their prior

pr{Y (si ) = θ∗
l (si ), Y (s j ) = θ∗

m(s j )} =
∫

pl(si ) pm(s j ) dH {π(si ), π(s j )},

where H{·} is the distribution of the permutation field at the two locations. We define a joint
random distribution for any grouping of the locations (s1, . . . , sn), n = 1, 2, . . . , directly assigning
the probabilities of selecting the different surfaces. For us, pr{Y (si ) = θ∗

l (si ), Y (s j ) = θ∗
m(s j )} =

pl,m(si , s j ).

5. SIMULATION-BASED MODEL FITTING

Sections and 3 establish that we work with the following spatial model. Let the vectors
Yt = {Yt (s1), . . . , Yt (sn)}T, t = 1, . . . , T , denote T groups of independent observations collected
at the same set of locations (s1, . . . , sn) ∈ D ⊂ R

2. The mean surface u(s), s ∈ D, is modelled by
a linear regression u(s) = x(s)Tβ. The spatial random effect θ(s), s ∈ D, has the nonparametric
rule as defined in §3. The overall model has the following hierarchical structure:

Yt | θt , β, τ 2 ∼ Nn
(
XT

t β + θt , τ
2 In

)
, t = 1, . . . , T,

θt | G(n) ∼ G(n), t = 1, . . . , T,

G(n) | pi1,...,in , θ∗
l =

∞∑
i1,...,in=1

pi1,...,in δθ∗
i1

(s1)(·) · · · δθ∗
in

(sn)(·), l = 1, 2, . . . ,

pi1,...,in = pr{Z1(sl) < 0, . . . , Zil (sl) � 0, l = 1, . . . , n},
i j = 1, 2, . . . , j = 1, 2, . . . , n,

{θ∗
l (s1), . . . θ∗

l (sn)}T ∼ Nn{0, σ 2 Rn(φ)}, l = 1, 2, . . . , (5)

{Zt,l(s1), . . . , Zt,l(sn)}T ∼ Nn{µl1n, Hn(η)}, l = 1, 2, . . . , t = 1, 2, . . . , T,

µl s.t. �(µl) ∼ Be(1, ν), l = 1, 2, . . . ,

β, τ 2 ∼ Np(β0, �β) × IG(aτ , bτ ),

σ 2, φ, η ∼ IG(aσ , bσ ) × [φ] × [η],
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where we use the brackets notation in Gelfand & Smith (1990) to denote densities. The priors for
φ and η depend on the specific form of covariance function in Rn(φ) and Hn(η). For convenience,
in our examples we have set ν = 1. In the version with µl(s) replacing µl , for each l, we obtain a
realization from a Gaussian process with mean zero and stationary covariance function C(·, ψ).
In either case, the replications across t enable us to learn about the µl or the process driving the
µl(s).

Although in (5) the marginal random distribution at an individual location s follows a Dirichlet
process, the joint random distribution G(n) does not; we cannot marginalize over G(n). For model
fitting, therefore, we approximate G(n) with a finite sum

G(n)
K =

∑
(i1,...,in)∈{1,2,...,K }n

pi1,...,inδθ∗
i1

(s1)(·) δθ∗
i2

(s2)(·) . . . δθ∗
in

(sn)(·), (6)

for K suitably large. In this finite mixture model, we only need θ∗
l , l = 1, . . . , K , and Zl ,

l = 1, . . . , K − 1. Note that pK (s) = pr{Z1(s) < 0, . . . , ZK−1(s) < 0}.
Again, we sample the latent variables Zl’s directly to avoid computation of the weights pi1,...,in

in (6). For t = 1, . . . , T and l = 1, . . . , K − 1, consider the sets Zt,l(s) = {s ∈ D Zt,1(s) <

0, . . . , Zt,i−1(s) < 0, Zt,l(s) � 0}, a Zt,K (s) = {s ∈ D Zt,1(s) < 0, . . . , Zt,K−1(s) < 0}. We

eliminate the sampling of the conditional distribution of θt |G(n)
K by referring to the following

equivalent structure:

θt (s) = θ∗
1 (s) IZt,1(s) + θ∗

2 (s) IZt,2(s) + · · · + θ∗
K (s) IZt,K (s)· (7)

In equation (7), θt (s) is a deterministic function of θ∗
l (s), l = 1, . . . , K , and Zl

t (s), l = 1, . . . , K −
1. We rewrite the first stage of the hierarchical model as [Yt |µ, θt ] = [Yt |µ, θ∗, Zt ]. The likelihood
function for Yt can then be expressed as

[Yt |µ, θ∗, Zt ] ∝ exp

[
− 1

2τ 2

n∑
i=1

{Yt (si ) − Xt (si )
Tβ − θt (si )}2

]

∝ exp

[
− 1

2τ 2

K∑
l=1

n∑
i=1

{Yt (si ) − Xt (si )
Tβ − θ∗

l (si )}2 IZt,l (si )

]

∝
n∏

i=1

(
K∑

l=1

exp
[
− 1

2τ 2
{Yt (si ) − Xt (si )

Tβ − θ∗
l (si )}2

]
× IZt,l (si )

)
·

The posterior distributions for the latent variables and parameters are proportional to this likeli-
hood function multiplied by the priors,

T∏
t=1

[Yt |θ∗, Zt , τ
2] ×

K∏
l=1

[θ∗
l |σ 2, φ] ×

T∏
t=1

K−1∏
l=1

[Zt,l |µt,l, η][µt,l] × [σ 2][φ][τ 2]

This model can be fitted by a Gibbs sampler; the details of all the full-conditional distributions
are given in Appendix 2.

We can easily interpolate {Yt (s̃1), . . . , Yt (s̃m)} at m new locations on any of the T real-
ized replicates or predict the posterior predictive distribution for {Y (s̃1), . . . , Y (s̃m)} on a new
replicate. We can expand [G(n)

K |data] to [G(n+m)
K |data] with m new locations by the method

as follows. The {θ∗
l (s̃1), . . . ,θ∗

l (s̃m)}, l = 1, . . . , K , in [G(n+m)
K |data] are normal condition-

ally on {θ∗
l (s1), . . . ,θ∗

l (sn)}, l = 1, . . . , K , and the model parameters. Hence they are sampled
accordingly, conditioning on the posterior samples of {θ∗

l (s1), . . . ,θ∗
l (sn)}, l = 1, . . . , K . If we
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Fig. 1. The design locations for the simulation example in §6.

want to interpolate {Yt (s̃1), . . . , Yt (s̃m)} on any realized replicate t , the {Zt,l(s̃1), . . . , Zt,l(s̃m)}
will be sampled conditioning on the posterior samples of {Zt,l(s1), . . . , Zt,l(sn)} and the corre-
sponding model parameters. If we want the posterior predictive distribution on a new replicate for
{Y (s̃1), . . . , Y (s̃m)}, we will sample {Zl(s̃1), . . . , Zl(s̃m)} independently of the posterior samples
of {Zt,l(s1), . . . , Zt,l(sn)}, t = 1, . . . , T .

6. AN ILLUSTRATIVE EXAMPLE

We illustrate the fitting of (5) with a simulated dataset from a finite mixture model of Gaus-
sian processes that allows different joint multimodal distributions for different pairs of loca-
tions. We first draw a specified number of locations in a given region. They are denoted by
(s1, . . . , sn). Suppose there are T independent replicates {yt (s1), . . . , yt (sn)}, t = 1, . . . , T . We
proceed as follows. For t = 1, . . . , T , let {θ1

t (s1), . . . , θ1
t (sn)}T ∼ N (1)

n {−µ1n, σ
2
1 Rn(φ1)} and

{θ2
t (s1), . . . , θ2

t (sn)}T ∼ N (2)
n {µ1n, σ

2
2 Rn(φ2)}. Also, let {Zt (s1), . . . , Zt (sn)}T ∼ Nn{0, Hn(η)}.

Then, for i = 1, . . . , n, if Zt (si ) � 0, we set yt (si ) = θ1
t (si ); if Zt (si ) < 0, we set yt (si ) = θ2

t (si ).
Each yt (si ) has a bimodal distribution of the form 1

2 N (1)(−µ, σ 2
1 ) + 1

2 N (2)(µ, σ 2
2 ). For two

locations si and s j near each other, the strong association between Zt (si ) and Zt (s j ) makes it very
likely that yt (si ) and yt (s j ) come from the same component N (k)(µk, σ

2
k ), k = 1, 2. If si and s j

are distant, the linkage between Zt (si ) and Zt (s j ) is weak, and therefore the component choices
for yt (si ) and yt (s j ) are almost independent.

We simulate at 50 design locations in a rectangular region shown in Fig. 1. Then, 40 independent
replicates are sampled for these 50 locations. We choose the values of the parameters as µ1 =
−µ2 = 3, σ1 = 2σ2 = 2, φ1 = φ2 = 0·3 and η = 0·3 in the above mixture model. We fit the
model in (5) to this dataset. We approximate G(n) with a finite sum of K = 20 components. To
focus on the modelling of spatial dependence, we fixed the mean structure of {yt (s1), . . . , yt (sn)}
to be zero. For comparison, we considered the analogous spatial Dirichlet process models, using
the same base measure and the same prior for all the parameters, as well as the standard Gaussian
process model for spatial data. With regard to the choice of the Gaussian model for comparison,
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Fig. 2. Posterior predictive densities for the generalized spatial Dirichlet process (thick − −) and the spatial Dirichlet
process (thick ·−), and the Gaussian process (both for the independent case (thin ·−), and the common spatial effect
(thin ··) for locations (a) 26 and (b) 33 in Fig. 1. The continuous line (−) is the estimated true density and the observed
sample is reported on the x-axis. Note that the ‘independent’ Gaussian process and the spatial Dirichlet process have

similar predictive densities, which indicates that the spatial Dirichlet process shows essentially no clustering.

we considered both the case where the θt (s) are independent across replicates and the case where
θt (s) = θ(s), for all t . The latter can be seen as the model which arises when we fix the precision
parameter of the Dirichlet process at zero, so that all replicates are clustered together, whereas the
former corresponds to setting ν at a value large enough so that no clustering is induced among
the replicates.

We obtain 30 000 samples from our Gibbs sampler for the generalized spatial Dirichlet process
and discard the first 10 000 as burn-in. For the posterior inference, we use 4000 subsamples from
the remaining 20 000 samples, with a thinning equal to 5. We test each of the models on the same
computational platform. All model fitting can be conveniently implemented in R. It takes about
12 hours for the generalized Dirichlet sampler to complete 30 000 iterations. By contrast, the
spatial Dirichlet takes 6 hours, or 2 hours in C++ and the Gaussian model takes 2 hours, or half
an hour in C++. Evidently, the code for the generalized spatial Dirichlet process requires more
bookkeeping than the code for the spatial Dirichlet process, which, in turn, requires more than
the code for the Gaussian model. However, since we update the base surfaces θ∗

l (·) in a single
sweep from a multivariate normal distribution in Appendix 2, we avoid problems of slow mixing
associated with the basic Dirichlet process (Bush & MacEachern, 1996). In fact, the sampling
of the Z ’s amounts to sampling which surface is selected at each replicate and each location, as
when sampling the configuration indicators in the Pólya urn. Therefore, the number of elements
involved affects the computational speed, not the mixing of the chain.

Performance is examined through posterior predictive densities, both marginal and joint. In
Fig. 2, for two selected locations (s26, s33), we plot the true density together with the posterior
predictive densities estimated under the three types of model. The values of the 40 observations
at each location are shown along the x-axis. It is evident that the estimates for our generalization
agree most closely with the true densities of the model. Next, we select three pairs of sites and for
each pair we show the predictive joint densities. In Fig. 3, the first pair {y(s50), y(s26} is very close
to each other, the second pair {y(s50), y(s33)} is slightly distant and the third pair {y(s50), y(s49)}
is very distant; see Fig. 1. We show the results for the generalized and basic Dirichlet process
models only. As expected, the corresponding plots for the Gaussian model, corresponding to
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Fig. 3. Predictive bivariate posterior densities for the generalized spatial Dirichlet process, on the left, and the spatial
Dirichlet process, on the right, models and the data in §5. The middle column shows the true bivariate posterior density

from a sample from the true model; see the text for details.

ν → 0, are elliptical in shape, regardless of the locations. Again, the generalized spatial Dirichlet
process is better than the spatial Dirichlet process in capturing the local details and in particular
the heights of the local modes.

Figure 4 plots the probability that a common sample surface is selected for a pair of locations
against the distance between the two locations. We can see the decay in this probability as
locations become further apart. Finally, for the spatial Dirichlet process, we see no clustering;
essentially, a separate surface is needed for each replication. For the generalized spatial Dirichlet
process, the modal number of surfaces is 3 and the maximum number of surfaces is 5. Clearly,
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Fig. 4. Simulated example. Decay in probability of common surface selection as a func-
tion of distance.

the generalized spatial Dirichlet process is recognizing the local surface selection in the true
model.

In many applications replicate observations are made in time, in T consecutive time periods
for example, so it may be appropriate to model the evolution of the spatial process over time.
A convenient spatio-temporal specification arises if we embed the generalized Dirichlet process
in a dynamic linear model. If we preserve the notation in (5), the observations at time t can be
modelled by the following dynamic linear model structure:

Yt = XT
t β + θt + εt ; εt ∼ Nn{0, τ 2 In},

θt = γ θt−1 + ωt ; ωt ∼ GSDP(νG0).
(8)

These dynamics yield spatial random effects θt that evolve autoregressively over time with
autocorrelation coefficient, γ , with |γ | � 1. Only the second hierarchical specification in (5)
changes to reflect (8). Updating of the full-conditional distributions and the associated Markov
chain Monte Carlo algorithm for the dynamic version is straightforward but, again, requires
attention to bookkeeping.

Finally, with regard to the spatial prediction, consider the case of independent replications.
Returning to the brain images example, we could imagine interest in prediction at new locations
for one of the observed images but we would not seek to predict a random future image. However,
when the generalized spatial Dirichlet process is built into a dynamic model, temporal prediction
will then be of interest; the methodology follows that described in Gelfand et al. (2005) and is
not presented in detail here. An important related point regarding interpolation is the difference
between usual kriging associated with a single surface and prediction here with local choice over a
countable collection of surfaces. For locations far from those where we have observations, we will
have essentially independent surface selection, rendering the interpolation of little use. However,
for locations close to observed ones, the underlying latent process will be able to illuminate
proper surface selection at each of the replicates.
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7. DISCUSSION

Other extensions of the spatial Dirichlet process can be envisaged. For instance, in a future
paper we will report on the use of the representation of Theorem 3 of Ishwaran & Zarepour
(2002a), rather than the Sethuraman representation, to create a different constructive formulation.
In another future investigation we shall model discrete data, such as binary or count data, at the
first stage with a generalized spatial Dirichlet process to capture the spatial structure in the mean
on a transformed scale. Application to the setting of functional data analysis, in which covariate
space replaces geographic space, is also under study. Lastly, we are interested in the case where
we observe multivariate data at each location. The generalized spatial Dirichlet process centred
around a multivariate spatial process model provides an obvious place to start.
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APPENDIX 1

Theoretical arguments

Proof of Proposition 1. Let ψ(t, s) be the characteristic function of Y (s). From definition (1), it follows
that

ψ(t, s) = E [exp {i tY (s)}] = E

{ ∞∑
l=1

pl(s) exp{itθ∗
l (s)}

}
→ E [exp {itY (s0)}]

as ||s − s0|| → 0, since ψ(t, s) � 1 and the continuity of the weights implies that

lim
||s−s0||→0

pl(s) = lim
||s−s0||→0

∞∑
m=1

pl,m(s, s0) =
∞∑

m=1

lim
||s−s0||→0

pl,m(s, s0) = pl(s0)· �

PROPOSITION A1. Let {Y (s1), . . . , Y (sn), si ∈ D, i = 1, . . . , n} have random finite-dimensional distri-
bution given by (1), for n = 1, 2, . . . . If the set of weights {pi1,...,in } is defined by means of a latent process
as in (4), then the collection of random finite-dimensional distributions define a random field Y (s) on D.

Proof. First we show that, for any l = 1, . . . , n,

pi1,...,il−1,il+1,...in = pi1,...,il−1,·,il+1,...in =
∞∑

k=1

pi1,...,il−1,k,il+1,...in ·

In fact, let Z (si ) = {Z1(si ), . . . , Zk(si ), . . . }, i = 1, . . . , n. Note that if θ (si ) = θ∗
k (si ) then Z (si ) ∈ Si,k ,

where Si,k = (−∞, 0)1 × · · · × (−∞, 0)k−1 × [0,∞)k × R × · · · . By the continuity of the probability
measure,

∞∑
k=1

pi1,...,il−1,k,il+1,...in = pr
{

Z (s1) ∈ S1,i1 , . . . , Z (sl−1) ∈ Sl−1,il−1 , Z (sl )

∈
∞⋃

k=1

Sl,k, Z (sl+1) ∈ Sl+1,il+1 , . . . , Z (sn) ∈ Sn,in

}
,

with straightforward calculation, since
∞∪

k=1
Sl,k =

∞⊗
k=1

R.
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The theorem is proven after showing that, for any Ai ∈ B(R), i = 1, . . . , k, we have

pr{θ (s1) ∈ A1, . . . , θ (sl−1) ∈ Al−1, θ (sl) ∈ R, θ (sl+1) ∈ Al+1, . . . , θ (sn) ∈ An}
=

∑
(i1,...,in )∈{1,2,... }n

pi1,...,in δθ∗
i1

(s1)(A1) · · · δθ∗
il

(sl ) (R) · · · δθ∗
in

(sn )(An)

=
∑

(i1,...,il−1,il+1,...,in )∈{1,2,... }n−1

δθ∗
i1

(s1)(A1) · · · δθ∗
in

(sn )(An)

( ∞∑
k=1

pi1,...,il−1,k,il+1,...in

)

=
∑

(i1,...,il−1,il+1,...,in )∈{1,2,... }n−1

pi1,...,il−1,il+1,...,in δθ∗
i1

(s1)(A1) · · · δθ∗
in

(sn )(An)

= pr{θ (s1) ∈ A1, . . . , θ (sl−1) ∈ Al−1, θ (sl+1) ∈ Al+1, . . . , θ (sn) ∈ An}· �

PROPOSITION A2. Let {Y (s), s ∈ D} be as in Proposition A1. If the base random field G0 is almost surely
continuous, then, for all s0 ∈ D, Y (s) converges weakly to Y (s0) with probability one as ||s − s0|| → 0.

Proof. The proof follows immediately from Proposition A1, once we notice that, under our assumptions,
for any n = 1, 2, . . . , lim||sn−sn−1||→0 pi1,...,in = pi1,...,in−1 if in = in−1, and is zero otherwise, independently
of the particular mean around which we centre the process Z , i.e., the weights are almost surely continuous.
�

APPENDIX 2

Full-conditional distributions for the Gibbs sampler

Full conditionals for the Z’s. To write down the full conditionals for the Z ’s, we first write the conditional
distributions

[Zt,l(si )|Zt,l(s j ), j 
= i, µl , η] = N {µ̃i
t,l , H̃i (η)},

for all i = 1, . . . , n, l = 1, . . . , K − 1, t = 1, . . . , T , where

µ̃i
t,l = µl − hi (η)T H−1

(−i)(η) Z (−i)
t,l ,

H̃i (η) = 1 − hi (η)T H−1
(−i)(η)hi (η),

in which hi (η) is the i th column vector of Hn(η), H(−i)(η) is the (n − 1) × (n − 1) matrix obtained from

Hn(η) by deleting the i th row and column and Z (−i)
t,l is the (n − 1)-dimensional vector obtained from Zt,l

by deleting the i th element. Note that both µ̃i
t,l and H̃i (η) are scalars.

We indicate with ψ = (Xt , β, θ∗, τ 2, σ 2, φ, µl , l > 1, η) the vector of parameters of the model other
than the Z ’s. Then the full conditional of Zt,l(si ) is given by

[Zt,l(si )|Yt , Zt,l

(
s j

)
, Zt,m(si ), m 
= l, j 
= i, ψ] ∝ [Zt,l(si )|Zt,l(s j ), j 
= i, ψ]

×
K∑

m=1

exp

[
− 1

2τ 2

{
Yt (si ) − Xt (si )

T β − θ∗
m(si )

}2
]

IZt,m (si ),

where Zt,m(si ), m 
= l, are all known. If Zt,m(si ) � 0, for some m < l, then θt (si ) = θ∗
m(si ) and Zt,l (si ) is

sampled directly from the unrestricted distribution N {µ̃i
t,l , H̃i (η)}.
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Otherwise, if Zt,m(si ) < 0, for m < l, the full conditional is a binary mixture of truncated normals. If
Zt,k(si ) � 0 for the first k > l, let

ω− = exp

[
− 1

2τ 2
{Yt (si ) − Xt (si )

Tβ − θ∗
l (si )}2

]
,

ω+ = exp

[
− 1

2τ 2
{Yt (si ) − Xt (si )

Tβ − θ∗
k (si )}2

]
,

πl = ω−�
{
ζ i

t,l

}
ω−�

{
ζ i

t,l

} + ω+�
{−ζ i

t,l

} , πk = ω+�
{−ζ i

t,l

}
ω−�

{
ζ i

t,l

} + ω+�
{−ζ i

t,l

} ,

where ζ i
t,l = µ̃i

t,l/√ H̃i (η). Therefore, the full conditional for Zt,l (si ) is a mixture of two truncated
normals. In particular, with probability πl , we sample Zt,l (si ) from the truncated normal distribution
N {µ̃i

t,l , H̃i (η)}I{Zt,l (si )� 0}; with probability πk , we sample Zt,l (si ) from the truncated normal distribution

N {µ̃i
t,l , H̃i (η)}I{Zt,l (si )<0}.

Full conditional for the θ∗’s. We can update all the θ∗’s at once for all locations. Let us con-
sider at each point s ∈ D the partition induced on the space of the Z ’s by the allocation process;
that is, for t = 1, . . . , T and l = 1, . . . , K − 1, consider the sets Zt,l (s) = {s ∈ D : Zt,1(s) <

0, . . . , Zt,l−1(s) < 0, Zt,l (s) � 0}, and Zt,K (s) = {s ∈ D : Zt,1(s) < 0, . . . , Zt,K−1(s) < 0}. Then
I (Zt,l) = diag{IZt,l (s1), . . . , IZt,l (sn )} is the diagonal matrix whose i th entry is equal to one when the
component l is chosen at location si .

Immediately, the full conditional for θ∗
l = {θ∗

l (s1), . . . , θ∗
l (sn)} is given by

[θ∗
l |Yt , Zt , t = 1, . . . , T, β, τ 2, σ 2, φ]

∝ exp

{
− 1

2τ 2

T∑
t=1

(
Yt − XT

t β − θ∗
l

)T
I (Zt,l)

(
Yt − XT

t β − θ∗
l

)}

× exp

{
− 1

2σ 2
θ∗T

l R−1
n (φ) θ∗

l

}
·

Then, with � = { ∑T
t=1 I (Zt,l )/τ 2 + R−1

n (φ)/σ 2
}−1

,

[θ∗
l |Yt , Zt , t = 1, . . . , T, β, τ 2, σ 2, φ] = N

{
1

τ 2
�

T∑
t=1

I (Zt,l)
(
Yt − XT

t β
)
,�

}
·

Once we know θ∗
l and Zt for all l = 1, . . . , K and t = 1, . . . , T , we can compute each θt as a function of

θ∗
l and Zt .

Full conditionals for β, τ 2, σ 2, φ, µ and η. Assume that β ∼ Np{β0, �0}.Then
[β|Xt , Yt , Zt , θt , τ

2] = N {β̂, �̂β}, where �̂β = ( 1
2

∑T
t=1 XT

t Xt + �−1
0 )−1 and

β̂ = �̂β[ 1
2 XT

t (Yt − θt ) + �−1
0 β0].

Assume that τ 2 ∼ IG(ατ , βτ )· Then [τ 2|Xt , Yt , θt , β] = IG(α̃τ , β̃τ ), where α̃τ = ατ + 1
2 nT and β̃τ = βτ +

1
2

∑T
t=1(Yt − β Xt − θt )T(Yt − β Xt − θt ).

Assume that σ 2 ∼ ig(ασ , βσ )· Then [σ 2|θ∗
l , φ] = ig(α̃σ , β̃σ ), where α̃σ = ασ + 1

2 nK , and β̃σ = βσ +
1
2

∑K
l=1 θ∗T

l R−1
n (φ)θ∗

l ·
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Depending on the prior [φ], the full conditional of φ can be sampled with a Metropolis-within-Gibbs step,

[φ|θ∗
l , σ 2] ∼ [φ] × exp

{
− 1

2σ 2

K∑
l=1

θ∗T
l R−1

n (φ)θ∗
l

}
·

Generally, we must use a Metropolis step for µl , l = 1, . . . , (K − 1), unless the α in the Be(1, α) is equal to
1. Note that pr{Zl(s) � 0} = �(µl) and pr{Zl (s) � 0} ∼ Be(1, α) induce a prior for µl that is proportional
to {1 − �(µl)}α−1 × exp(− 1

2µ2
l ). If α = 1, the prior for µl is a normal distribution and thus conjugate.

The full conditional for µl is

[
µl |Zl

t , η
] ∝ {1 − �(µl)}α−1 × exp

(
−1

2
µ2

l

)

× exp

{
−1

2

T∑
t=1

(
Zl

t − µl1n

)T
H−1

n (η)
(

Zl
t − µl1n

)}
.

Depending on the prior [η], the full conditional of ψ can be sampled with a Metropolis-within-Gibbs step,

[η|Zt , µl ] ∼ [η] × exp

{
−1

2

T∑
t=1

K−1∑
l=1

(
Zl

t − µl1n

)T
H−1

n (η)
(

Zl
t − µl1n

)}
.
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Impiego di medie associative. Quad. Istit. Mat. Finanz. Univ. Torino III, 1–13.

DAMIAN, D., SAMPSON, P. & GUTTORP, P. (2001). Bayesian estimation of semi-parametric non-stationary spatial covari-
ance structures. Environmetrics 12, 161–78.
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