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Electromagnetic interaction between a sub-wavelength particle (the “probe”) and a material surface

(the “sample”) is studied theoretically. The interaction is shown to be governed by a series of

resonances corresponding to surface polariton modes localized near the probe. The resonance param-

eters depend on the dielectric function and geometry of the probe as well as on the surface reflectivity

of the material. Calculation of such resonances is carried out for several types of axisymmetric

probes: spherical, spheroidal, and pear-shaped. For spheroids, an efficient numerical method is devel-

oped, capable of handling cases of large or strongly momentum-dependent surface reflectivity.

Application of the method to highly resonant materials, such as aluminum oxide (by itself or covered

with graphene), reveals a rich structure of multi-peak spectra and nonmonotonic approach curves,

i.e., the probe-sample distance dependence. These features also strongly depend on the probe shape

and optical constants of the model. For less resonant materials such as silicon oxide, the dependence

is weak, so that the spheroidal model is reliable. The calculations are done within the quasistatic

approximation with radiative damping included perturbatively.VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4941343]

I. INTRODUCTION

The problem of electromagnetic interaction between a

material surface and a small external particle is fundamental

to numerous physical phenomena and spectroscopic techni-

ques, including surface-enhanced Raman scattering, surface

fluorescence, adsorbed molecules spectroscopy, and near-field

microscopy. From the point of view of electromagnetic

theory, it is a special kind of scattering problem where the

scatterer resides in a uniform half-space, e.g., vacuum, while

the effect of the other half-space—the sample—is represented

by the surface reflectivity raðq;xÞ. The reflectivity may

depend on the in-plane momentum q, frequency x, and polar-

ization a ¼ P or S. Far-field optics describes the regime

q < x=c. Momenta q � x=c, which correspond to in-plane

distances Dq much smaller than the diameter c=x of

Wheeler’s radian sphere,1 are the domain of near-field optics.

This work is motivated by recent advancements of the

scattering-type near-field optical microscopy2,3 (s-SNOM),

which has become one of the leading tools for measuring op-

tical response of diverse materials on spatial scales as short

as 5–20 nm. Thanks to technical improvements and the de-

velopment of tunable and broad-band infrared sources,4–7 the

s-SNOM has provided insights into properties of complex

oxides,8–14 organic monolayers,15 graphene, and other two-

dimensional crystals.5,16–18

The schematics of a s-SNOM experiment is shown in Fig.

1(a). A sharp elongated probe is brought into close proximity

of a sample and is illuminated by an external electromagnetic

wave with electric field Eexte
�ixt. Its interaction with the probe

creates scattered waves eiqqþikzz�ixt; q ¼ ðx; yÞ, with arbitrary

in-plane momentum q, including large-q evanescent waves,

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx=cÞ2 � q2
q

’ iq. Multiple reflections of these waves

inside the probe-sample nanogap cause small but important

changes in the total radiating dipole moment pe�ixt of the

probe. These changes are detected by measuring the far-field

scattering signal as a function of the probe coordinates. This

signal is proportional to the probe polarizabilities

v? � pz=Ez
ext; vk � px=Ex

ext; (1)

which have the dimension of volume.

The goal of this paper is to study the properties of func-

tions v? and vk. For simplicity, we consider only axisymmet-

ric probes. We are especially interested in probes of large

aspect ratio. In the experiment, strongly elongated probes are

used because of high longitudinal polarizability v?, which
promotes an efficient coupling between evanescent and far-

field radiation modes—the “antenna” effect—making the

detection of the near-field component possible.

We assume that the length of the probe is much smaller

than the diameter of the radian sphere c=x, so that the scat-

tering problem can be treated within the quasistatic approxi-

mation. The probe shape we examine the most is a prolate

spheroid. At first glance, both of these assumptions are unre-

alistic because actual probes are not spheroidal and their

length (typically, tens of lm) can often exceed c=x for x in

infrared or optical frequency domain. Yet this model was

previously found to yield quantitative agreement with the s-

SNOM experimental data for many materials. This apparent

agreement can be expected in cases where the surface reflec-

tivity raðq;xÞ of the sample is not too large, and the aspect

ratio of the probe does not vary greatly from one experiment

to the next. Under such conditions, the gross features of the
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s-SNOM scattering amplitude should indeed have only a mod-

est dependence on the exact shape of the probe and other ex-

perimental parameters. However, fine details of the scattering

amplitude are shape-dependent even in this case19 and they

may be discerned as the instrumental resolution improves.

Furthermore, for samples with high reflectivity, even the gross

features become sensitive to the shape and size of the probe.

To demonstrate these trends in this paper, we study the longitu-

dinal and the transverse polarizabilities in great detail. We will

ignore the S-polarization reflectivity rSðq;xÞ because for most

materials it becomes very small at q � x=c. Hence, v� are

functionals of the remaining reflectivity function rPðq;xÞ and
the probe-sample distance ztip. We show that such functionals

can be quite complicated, especially for strongly momentum-

dependent reflectivity typical of layered and/or ultrathin mate-

rials. Therefore, it is good to start with a simpler case of a bulk

medium with a q-independent reflectivity

bðxÞ � rPðq;xÞ; (2)

so that for a fixed ztip and x, the probe polarizabilities are

functions of a single parameter b.

It should be clarified that while the absolute reflectivity

may not exceed unity for the radiative modes q < x=c
because of energy conservation, for the evanescent ones q >
x=c it is allowed do so. Large b’s are indicative of weakly

damped surface modes in a material, e.g., surface phonons in

dielectrics or surface plasmons in metals. We use the umbrella

term “surface polaritons” for all such modes. The energy loss

due to evanescent modes is governed not by jbj but by Imb

which must be nonnegative at q > x=c. (To compute the

losses, Imb needs to be integrated over q with a weight that

depends on the probe-sample distance.20) In the limit of van-

ishingly small dissipation, ImbðxÞ tends to a d-function peak

at the mode frequency. In practice, Imb (and consequently

jbj) as high as 10–20 is possible for well-ordered crystalline

solids, e.g., aluminum oxide Al2O3 possessing sharp phonon

modes [Fig. 2(a)]. Therefore, a robust theoretical formalism

must be capable of computing functions v�ðbÞ in the entire

upper complex half-plane. To meet this requirement, such a

formalism must correctly reproduce the analytic properties of

functions v�ðbÞ. We adopt a version of the generalized spec-

tral method (GSM) in which the total field outside the probe

and sample is decomposed into eigenfunctions of an auxiliary

homogeneous problem, and the role of eigenvalues is played

by the reflectivity b, the so-called b-method in the terminol-

ogy of Ref. 21. (Similar formalism is also known in the theory

of conductivity of heterogeneous media.22,23) Following Refs.

21–23, one can show, for the quasistatic case, that for any

probe-sample distance ztip > 0 functions v�ðbÞ are meromor-

phic. In other words, they admit the series representations

v� bð Þ ¼
X

1

k¼0

R�
k

b�k � b
; � ¼ ? or k; (3)

where the sequence of poles b�k has no accumulation points,

and so, no upper limit. Additionally, we will show that if the

probe is made of an ideal conductor and no other sources of

dissipation are present, then the poles b�k > 1 and the resi-

dues R�
k > 0 are real. If the dielectric constant �tip of the

probe is considered fixed, R�
k and b�k depend only on the geo-

metric factors: the probe shape, size, and its distance ztip to

the surface. All these results comply with the general theory

of the b-method developed in Ref. 21.

The poles b�k grow exponentially with k but their ratios

with R�
k are bounded and satisfy the sum rule

X

1

k¼0

R�
k

b�k
¼ v�0: (4)

Here, v�0 � v�ðb ¼ 0Þ is the polarizability of an isolated probe,

which does not depend on ztip. These properties ensure conver-

gence of the series (3) at any b 6¼ b�k . On the other hand, if a

material-specific bðxÞ approaches any of b�k , a resonant peak in
v� and ultimately, in the near-field signal, would be observed.

The divergence of v� at a given pole implies that a non-

zero dipole, i.e., free oscillations may exist in the absence of

any external field. Physical intuition about this regime is

aided by the method of images, according to which real

charges Qi on the probe interact with their virtual images

�bQi inside the sample and for b > 1 achieve a runaway

positive feedback. However, one must keep in mind that

these eigenmodes arise only in the auxiliary problem where

the sample is substituted by a fictitious material of reflectiv-

ity b�k . The divergence never actually happens in real materi-

als due to their inherent dissipation, which enters in the form

FIG. 1. (a) Schematics of a s-SNOM experiment in which a polarizable probe is used to examine a sample characterized by the surface reflectivity raðqÞ. The
external electric field Eext incident on the system creates evanescent waves inside the probe-sample gap. This modifies the dipole moment p of the probe, which

is detectable by its far-field radiation. (b) The real-space potential distribution for the first four eigenmodes of the probe polarizability v? computed numeri-

cally for a spheroidal probe of half-length L ¼ 25a. The axes are the x- and z-coordinates in units of a, the curvature radius of the apex of the probe. The

probe’s location is represented by the uniformly shaded beige area in the upper left corner of each panel.
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of a positive imaginary part in b as shown in Figs. 2(a) and

2(b). The resonances are further damped due to the shifting

of the poles b�k to the lower complex half-plane when radia-

tive corrections are considered [Fig. 2(c)], as discussed in

more detail in Sec. VIII. For a generic probe that ends in a

rounded tip, the amplitude of the eigenmodes is the greatest

near the tip, as illustrated in Fig. 1(b) for a spheroidal probe.

Overall, this physical picture of tip-localized eigenmodes is

an elegant and economical approach to understanding the

mechanism of probe-sample coupling.

The main objective of the present work is to elucidate the

analytical properties of the coefficients b�k and R
�
k . We focus on

the practically interesting case where the probe length L is

much larger than the curvature radius a of the probe tip. We

show that for such strongly elongated probes three regimes can

be distinguished. The first is the short-distance limit ztip � a

where the behavior of b�k is universal. We show that it can be

derived from the known exact solutions for spherical particles

(Sec. II). The second is the long-distance limit, ztip � L, where

the probe acts as a point-dipole and the functional form of the

resonance parameters is again universal. The remaining third

regime a < ztip < L is the most nontrivial one where b�k and

R�
k depend on the probe shape.

For all the probe geometries, we study the poles b�k grows

exponentially with k, and so for moderate values of b it is per-

missible to truncate the series in Eq. (3) after one or a few

leading terms. This truncation is effectively done in simplified

models6,24–27 of the probe-sample coupling (see Sec. IX).

However, this simplification may lead to qualitatively and

quantitatively wrong results at small ztip and/or for large b.

The latter characterize highly polar materials such as SiO2
28 (a

commonly used substrate) and the already mentioned Al2O3

(an important reference material of infrared optics).

Besides addressing analytical properties of the probe polar-

izabilities, we also discuss methods for their numerical computa-

tion. For the simplest case of a momentum-independent

reflectivity, the calculation can be made virtually instantaneous

with the help of Eq. (3) once the first few b�k and R�
k are com-

puted and stored. For specific case of a spheroidal probe, this cal-

culation can be further accelerated using the spheroidal

harmonics basis instead of the standard boundary element

method (BEM). Since the number of relevant poles and residues

is relatively small, for further convenience, they can be fitted to

analytical forms, see an example for L ¼ 25a spheroidal probe

in Ref. 29. The speed becomes a crucial consideration if the cal-

culations have to be done repeatedly. An important example is

extracting optical constants of the sample from near-field spec-

troscopy data by curve-fitting algorithms.19 One may anticipate

to find a considerable speed-up if this inverse problem was

treated using the GSM. The acceleration occurs because the

unknown physical parameter b ¼ bðxÞ of the sample and the

geometric parameters b�k and R�
k of the probe stand clearly sepa-

rated. The GSM also applies for momentum-dependent rPðq;xÞ,
e.g., for layered samples; however, in the current implementa-

tion, the speed-up compared with the BEM is less significant.

The remainder of the article is organized as follows. In

Sec. II, we analyze the universal aspects of the short- and the

long-distance regimes. In Sec. III, the spheroidal probe model

is considered. The equations for the poles and residues are pre-

sented and the results of their numerical solution for the case

of a q-independent rP are discussed. In Sec. IV, we explore the

effects due to a weakly q-dependent surface reflectivity. In

Sec. V, we discuss caveats in the simulation of the s-SNOM

experiment. In Sec. VI, we apply our numerical method to

computing the near-field response of bulk Al2O3, a strongly

polar material. In Sec. VII, we perform the calculation for the

same Al2O3 substrate but covered with graphene, which is a

system with a strongly q-dependent reflectivity. In Sec. VIII,

we discuss the effects of the probe shape and retardation on

these calculations. We also do a similar comparison for SiO2, a

less polar material. In Sec. IX, we discuss prior theoretical

work and close with concluding remarks. Technical details of

the derivations and the source code of our computer program

are available in the supplementary material.

II. PROBE-SAMPLE INTERACTION IN SHORT- AND
LONG-DISTANCE LIMITS

We start with a qualitative analysis of the short-distance

regime defined by the condition ztip � a. In this limit, the

structure of the localized polariton modes can be understood

FIG. 2. (a) Near-field reflectivity bðxÞ of bulk Al2O3 discussed in Sec. VI. Whenever the condition RebðxÞ ¼ b�k is met, a local maximum appears in Imv� .

The frequencies of three such resonances are indicated by the dashed lines. (b) In the complex plane of b, the poles b�k lie on the positive real axis, while real

materials trace curves in the upper half plane, shown in red. (c) A full electrodynamic treatment predicts that the poles shift into the lower half-plane and an

additional nonanalyticity in the form of a branch cut ½1;1Þ appears.
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intuitively by analogy30 to electromagnetic modes in an open

cavity. The probe-sample gap can be approximated by a cav-

ity with height zðqÞ ’ ztip þ ðq2=2aÞ gradually increasing as

a function of the radial position q. For simplicity, let us

assume the surface reflectivity of the probe is equal to unity,

as for an ideal conductor. To have free oscillations exist in

such a cavity, the surface reflectivity b of the sample must

exceed unity, compensating for the exponential decay of the

evanescent waves. The condition of the self-sustained oscil-

lations is b expð2ikzðqÞzðqÞÞ ¼ 1. Accordingly, the local ra-

dial momentum qðqÞ ’ �ikzðqÞ ¼ logb = 2zðqÞ. Imposing

the quasiclassical Bohr-Sommerfeld quantization condition
Ð1
0

dqqðqÞ ¼ p½k þOð1Þ� for mode number k, we obtain

log bk ’ k þO 1ð Þ½ �
ffiffiffiffiffiffiffiffiffi

8ztip

a

r

; ztip � a: (5)

The mode is localized at distances q�
ffiffiffiffiffiffiffiffiffi

ztipa
p

. The validity of

this qualitative analysis is supported by the exact results for

spherical particles. For the � ¼k part, the following compact

formulas for the poles and residues are available:30–32

b
k
kðaÞ ¼ eð2kþ3Þa; (6)

R
k
kðaÞ ¼ 4ðk þ 1Þðk þ 2Þa3 sinh3a; (7)

where

a ¼ arccosh
ztip

a
þ 1

� �

: (8)

It is easy to check that Eqs. (5) and (6) agree in the limit of

small a. (Dependence of b?k on a is qualitatively similar; how-

ever, the residues scale as R?
k � ka3a2 at small a.29) It is rea-

sonable to think that the behavior of b�kðaÞ at a � 1 should be

common for any shape ending in a rounded tip. As long as the

modes are localized at q � a, they should be affected weakly

by rest of the probe. This hypothesis is supported by numeri-

cal calculations presented later in this article.

Consider next the long-distance limit ztip � L. In this

case, the probe-sample interaction can be analyzed using the

multipole expansion. For the lowest resonance k¼ 0, it is suf-

ficient to include only the dipole term. The dipole moment of

the probe is given by p� ¼ v�0E
�
tot, where E

�
tot ¼ E�

ext þ E�
ind is

the total field at the probe position and E�
ind is the field induced

by the image dipole. In particular, E?
ind ¼ bp?=4z3tip and

E
k
ind ¼ bpk=8z3tip. Solving these equations for p� and casting

the result for v� ¼ p�=E�
ext in the form (3), we get

b?0 ’ 4z3tip=v
?
0 ; R?

0 ’ 4z3tip; (9a)

b
k
0 ’ 8z3tip=v

k
0; R

k
0 ’ 8z3tip: (9b)

For the sphere v�0 ¼ a3, so that the last pair of equations

agrees with the exact result (6) and (7). The k> 0 resonances

are dominated by higher-order multipoles. The principal de-

pendence of the poles and residues on a is expected to be the

same as for the sphere, i.e.,

b�k �
ztip

a

� �2kþ3

; R�
k �

2

c�
k þ 1ð Þ k þ 2ð Þz3tip if ztip � L;

(10)

where c? ¼ 1 and ck ¼ 1=2. The forms for R�
k are verified

numerically in Sec. III. Equations (9a), (9b), and (10) imply

that in the large ztip limit the sum rule (4) is saturated by the

k¼ 0 mode alone.

The case of a q-dependent reflectivity can be treated

similarly. Thus, for k¼ 0, one finds26

v� x; ztipð Þ ¼
v�0

1� v�0g
� x; ztipð Þ

; (11)

g�ðx; ztipÞ ¼ c�
ð1

0

rPðq;xÞe�2qztipq2dq: (12)

Note that the integral in Eq. (12) is dominated by the in-

plane momenta q � 1=ztip, which we assume to be well out-

side the light cone, q � x=c. At ztip > c=x, this condition

no longer holds and one has to include retardation effects

(see Sec. VIII).

In summary, in this section, we presented arguments

that the limiting case formulas (5) and (9a)–(12) apply to

perfectly conducting probes of arbitrary shapes. For the

sphere L¼ a and for probes of modest aspect ratio L� a,

these formulas match by the order of magnitude at ztip � a.

However, for strongly elongated probes L � a, an additional

intermediate regime a � ztip � L exists which requires fur-

ther study. The simplest example of such a shape is the pro-

late spheroid and we discuss it in Section III.

III. INTERMEDIATE DISTANCES: SPHEROIDAL PROBE

Unlike the problem of a sphere, that of a spheroidal

probe cannot be solved analytically. However, we can take

advantage of the separation of variables in prolate spheroidal

coordinates (Fig. 3), which enables a more efficient numeri-

cal solution.33 In this coordinate system, the spheroid is a

surface of constant n ¼ L=F � n0. The focal length F, the

FIG. 3. The prolate spheroidal coordinate system. Contours of constant n (g)

are confocal spheroids (hyperboloids). The unit vector r̂ and polar angle h of

spherical polar coordinates and unit vectors q̂ and ẑ of cylindrical polar

coordinates are also shown for reference.
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major semi-axis L, the minor semi-axis W, and the curvature

radius a of the spheroid apex are related by

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 �W2
p

; a ¼ W2=L: (13)

This implies n0 ¼ ½1� ða=LÞ��1=2
. We assume that the major

axis of the spheroid is along the z-axis. If the distance

between the spheroid and the sample is ztip, the sample sur-

face is at z ¼ �L� ztip.

We consider the quasistatic limit where the scalar poten-

tial has the harmonic time dependence / e�ixt. Its spatial

part must obey the Laplace equation in the domain outside

both the spheroid and the sample. Therefore, it can be

expanded into spheroidal harmonics, which are products of

the generalized Legendre functions of the first and second

kind Pm
l ðxÞ and Qm

l ðxÞ. Here, m ¼ 0;61;62;… is the z-axis

angular momentum and l must be greater or equal to jmj. As
shown in Ref. 29, the expansion coefficients Am

l can be

related to the charge distribution on the spheroid. For exam-

ple, Am
0 is proportional to the total oscillating charge of the

spheroid / e�ixt. For a passive probe, Am
0 ¼ 0. The l¼ 1

terms determine the components of the dipole moment

induced on the probe

pz ¼ � 1

3
F3A0

1; px � ipy ¼
2

3
F3A1

1: (14)

For each m, the set of coefficients Am
l satisfies the infinite-

order system of linear equations

X

1

l0¼1

ðKm
ll0 � Hll0ÞAm

l0 ¼ bml; (15)

where K
m
ll0 and Hll0 are defined by Eqs. (21) and (24) below.

According to Eq. (14), to find p, we need to consider only

m¼ 0 and m¼ 1. The requisite coefficients bml on the right-

hand side of Eq. (15) are given by

b01 ¼ � 4

3
Ez; (16)

b11 ¼
4

3
Ex � iEyð Þ ; b�1

1 ¼
1

3
Ex þ iEyð Þ: (17)

If the external field Eext ¼ Exx̂ þ Eyŷ þ Ezẑ is uniform, all

other bml vanish. Once we solve the system (15) for m¼ 0,

we can find the transverse polarizability from

v? ¼ pz

Ez
¼ 4

9
F3 A0

1

b01
: (18)

In turn, the solution for m¼ 1 would give us A1
1 and

vk ¼ px � ipy

Ex � iEy

¼ 8

9
F3 A1

1

b11
: (19)

Equation (15) we wish to solve can be cast in a matrix form

ðKm �HÞAm ¼ b
m: (20)

Matrix K
m is diagonal, Km

ll0 ¼ K
m
l dll0 , where

K
m
l ¼ �1ð Þm

2lþ 1

4

�tip � 1
�tip

Qm
l n0ð Þ

Pm
l n0ð Þ �

d

dn0
Qm

l n0ð Þ
d

dn0
Pm
l n0ð Þ

2

6

6

6

4

3

7

7

7

5

; (21)

and �tip is again the dielectric constant of the spheroid. If the

probe is made of an ideal conductor, �tip ! 1, then Eq. (21)

simplifies to

K
m
l ¼ �1ð Þm 4

2lþ 1

Qm
l n0ð Þ

Pm
l n0ð Þ : (22)

All these Km
l are actually positive numbers because the factor

ð�1Þm is compensated by the same factor in the definition of

Qm
l ðn0Þ. The behavior of Km

l at large l is approximately expo-

nential, as can be deduced from the asymptotic formula

�1ð Þm Qm
l n0ð Þ

Pm
l n0ð Þ ’ pe� 2lþ1ð Þa0 ; a0 � arccoshn0: (23)

In Sec. VI, we also consider the case where �tip is a finite

positive number. In this case, the decay of Km
l at large l is

also exponential but with a different factor in front.

The elements of matrix H in Eq. (20) are given by

Hll0 � 2p

ð1

0

rP q;xð ÞIlþ1
2
qFð ÞIl0þ1

2
qFð Þe�2qzp

dq

q
; (24)

where I�ðzÞ are the modified Bessel functions of the first

kind and

zp � ztip þ L: (25)

As mentioned in Sec. I, the reflectivity rPðq;xÞ may have

strong peaks at the dispersion curves xðqÞ of the surface

polaritons of the sample. In practice, rPðq;xÞ is always finite,
so that the integrand in Eq. (24) is well-behaved and exponen-

tially decreasing. A fast method of computing Hll0 numerically

is explained in the supplementary material. In the remainder

of this section, we will assume that rPðq;xÞ is q-independent.
We will show that the polarizabilities of the spheroidal probe

are meromorphic functions as stated in Sec. I. We will also

present our analytical and numerical results concerning the

behavior of their poles and residues.

If rPðq;xÞ ¼ b ¼ const, then matrix H factorizes H ¼
b �H and Eq. (20) becomes

ðKm � b �HÞAm ¼ b
m: (26)

A particular case of this equation for ztip ¼ 0 was previously

derived in Ref. 33. In general, Eq. (26) implies that Am as a

function of b has poles b�k that are the solutions of the eigen-

value problem

ðKm � b�k
�HÞuk ¼ 0: (27)

The substitution uk ¼ ðKmÞ�1=2
vk transforms it to

vk ¼ b�k Mvk; M ¼ ðKmÞ�1=2 �H ðKmÞ�1=2: (28)
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Since all Km
l are assumed to be positive, matrix M is real and

symmetric, and so its eigenvalues ðb�kÞ
�1

are real and its eigen-

vectors vk can be chosen to be orthonormal. Assuming vk

forms a complete basis, the solution A
m of Eq. (26) can be

sought as a linear combination of the corresponding uk. Taking

into account Eqs. (18) and (19), we arrive at Eq. (3) with

R�
k

b�k
¼ v�0j vkð Þ0j

2 ; v�0 ¼
4

9

mþ 1

K
m
1

F3; (29)

where, once again, m¼ 0 for � ¼ ?, m¼ 1 for � ¼k, and
ðvkÞ0 is the first component of vector vk. The completeness of

the basis entails
P

kjðvkÞ0j
2 ¼ 1, leading to the sum rule (4).

The explicit formulas for v�0 that follow from Eqs. (22) and

(29) are

v?0 ¼ L3

3n30

1

2
ln

n0 þ 1

n0 � 1

� �

� 1

n0

� ��1

¼ V

4pL?
; (30a)

v
k
0 ¼

2L3

3n30

n0

n20 � 1
� 1

2
ln

n0 þ 1

n0 � 1

� �

" #�1

¼ V

4pLk
; (30b)

where V ¼ ð4p=3ÞL2a is the volume of the spheroid and L�

are the depolarization factors of the spheroid34

L? ¼ n20 � 1

� �

1

2
n0ln

n0 þ 1

n0 � 1

� �

� 1

� �

; (31)

Lk ¼ 1� L?

2
: (32)

These formulas should be familiar from classical electrostatics

or from the theory of light scattering by small particles.34 For

strongly elongated spheroid L � a; n0 ’ 1, they yield

v?0 ’ 2

3

L3

ln 4L=að Þ ; (33a)

v
k
0 ’

2

3
L2a : (33b)

In Sec. I, we stated that the sequence b�k may not have

accumulation points. For the present case of a spheroidal

probe, this can be proven directly from the properties of ma-

trix M. The first step is to show that the matrix elements of
�H obey the asymptotic bound

ln �H ll0 < � lþ l0 þ 1ð Þarccosh zp

F

� �

(34)

at large l and l0. This can be established using the saddle-

point integration in Eq. (24). Together with Eqs. (22) and

(23), this bound ensures that at ztip > 0 the high-order matrix

elements of M decay exponentially

lnMll0 < � lþ l0 þ 1ð Þ arccosh coshaþ ztip

F

� �

� a

� �

:

Here, a [Eq. (8)] parametrizes the probe-sample distance ztip.

Hence, the double series
P

ll0M
2
ll0 ¼ trM2 is convergent.

Considering the identity

X

1

k¼0

ðb�kÞ
�2 ¼ trM2 < 1; (35)

we see that the accumulation points are ruled out. On the

contrary, trM2 diverges at ztip ¼ 0 and one accumulation

point does exist: b¼ 1. For the sphere, this can be found

directly from Eq. (7) by setting a¼ 0.

In the spherical limit n0 ! 1, an analytical solution of

our equations exists although it is not obvious. We deduced

the form of this solution from the method of images.29 At fi-

nite n0, we resorted to solving the problem numerically. As

already mentioned, due to an exponential growth of b�k with

k, only a first few of such poles are usually needed for eval-

uating the polarizabilities in question v� . To compute such

b�k and the corresponding R�
k , we used the following proce-

dure. Given L/a and a, we would generate an N�N matrix

made of the first N rows and columns of the full infinite ma-

trix M. We would diagonalize this finite-size matrix by

standard library routines.35 The obtained eigenvalues ap-

proximate the first N poles b�k . We would gradually increase

the matrix size until the poles we are interested in would

show no variation as a function of N within the desired ac-

curacy. The larger L/a and the smaller a, the higher N was

needed. We found this procedure workable as long as N did

not exceed about 500. As a rule, the higher eigenvalues of

larger matrices would either fail to reach the accuracy or

would show an a-dependence inconsistent with physical

principles. This behavior stems most likely from roundoff

errors. In principle, one can combat them by utilizing

higher-precision arithmetic but we did not pursue this route.

For L ¼ 25a, the computation of the first nine poles with at

least two-digit accuracy was possible for a > 0:08, i.e.,

ztip > 0:003a. The residues R�
k were obtained from the

eigenvectors of the truncated matrix M using Eqs. (29),

(30a), and (30b). In the interval 0 < a < 0:08, we used the

linear interpolation between b�kða ¼ 0:08Þ and

b�kða ¼ 0Þ ¼ 1.

The results of these calculations are presented in Fig. 4

for the first four modes, k¼ 0 to 3. The solid lines in panels

(a) and (c) show b?k and b
k
k , respectively, as a function of a.

The corresponding quantities for a sphere are shown by the

dashed lines. The residues R�
k=a

3 are plotted in panels (b)

and (d). The first nine pole-residue pairs of the spheroid for

� ¼ ? have also been fitted with an error of 5% or smaller to

a combination of elementary functions in the range

0:003a < ztip < 10a. The fitting formulas and their coeffi-

cients are cataloged in Ref. 29. The residue R?
8 behaves dif-

ferently from the others because it was constrained to satisfy

the sum rule (4). Using these formulas, one can find the

response v? with negligible computational cost for any bðxÞ
as long as its value is not extremely large. Note that although

these results are for perfectly conducting spheroids �tip ¼ 1,

calculations for arbitrary finite �tip can be done in the same

way except one has to use Eq. (21) instead of Eq. (22).

Let us now compare the obtained dependence of b�k on

ztip with the limiting asymptotic behavior predicted in Sec.

II. First, at ztip � a, the poles of the spheroid approach that

of a sphere, as expected (see Figs. 4(a) and 4(c)). The other
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limit is ztip � L, where the point-dipole formulas (9a) and

(9b) should apply. In Fig. 4, it is seen that the lowest eigen-

value of both shapes indeed have the correct behavior. The

intermediate regime a � ztip � L is the most nontrivial one.

We argue that in this regime function b?0 ðztipÞ behaves as

b?0 ðztipÞ ¼ c lnðztip=aÞ; a � ztip � L; (36)

with some coefficient c � 1 independent of L. To arrive at

this formula, we first find bounds on b?0 using the following

theorem. Consider two perfectly conducting probes of differ-

ent sizes. If the surface of one probe can be inscribed into

the other, then the first probe must have a larger b�0. This

statement is physically natural because self-sustained oscilla-

tions around the smaller body require a larger compensation

from the surface reflectivity (cf. Sec. II). It can also be pro-

ven mathematically from the variational principle.21,36 To

place bounds on b?0 of the spheroid, we can consider two

other probes, a larger one and a smaller one. We get

b
cone;�
0 < b�0 < b

ss;�
0 ; (37)

where b
cone;�
0 is the lowest pole of a cone with a vertex touch-

ing the sample and enveloping the spheroid; b
ss;�
0 is the low-

est pole of a spheroid of shorter length L ¼ ztip. It can be

shown37–39 that b
cone;?
0 ’ ð1=pÞlnðztip=aÞ. As for the smaller

spheroid, the point-dipole formula should apply by order of

magnitude, b
ss;?
0 � 6lnðztip=aÞ, cf. Eqs. (9a) and (33a). Since

the functional form of these bounds coincides with Eq. (36)

up to numerical coefficients, we argue that b?0 ðztipÞ should

obey the same equation as well. The graph shown in Fig.

4(a) is consistent with this prediction. However, due to nu-

merical limitations, L=ztip and ztip=a could not be very large

in our simulation and we could obtain only a crude estimate

1 < c < 3 of the coefficient c. The poles b
k
k of the in-plane

polarizability, which are plotted in Fig. 4(c) as a function of

a, also show crossovers among three regimes (short, long,

and intermediate distances) and can be understood in a simi-

lar way.

The behavior of the residues R�
k is more difficult to ana-

lyze. At large distances ztip � L, the residues of the spheroid

approach those of the sphere [Eq. (10)]. At small distances,

where the poles behave as lnb�k � ð2k þ 3Þa, the polarizabil-
ity is determined by a large number �1=a of terms in the

pole-residue series. The sum rule (4) implies that the sum of

these dominant residues must be of the order of v�0 for each

shape. Indeed, the residues of the sphere, which have the

form R?
k / ka3a2 and R

k
k / ðk þ 1Þðk þ 2Þa3a3,29 obey this

requirement. The residues of the spheroid are always larger

than those of the sphere, consistent with the higher v�0 . The

intermediate-distance behavior of Rk defies an obvious char-

acterization. It is intriguing that at small distances only the

residues are affected by the aspect ratio of the probe, while

at large distances only the poles are altered.

Information about the probe-sample coupling comple-

mentary to the properties of the poles and residues can be

obtained by examining the potential distribution of the polar-

iton modes in real space. The examples for the ? modes are

FIG. 4. (a) The first four poles b�k of

the polarizability v� for perfectly con-

ducting spheroids. The probe-sample

distance is parameterized by a ¼
arccoshð1þ ztip=aÞ [Eq. (8)]. The solid
lines are for a strongly elongated sphe-

roid L ¼ 25a and the dashed lines are

for a nearly spherical one L ¼ 1:01a.
The external field is in the z-direction,

� ¼ ?. (b) The corresponding residues

R?
k divided by a3. Poles for different

shapes converge at small ztip, while

residues converge at large ztip. (c) and

(d) Similar plots for the external field

in the x-y plane, � ¼k.
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depicted in Fig. 1(b). The potential is strongly peaked near

the tip of the spheroid, demonstrating the localized nature of

near-field coupling. Note that the number of times the poten-

tial changes sign along x is equal to k.

IV. MOMENTUM-DEPENDENCE OF THE
PROBE-SAMPLE COUPLING

A simple physical picture of the s-SNOM that served as

an important insight in the early days of the field and still

remains popular today is the notion that the probe couples

predominantly to momenta q � 1=a. Accordingly, the

s-SNOM signal is collected from a very small region of size

�a directly underneath the tip. Modern applications of

s-SNOM to two-dimensional and layered systems require

going beyond this oversimplified picture because the

q-dependence of the reflectivity rPðx; qÞ of such systems can

be very sharp due to presence of dispersive collective modes

(Sec. VII). Recall that for a momentum-independent reflectiv-

ity b [Eq. (2)], the poles and residues of the polariton eigenm-

odes are determined solely by the permittivity and geometry

of the probe. Unfortunately, for a q-dependent reflectivity,

such a clean separation of the probe and sample properties in

the eigenproblem is not possible. While one can still define

the eigenmodes by suitably modifying Eq. (3), the corre-

sponding poles and residues will be, in general, complicated

functionals of rPðx; qÞ. However, if the q-dependence of the

reflectivity is weak, it can be treated as a perturbation, and

the sample-independent resonant modes are retained. As we

show in this section, in this perturbative case, one can pre-

cisely define the probe-sample coupling as a function of q

and the “dominant” momentum as a function of ztip.

Consider a small q-dependent correction to the reflectivity

rPðqÞ ¼ bþ drPðqÞ: (38)

The kth pole b�k of the probe-sample eigenmodes is a func-

tional of rP. The key question is how this pole is affected by

the nonlocal correction to rP. The answer can be written in

terms of �G�
kðq; ztipÞ, the first variational derivative of

b�k ½rPðqÞ� with respect to rP

db�kðztipÞ ¼ �
ð1

0

G�
kðq; ztipÞdrPðqÞdq: (39)

This is the desired relation to the leading order in drP. A few

general properties of function G�
k at q < 1=ztip can be estab-

lished. First, this function decays exponentially at large q

G�
kðq; ztipÞ � e�2qztip : (40)

This is so because the probe-sample interaction is mediated

by multiple reflections of evanescent waves (Sec. I) and the

shortest distance such waves have to travel is 2ztip. Next, it is

easy to see that G�
k is normalized

ð1

0

G�
kðq; ztipÞdq ¼ 1: (41)

Using a variation principle, one can also show that for a per-

fectly conducting probe G�
kðq; ztipÞ is nonnegative. Therefore,

functions G�
kðq; ztipÞ can be considered weight functions for

the perturbation drPðqÞ. To put it another way, this set of

functions quantifies the momentum dependence of the probe-

sample coupling. Below we show that the properties of these

functions paint a much more nuanced physical picture than

the naive idea that the coupling is maximized at a single mo-

mentum q � 1=a. However, if one insists on characterizing

the entire distribution of relevant momenta by a single num-

ber, the logical candidates are the average momenta

�q�k ¼
ð1

0

G�
kðq; ztipÞqdq: (42)

The idea is that unless G�
kðq; ztipÞ has a complicated structure

or a slow decay, �q�k should play the role of a characteristic

momentum that determines kth polariton pole b�k .

Accordingly, we may expect that 1=�q�k should give an

improved estimate of the spatial resolution of the probe in

the context of near-field imaging by s-SNOM. Interestingly,

�q�k can be found by differentiating b�kðztipÞ

�q�k ztipð Þ ¼
1

2

@

@ztip
logb�k : (43)

To obtain this formula, consider first a sample with a q-inde-

pendent reflectivity b and let the probe-sample separation be

ztip ¼ zþ dz. This system is equivalent to another one: the

probe separated by ztip ¼ z from a fictitious two-component

medium composed of a vacuum layer of thickness dz plus

the original sample. The surface reflectivity of such a two-

component medium is q-dependent, rPðqÞ ¼ be�2qdz, so

that it has the form (38) with drPðqÞ ¼ �2qbdz. Evidently,

such a drPðqÞ shifts the resonant pole from b ¼ b�kðzÞ to

b ¼ b�kðzþ dzÞ, i.e., causes a differential change db�k
¼ ð@b�k=@zÞdz. Substituting these relations into Eq. (39), we

get Eq. (43). Note that as b�k rises more steeply with ztip for

larger k, �q�k increases with k.

An equivalent description of the effect of a q-dependent

perturbation is that it induces a correction to the surface

reflectivity. The effective reflectivity beff is different for

each k and �

b
�;eff
k � b� db�k ¼

ð1

0

G�
kðq; ztipÞrPðqÞdq: (44)

The corresponding polarizability v� is given by

v� ¼
X

1

k¼0

R�
k

b�k � b
�;eff
k

: (45)

In the following, we focus on function G�
0ðq; ztipÞ because

k¼ 0 is the dominant resonance at all but very small ztip.

Actually, the large-distance limit of this function has the uni-

versal form

G�
0ðq; ztipÞ ’ 4z3tipq

2e�2qztip ; ztip � L; (46)

same for both �. Equation (46) follows from Eqs. (11) and

(39) and is consistent with the surmised large-q behavior

(40). As one can see, Eq. (46) gives G�
0ðq; ztipÞ that is
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normalized, nonnegative, and has a single maximum at

q ¼ 1=ztip. The average momentum is �q�0 ’ 3=ð2ztipÞ.
In the intermediate-distance regime, functions G�

kðq; ztipÞ
are not expected to be universal. The specific example we

treat in detail is again the conducting spheroidal probe.

Combining Eq. (43) with the results of Secs. II and III, for

the strongly elongated spheroid, we obtain the following:

1

�q?0 ztipð Þ
�

aztipð Þ1=2 ; ztip � a;

2ztip log
ztip

a

� �

; a � ztip � ~L;

2ztip

3
; ztip � L:

8

>

>

>

>

>

<

>

>

>

>

>

:

(47)

Since the left-hand side has the physical meaning of the spa-

tial resolution of the probe, we expect it to monotonically

decrease as ztip decreases. Therefore, the length scale ~L

appearing on the second line of Eq. (47) should be of the

order of L = 3 logðL=aÞ. The presence of a large logarithmic

factor logðztip=aÞ in the intermediate-distance regime a �
ztip � ~L indicates that function G?

0 ðq; ztipÞ has a considerable
weight at q parametrically smaller than 1=ztip. In other

words, a strongly elongated spheroidal probe senses electric

fields beyond its immediate vicinity q < ztip. (A similar point

was made previously in Ref. 28.) As L/a decreases, ~L comes

close to a, and this intermediate regime disappears. For

example, the sphere acts essentially as a local probe.

The calculation of G�
kðq; ztipÞ for the spheroid can be

done as follows. Applying the first-order perturbation theory

to the linear system (26), one finds

G�
k q; ztipð Þ ¼

u
†
kH

0
uk

u
†
k
�Huk

; (48)

where H0 is the matrix with elements

H0
ll0 ¼

2p

q
Ilþ1

2
qFð ÞIl0þ1

2
qFð Þe�2qzp : (49)

Once the eigenvectors uk are found, e.g., as described in

Sec. III, function G�
kðq; ztipÞ can be readily computed.

Our numerical investigation of G�
kðq; ztipÞ was limited

mainly to k¼ 0 and � ¼ ?. We observed that the eigenvector

components approximately followed the geometric series

ðu0Þj � tj. The quotient t is somewhat larger than unity for

small ztip. As ztip increases, t becomes less than unity, so that

the first component ðu0Þ0 dominates. Neglecting all other

components and expressing the modified Bessel function

I3=2ðzÞ in terms of elementary functions, we obtain the ana-

lytical approximation from Eqs. (48) and (49)

G�
0 q; ztipð Þ ¼

c0

q4
qF cosh qF� sinh qFð Þ2e�2qzp ; (50)

where c0 is a normalization constant. At ztip � L, we can

focus on the range of momenta less than 1=L because at

larger q this function is already exponentially small. For

such q, the bracketed expression on the right-hand side can

be replaced by ðFqÞ6=9 and zp ¼ ztip þ L by ztip, which yields

the asymptotic form (46).

To examine small and intermediate distances, we used

the direct numerical evaluation of u0 and G�
0ðq; ztipÞ. As in

Sec. III, we considered two aspect ratios: L=a ¼ 25 and

L=a ¼ 1. Only � ¼ ? part was studied. The results for

L=a ¼ 25 are shown using the false color scale in Fig. 5(a).

It can be seen that as ztip decreases, both �q?0 ðztipÞ and the

position of the maximum of G?
0 ðq; ztipÞ as a function of q

shift toward larger values. This implies that the probe

becomes more sensitive to finer spatial features of the sam-

ple, as discussed above. The line plot of G?
0 ðq; ztipÞ for sev-

eral ztip presented in Fig. 5(b) depicts the same trend. The

average momentum �q?0 and the position of the G?
0 ðqÞ maxi-

mum are of the same order of magnitude except at very short

distances where �q?0 increases more rapidly as ztip decreases.

Note that Eq. (47) predicts that �q?0 diverges at ztip ¼ 0. From

Fig. 5(b), we also see that for the same ztip the maximum of

G?
0 ðq; ztipÞ is found at q smaller by a factor of 3–10 for the

spheroid compared to the sphere. This confirms that the

spheroid is much more sensitive to small in-plane momenta

than the sphere, i.e., the response of a strongly elongated

spheroid is affected by a relatively wide range of length

scales.

FIG. 5. (a) The weight function G?
0 ðq; ztipÞ for the spheroid with L ¼ 25a and �tip ¼ 1. The dashed line shows �q?0 ðztipÞ. (b) G?

0 ðq; ztipÞ for several ztip, with
circles indicating �q?0 . The solid lines are for the spheroid and the dashed lines are for the sphere. The spheroid is more sensitive to small q compared with the

sphere, while both shapes are more sensitive to large q as ztip decreases. (c) The first three G
?
k ðqÞ for ztip ¼ a, with solid circles indicating �q?k . The number of

nodes in G?
k ðqÞ is equal to k, while �q?k increases with k. The logarithmic scaling of the horizontal axes is used to show the small-q structure more clearly.
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For k> 0, G?
k ðq; ztipÞ has nodes as a function q at fixed

ztip. The number of nodes is equal to k (see Fig. 5(c)).

Apparently, at such q, near-field coupling between oscilla-

tory charge distributions on the probe and the sample exactly

vanishes. Therefore, small perturbations at such discrete q do

not affect the kth resonant mode. Finally, although �q?k
increase with k for the reasons explained above, the maxima

of G?
k show the opposite trend, which is presently not

understood.

V. FROM NEAR-FIELD POLARIZABILITIES

TO FAR-FIELD OBSERVABLES

In order to apply our theory to simulation of s-SNOM

experiments, we need to include a few more ingredients in

our calculation. The first one is the so-called far-field factor

(FFF) F�ðxÞ. This factor accounts for the fact that the probe
is illuminated not only by the incident wave but also by its

reflection from the sample. In experiment, P-polarized inci-

dent field is usually used, to take advantage of the high trans-

verse polarizability of the probe. Assuming the sample

surface is flat, uniform, and its linear dimensions are much

longer than the radian sphere diameter c=x, the reflection of

the incident wave is described by the coefficient rPðqs;xÞ,
where

qs ¼
x

c
sin h (51)

is the in-plane photon momentum and h is the angle of inci-

dence. Hence, the ratio of �-component of the electric field

at the surface to that of the incident wave is 16rPðqs;xÞ for
� ¼ ? and k, respectively. The FFF also takes into account

that the field scattered by the probe reaches the detector in

two waves: directly and after reflection from the sample sur-

face. Usually, the backscattered field is measured. It has the

in-plane momentum �qs and therefore the same reflection

coefficient rPð�qs;xÞ ¼ rPðqs;xÞ as the incident wave. The

total FFFs for this setup are given by

F?ðxÞ ¼ ½1þ rPðqs;xÞ�2 sin2h; (52a)

FkðxÞ ¼ ½1� rPðqs;xÞ�2 cos2h: (52b)

The trigonometric factors on the right-hand side take care of

conversion between the total electric field Eext of the waves

and their ?; k components. Note that our assumption of the

plane-wave illumination is not entirely realistic. In experi-

ment, a focused Gaussian beam is typically used, in which

case the FFFs are effectively averaged out over a range of

angles h. Numerical apertures �0:4 are common. We must

also stress that Eqs. (52a) and (52b) should be modified if

the system studied by s-SNOM is nonuniform on scales

shorter than c=x. Typical examples include a small sample

residing on some substrate28 or measurements done close to

a boundary of two different materials.

Another point we have to discuss is signal demodula-

tion. In the experiment, the probe is made to oscillate

mechanically, which causes periodic variation of the probe-

sample distance

ztipðuÞ ¼ z0 þ Dzð1� cosuÞ ;u � Xt : (53)

The oscillation amplitude is typically Dz ¼ 20–90 nm, com-

parable with the radius of curvature a � 30 nm of the probe.

The minimal approach distance z0 	 0 can be equal to zero

if the probe taps the sample. The tapping frequency X is

many orders of magnitude smaller than the laser frequency

x, and so the motion of the tip does not affect the electro-

magnetic response. Effectively, the experiment consists of

measuring the scattered signal for many static configurations

with different ztip. The nth Fourier harmonic of the backscat-

tered field is referred to as the demodulated signal sn. (Here,

we define sn as a complex number but in experimental litera-

ture it is common to discuss the amplitude and the phase of

sn separately.) The primary purpose of demodulation is to

suppress the far-field background signal created by reflec-

tions from the body of the tip, the cantilever, etc. This back-

ground is large but depends on ztip very weakly (linearly)

and thus contributes predominantly to the n¼ 1 harmonic.

Unfortunately, demodulation strongly diminishes the signal

amplitude, making it more susceptible to experimental noise.

In practice, n¼ 2 or 3 usually gives the best approximation

of the true near-field signal.2,3,40

The demodulated signal is related to the polarizabilities

v�ðx; ztipÞ we have been discussing in Sections I through IV by

s�nðxÞ ¼ const� v�nðxÞF�ðxÞ; (54)

where v�nðxÞ is the nth Fourier harmonic of v�

v�n xð Þ ¼
ð

p

0

du

p
v� x; ztip uð Þð Þcos nu: (55)

One more element of the experimental protocol is normaliza-

tion. What is typically reported is s�nðxÞ normalized against a

certain reference material, e.g., Si or Au

�s�nðxÞ ¼ s�nðxÞ=s�; refn ðxÞ: (56)

The normalization eliminates a number of physically unin-

teresting or poorly known factors, such as the constant in Eq.

(54) that are related to the optical setup of the experiment.

The FFFs may also be canceled if both the studied and the

reference objects in the experiment are positioned nearby, so

that the data for the two are taken at points no farther apart

than the diameter c=x of the radian sphere.

The last point we wish to draw attention to is that the

absolute value of the minimum probe-sample distance z0
[Eq. (53)] cannot be determined very accurately. Therefore,

experimentalists have to measure the so-called approach

curve, which is the s-SNOM response as a function of z0 at a

fixed frequency. They then identify the point z0 ¼ 0 as a

point where a qualitative change in behavior in s2 or s3
appears. The logic behind this procedure is that once the

probe makes the mechanical contact with the sample, its

oscillations become reduced in amplitude, marking an unam-

biguous change. A potential flaw of this argument is that

sharp changes in sn’s may be generated by a rapid variation

of electromagnetic coupling between the probe sample at
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short separation even before making mechanical contact. We

will discuss this issue in more detail in Sec. VI.

VI. CASE OF LOCAL REFLECTIVITY: ALUMINUM
OXIDE

In this and Sections VII–IX, we discuss the implications

of our theory for near-field response of real materials. We

choose bulk a–Al2O3, also known as sapphire or corundum,

as our first example of highly resonant material with a

momentum-independent reflectivity b [Fig. 2(a)]. Another

material with these properties, silicon carbide, has been a

subject of a recent s-SNOM study co-authored by two of the

present authors.19 Modeling results based on the BEM show-

ing good agreement with the data were also reported in that

work. Realistic probe shapes and retardation effects have

been taken into account in order to achieve that. The latter

was necessary since the probe length 2L � 20 lm in the

experiments was in fact larger than the diameter of the radian

sphere c=x � 11 lm. Here, we do not aim for a perfect

agreement with a particular experiment but instead wish to

illustrate how the general theory of multiple eigenmodes for-

mulated in Secs. I through III can generate novel features in

far-field observables. We study mostly probes of an idealized

spheroidal shape but examine some other shapes as well. We

stay within the quasistatic approximation but we will com-

ment on retardation effects in Sec. VIII.

We use the following momentum-independent model

for the reflection coefficient of the uniaxial Al2O3 crystal

b xð Þ ¼ �eff � 1

�eff þ 1
; �eff xð Þ ¼ ffiffiffiffiffiffiffiffi

�o�e
p

; (57)

where �q for q ¼ o (ordinary) and e (extraordinary) axes is

given by

�q xð Þ ¼ �1;q

Y

j

x2
jLO;q � x2 � icjLO;qx

x2
jTO;q � x2 � icjTO;qx

: (58)

The optical constants of Al2O3 reported in the literature41,42

have slight variations, presumably because of different crys-

tal purity and processing. In our calculations, we adopt the

results of Ref. 42 at room temperature, reproduced in Ref.

29. (For simplicity, the weak oscillator at xTO;o ¼ 634 cm�1

is neglected.) Due to smallness of the optical phonon line-

widths cq in this material, the near-field reflectivity of Al2O3

can be as high as b � 10.

We start by studying the behavior of the probe polariz-

abilities v� as a function of frequency x. In the mid-infrared

range, the reflection coefficient b of Al2O3 has a single peak

centered at the surface-phonon frequency xSP ¼ 818 cm�1,

depicted in Fig. 2(a). As x approaches xSP from below,

RebðxÞ steeply rises. Equation (3) implies that whenever

Reb is equal to a pole b�k , Imv� has a local maximum as long

as the damping ImbðxÞ is not too large. The positions of

three such underdamped resonances are indicated schemati-

cally in Fig. 2(a). Thus, a single surface mode xSP of Al2O3

may produce multiple modes of the coupled probe-sample

system. These localized eigenmodes (resonances) have been

discussed at length in Secs. I–III. For example, they are

depicted in Fig. 1(b) for the case of a spheroidal probe. Note

that all the resonances are red-shifted from the frequency

xSP. Since Imb increases as x approaches xSP, higher-order

resonances are progressively more broad.

The scenario above is described in terms of constant b�k .

However, the poles are functions of ztip, and so the frequency

of each resonance shifts with ztip. This is clearly seen in a false

color plot of Imv?ðx; ztipÞ [Fig. 6(a)], where each mode cre-

ates a bright curve. All the curves are red-shifted from xSP

but converge to it at large ztip. The smallest ztip ¼ 0:02a in

Fig. 6(a) is limited by the accuracy of our numerical calcula-

tion. Based on our analytical results we expect that at smaller

ztip the resonance curves are shaped as parabolas that

approach xTO ¼ 576 cm�1 where Reb ¼ 1 (cf. Eqs. (5), (57),

and (58)). A horizontal line cut through Fig. 6(a) taken at

ztip ¼ 0:6 nm is plotted in Fig. 6(b) along with the absolute

value of v?. The strongest peak in this plot corresponds to the

k¼ 0 mode. The multiple weaker peaks at higher frequencies

are produced by k> 0 modes.

Next, we consider the effects of demodulation on the s-

SNOM signal, which can be understood as follows. As the

probe oscillates, it spends most time at the minimum and

maximum distances from the surface. One therefore expects

peaks in v�n at frequencies near those of v�ðz0;xÞ and

v�ðz0 þ 2Dz;xÞ. This gives two frequencies per each resonant
mode. Actually, the number of observable peaks is smaller.

Indeed, from Figs. 6(a) and 6(d), one can see that all the reso-

nance curves modes should merge together at z ¼ z0 þ 2Dz

for typical Dz � 50 nm. Hence, all the modes should produce

a single common peak in the demodulated signal from such z.

Furthermore, while the peaks of v�ðz0;xÞ are distinct, only a

few strongest of them can survive the smearing effect of the

demodulation. These expectations are supported by Fig. 6(c),

where we plot the normalized quantities �v3ðx; z0Þ � v3=v
ref
3

and �s3 for � ¼ ?, assuming tapping amplitude Dz ¼ 50 nm,

z0 ¼ 0:6 nm, and Si as the reference material. In Fig. 6(c), we

see only three peaks. The peak at 650 cm�1 in j�s3j is produced
by the dominant k¼ 0 mode. It has the same frequency as the

k¼ 0 peak in Fig. 6(b). The second peak near 725 cm�1 in

j�s3j (which looks more like a shoulder in �v3) is produced by

the k¼ 1 mode at the ztip ¼ z0 point. The remaining third

peak at 787 cm�1 is produced collectively by all the modes. A

similar correspondence between the resonance curves of the

polarizability function and the peaks in the demodulated sig-

nal is found in the � ¼k component (cf. Figs. 6(d)–6(f)).

However, the lower k¼ 1 peak is now very weak and is con-

siderably blurred by the demodulation (Fig. 6(f)). Should we

have considered a model with smaller dissipation, this and

other high-order peaks would have been more clearly distin-

guishable in j�s3j. Note that although the normalized and

demodulated signal strength is comparable for the two � com-

ponents, the polarizability for � ¼k is orders of magnitude

smaller so its contribution can be safely ignored.

The discussion above pertain to horizontal cuts of

v�ðztip;xÞ. Taking a fixed-frequency (vertical) cut through

Fig. 6(a) and performing the demodulation for a range of

minimum distances z0, one obtains the � ¼ ? approach

curve for the scattering signal. An intriguing result of this

analysis is the possibility of a nonmonotonic dependence of
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the approach curve on z0. The nonmonotonicity is due to the

crossing of the resonance curves of v? by the vertical line

cut. Such crossings are found between xTO where Reb ¼ 1

and xSP where Reb reaches its maximum. Near the low-

frequency end of this interval, the k¼ 0 mode should be

again dominant. It is expected to produce a peak in the

approach curve, which would follow the same trajectory as

the k¼ 0 curve in Fig. 6(a), moving to larger z0 as x

increases. Higher order modes should appear at frequencies

closer to xSP and produce weaker peaks at smaller z0. The

amalgamation of these peaks give rise to the nonmonotonic-

ity of the approach curve.

We show in Fig. 7(a) the s3 approach curves for � ¼ ?
for three frequencies. All the curves are normalized to their

value at their left ends, z0 ¼ 0:6 nm. The approach curve for

x ¼ 600 cm�1 decays monotonically with increasing z0
because the cut at such x does not cross any of the resonan-

ces. In the approach curve for 700 cm�1, a strong peak is

seen at around 2 nm due to the crossing of the k¼ 0 reso-

nance. The last approach curve, for 800 cm�1 contains a se-

ries of oscillations at small z0 and a broad hump at large z0,

due to the multiple resonance crossings. The approach curves

for � ¼k plotted in Fig. 7(b) exhibit the same general trends

as those for � ¼ ?.

FIG. 6. Response of a perfectly conducting spheroidal probe with L ¼ 25a and bulk Al2O3 sample. (a) The false color plot of Imv?ðx; ztipÞ=a3. The bright

curves correspond to the resonant modes, with k¼ 0 mode having the lowest frequency. (b) The polarizability v? (absolute value and imaginary part) at

ztip ¼ 0:02a ¼ 0:6 nm, the smallest distance in panel (a). (c) The absolute value of the demodulated polarizability j�v3j and scattering signal j�s3j for the tapping
amplitude Dz ¼ 50 nm and z0 ¼ 0:6 nm. The origin of the three peaks is discussed in the text. (d)–(f) The counterparts of panels (a)–(c) for the parallel compo-

nent, � ¼k. The plots again reveal multiple resonances. However, the overall magnitude of the polarizability is greatly reduced, vk � 10�2v?, and the resonan-

ces are more strongly bunched near the surface phonon frequency xSP ¼ 818 cm�1.

FIG. 7. Approach curves of js�3 j for

bulk Al2O3, normalized to the value at

z0 ¼ 0:6 nm, for several characteristic

frequencies. The lowest frequencies in

both (a) and (b) are such that no reso-

nance curves are crossed during the

probe tapping motion. The approach

curves are monotonic. For the middle

pair of frequencies, one crossing (of

the k¼ 0 resonance) does occur. At

such crossing, each approach curve has

a peak. The last pair corresponds to the

frequencies where j�s�3 j is close to the

maximum value in the spectral range

studied. The approach curves have sev-

eral peaks because of multiple reso-

nance crossings.
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The striking multi-peak spectra and anomalous nonmono-

tonic approach curves we described above stem from the large

rP of Al2O3 and are not found in less resonant materials (see

Sec. VIII and Ref. 19). This rich structure is also quite sensi-

tive to the choice of z0. If this parameter is too large, the peaks

in the spectrum of the scattering signal merge together at

x ¼ xSP. If z0 is too small, the resonance curves become very

flat at x < xSP, so the corresponding peaks are smeared by

demodulation and dwarfed by the xSP peak. Hence, there

exists an optimal value of z0 that allows one to resolve multi-

ple peaks most clearly. For our Al2O3 model, this value is

actually not too far from z0 ¼ 0:6 nm used in Fig. 6. For

example, the s3 spectrum for a smaller z0 ¼ 0:06 nm is shown

in Fig. 8 (dashed lines), where the k¼ 0 peak is much less pro-

nounced while more higher order peaks become distinguish-

able and form small steps. For even smaller z0, the steps are

further smoothed, eventually leaving only one peak near xSP.

In addition to the value of z0, many other experimental

parameters and procedures can significantly alter the resultant

spectrum. For instance, the experimental determination of z0
based solely on the s-SNOM approach curve can be inaccurate

due to its possible nonmonotonicity, as discussed in Section

V. It is generally incorrect to ascribe z0 ¼ 0 to the probe posi-

tion at which the near-field signal has the highest amplitude.

Such a protocol effectively yields a frequency-dependent z0.

The difference from the spectra taken for a truly constant z0
can be drastic, as illustrated in Fig. 8. Conversely, the strong

sensitivity of the near-field signal to the value of probe-sample

distance may perhaps be used for a more accurate measure-

ment of z0 (although this may require knowing the curvature

radius a and perhaps other details of the probe shape).

The tapping amplitude Dz is another parameter that

affects the spectrum. When Dz is small, the demodulation at

nth order is roughly equivalent to taking the nth order deriva-

tive of v�ðztipÞ. Therefore, a material with a sharply varying

approach curve yields a stronger demodulated signal than the

material with a smoothly varying one. In our case, the signal

of Al2O3 is normalized against Si, whose polarizability

decays monotonically with ztip [Fig. 9(b)]. As Dz decreases,

the polarizability of Al2O3 become increasingly oscillatory,

while that of Si remains smooth. This results in the increased

contrast of the demodulated signal for the two materials for

smaller Dz [Fig. 9(a)].

Other than these controllable parameters, the scattering

signal is also dependent on the dielectric function of the

probe itself. The calculation in the preceding discussion is

done for a perfectly conducting probe, �tip ¼ 1. In practice,

near-field probes often have a Si core and a layer of metallic

coating whose thickness �20 nm can be smaller than the

skin depth, i.e., the electric field penetration length of the

metal. In this case, it may be more appropriate to set �tip ¼
�Si 
 11:7 in Eq. (21). Repeating the calculations, we find

that while qualitative features in the signal are retained, there

are major quantitative differences (Fig. 10).

The discussion above shows that the rich structure of the

s-SNOM signal found for the case of Al2O3 sample is sus-

ceptible to many experimental parameters. (Retardation

effects, discussed later in Sec. VIII, introduce further signifi-

cant dependence on the probe geometry.) This presents a se-

rious challenge to realistic modeling of s-SNOM

experiments. On the other hand, these strong dependences

arise only for highly crystalline material with low dissipa-

tion. For other, less resonant materials, the modeling can be

quite robust, as discussed in Sec. VIII.

VII. NONLOCAL REFLECTION FUNCTION

The example material of Section VI is a bulk crystal

with a local (momentum independent) reflectivity function.

FIG. 8. Comparison of spectra of the quantity j�s?3 j using two different exper-
imental protocols, at two different minimum approach distance z0. The value

at each frequency is taken either from the maximum of the js?3 j approach
curve (solid) or from a fixed z0 (dashed).

FIG. 9. (a) Spectra of j�s?3 j for z0 ¼
0:6 nm and five different tapping

amplitudes. The magnitude of �s?3
increases rapidly with decreasing Dz.

(b) The v? approach curves for Al2O3,

SiO2, and Si, taken at frequencies cor-

responding to the largest peak in js?3 j
(790 cm�1 for Al2O3, 1120 cm�1 for

SiO2, and an arbitrary x for the

frequency-independent case of Si). For

Al2O3 sample, jv?j shows multiple

oscillations; for SiO2 sample, it has a

single maximum at small ztip; for Si,

the approach curve decays monotoni-

cally with ztip. As Dz decreases, the

approach curves become increasingly

different.
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However, in many other systems studied through s-SNOM,

including thin films, graphene, and multi-layered systems

reflection is inherently nonlocal. Thus, it is imperative to

study how the q-dependence of the reflectivity affects the

probe-sample interaction. As mentioned in Sec. IV, a general

description of such interaction is challenging because the se-

ries representation of the polarizability

v ¼
X

k

Rk

kk
(59)

has generalized eigenvalues kk and residues Rk that are now

complicated functionals of rP [k�1
k is the k-th eigenvalue of

the matrix ðKmÞ�1=2
HðKmÞ�1=2

, cf. Eq. (20)]. Still, we can

attempt to analyze these expressions using the simple pertur-

bation theory developed in Sec. IV, in which kk are com-

puted from the poles of the q-independent theory, with

corrections obtained by integrating the weighting functions

over the momentum. As shown below, this scheme produces

qualitative agreement with the calculated s-SNOM response

for graphene on bulk Al2O3.

The Al2O3/graphene system has two collective modes

(the upper and the lower one) that emerge from hybridization

of the surface phonon of Al2O3, originally at xSP 

750 cm�1 with the plasmon of graphene, xðqÞ / ffiffiffiffiffiffiffiffiffiffi

lvFq
p

.

(Coupling of substrate phonons to graphene plasmons has

been probed by s-SNOM experiments with graphene/SiO2

systems.5,16 This and related work is reviewed in Ref. 43.)

The modes share the optical weight and exhibit a level-

repulsion that causes both to be dispersive. Both features

depend on the chemical potential l of graphene. Below we

focus on the upper mixed mode and study its s-SNOM

response for a range of l, and compare the results with the

perturbation theory method. To proceed, we need the

FIG. 10. (a) v? and (b) j�v?3 j and j�s?3 j
spectra of Al2O3 for the case of a Si

probe. All other parameters are the

same as in Figs. 6(b) and 6(c). The

spectra retain the same structure as for

a metallic probe (�tip ¼ 1).

FIG. 11. (a) Collective mode disper-

sion of graphene/Al2O3 system. The

mode repulsion between the graphene

plasmon and the Al2O3 surface pho-

nons are evident. The false color stands

for Im rPðq;xÞ, which is a measure of

power dissipation.20 This quantity is

additionally raised to power of 0.35 to

reduce the contrast. The vertical

dashed line marks q ¼ 1=a. The faint

curve just below x ¼ 500 cm�1 is a

weak surface phonon42 that we do not

discuss. The chemical potential of gra-

phene is l ¼ 1200 cm�1. (b) The solid

curves are constant momentum �q ¼
1=a line cuts through maps like (a) for

several l. The particular case of (a) is

shown by the red curve (second solid

curve from the right). The dashed

curve is the same quantity computed

for bulk Al2O3 without graphene. (c)

Imv?ðxÞ and (d) �s?3 ðxÞ computed

using the q-dependent rPðq;xÞ at

ztip ¼ 0:02a and z0 ¼ 0:02a, respec-

tively. Graphene chemical potentials l

for (b)–(d) are indicated in the legend

of panel (c).
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formula for the reflectivity of the composite system. This

formula is well-known (see, e.g., Ref. 5)

rP q;xð Þ ¼

�1
kz1

� �0
kz0

þ 4pr

x

�1
kz1

þ �0
kz0

þ 4pr

x

: (60)

Here, �1 ¼ �eff [Eq. (57)] is the permittivity of the lower

half-space (Al2O3), �0 ¼ 1 is that of the upper half-space

(vacuum), kzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�j
x2

c2
� q2

q

is the z-component of the wave

vector in medium j¼ 0, 1, and r ¼ rðq;xþ is�1Þ is the con-
ductivity of graphene, which we calculate within the random

phase approximation44,45 with a finite relaxation time

s�1 ¼ 25 cm�1. For q � x=c, one finds kzj ’ iq and Eq. (60)

reduces to

rP q;xð Þ ¼
�1 � 1þ 4pq

ir

x

�1 þ 1þ 4pq
ir

x

; (61)

which can be compared to Eq. (57). A convenient way to visu-

alize the dispersion of the collective modes is to plot the imag-

inary part of rPðq;xÞ, which represents the power dissipation

in the system,20 as a false-color map. An example for l ¼
1200 cm�1 is shown in Fig. 11(a). In the low-q regime

(�hvFq � �hx � l),44,45 the lower bright curve is mainly the

plasmon with dispersion x / ffiffiffiffiffiffiffiffiffiffi

lvFq
p

, while the upper bright

curve represents the dispersionless Al2O3 surface phonon.

(The additional bright curve around x ¼ 500 cm�1 is a

weaker Al2O3 surface phonon, which we do not discuss.) An

increase in l leads to a steeper dispersion of the plasmon,

which causes both hybrid modes to go up in frequency.

Decreasing l has the opposite effect. Additionally, if l drops

below �hxSP= 2 
 380 cm�1, the upper mode falls into the

interband transition region of graphene, which results in strong

damping of the surface phonon. As we will see below, this

causes the l ¼ 300 cm�1 curve to look qualitatively different

from the rest in Fig. 11(b). Let us now discuss how the collec-

tive modes manifest themselves in the s-SNOM response.

In the simplistic picture of the s-SNOM response, the

probe-sample interaction is dominated by a single momentum

�q ¼ 1=a. If this assumption were accurate, we could set

rPð�q;xÞ as bðxÞ and calculate the response using the set of

poles and residues established previously. We would then see

peaks in the response generated by the upper hybrid mode.

However, this crude approximation leads to higher peak fre-

quencies than the calculation using the full rPðq;xÞ, as seen in
Figs. 11(b), 11(c), and 11(d). Indeed, we have shown in Sec.

IV that when the q-dependence in reflection is treated as a per-

turbation, each mode has its own range of sensitive momenta

due to the inherent length scales in its potential distribution.

The distributions change with an additional length scale—the

tip-sample distance ztip, so that the momentum weighting

functions are dependent on ztip as well, Gk ¼ Gkðq; ztipÞ. For
each mode, these functions provide a means to average over

momentum and find an effective q-independent sample

reflection beffk ðxÞ, cf. Eq. (44), so that we can again apply the

established pole-residue decomposition. Strictly speaking, the

perturbative method cannot be applied here as the mixed

mode may be strongly q-dependent. Even so, we find a very

reasonable agreement with the computed signal in the range

of graphene chemical potentials l¼ 600–1800 cm�1 that we

study. We first consider peak frequencies in Imv?, which can

be predicted by invoking the resonance condition Rebeffk ¼ bk.

For the lowest mode k¼ 0 and ztip ¼ 0:02 a, there is a system-

atic overestimate of the peak position by 20–30 cm�1 for

l¼ 600–1800 cm�1. The discrepancy is larger for higher l at

which the q-dependence of the upper hybrid mode is stronger.

This discrepancy is due in part to the well-known general

tendency of the first-order perturbation theories to overesti-

mate the lowest eigenvalues. Next, for the k¼ 1 mode, the res-

onance condition is satisfied only for l ¼ 600 cm�1 at

x¼ 797 cm�1 and l¼ 1200 cm�1 at x¼ 823 cm�1, which

agree well with the smaller peaks in Imv?. At these frequen-
cies, Imbeff1 are larger than the k¼ 0 case and the peaks have

smaller magnitudes. For l¼ 1800 cm�1, the resonance condi-

tion is not met and the very small peak at x¼ 827 cm�1 in

Imv? corresponds to where Rebeff1 is largest and thus closest

to b1. Finally, for k> 1, bk is larger than Rebeffk for all fre-

quencies and no peaks in Imv? are found. Seeing qualitative

agreement in the polarizability, we proceed to analyzing the

demodulated signal.

As inferred in Sec. VI, the demodulated signal is strong-

est near the peaks in v?ðz0;xÞ and v?ðz0 þ 2Dz;xÞ, where
each peak is attributed to a resonant mode. For the dominant

k¼ 0 mode, we find a set of corresponding peaks in

s?3 ðz0;xÞ at the same frequencies as those in v?ðz0;xÞ, as
shown in Figs. 11(c) and 11(d). For the other set of peaks in

the s3 spectra, we must consider how the situation is changed

at z0 þ 2Dz. At such distances, ztip itself becomes the primary

length scale and the sensitivity function Gk is shifted toward

smaller momentum, where the upper mode has a flatter dis-

persion and its frequency is close to xSP of the bulk Al2O3

crystal. Therefore, this set of peaks should all appear near

xSP, which is indeed the case. Repeating this procedure for

the k¼ 1 mode, we find that the peaks it contributes are

inseparable from the set of higher frequency peaks produced

by the k¼ 0 mode as both have frequencies very close to

xSP. Its contributions, however, alter the heights of these

peaks. For instance, the k¼ 1 peak is strongest in v?ðz0;xÞ
for l ¼ 600 cm�1 (among the four we used), so the high fre-

quency peak in s?3 for this chemical potential has the largest

relative magnitude with respect to the low frequency peak.

Thus, we conclude the demodulated s-SNOM signal can be

qualitatively explained by the perturbative method, albeit

with inaccuracy in the lower peak frequency. However, as

we argued in Sec. VI, the lower frequency peak in the

demodulated signal is mainly an artifact of the finite z0 we

are forced to use. If z0 were truly zero, only the peak near

xSP would survive.

VIII. MODEL-DEPENDENT EFFECTS

The spheroid model differs from real s-SNOM probes in

two important ways: (i) the real probe resembles an inverted
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pyramid and (ii) at infrared wavelengths, the length �10l m

of the probe exceeds several times the diameter c=x of the

radian sphere. In the previous literature, it was assumed that

these differences can all be neglected as the probe-sample

interaction is focused around the apex of the probe [Fig.

1(b)], while contribution from the rest of the probe is can-

celed out during the process of demodulation and normaliza-

tion. Hence, the exact shape of the probe is unimportant and

the only relevant physical quantity is the apex radius of cur-

vature a. Further, since the characteristic length scale a is

well within the radian sphere, a quasistatic description

should suffice. This simplistic argument is backed by the pre-

vious agreement between the spheroid model and experi-

ment.16,18,28 However, we have shown that different probe

shapes exhibit universal behavior only when ztip=a is of the

order of a few percent (cf. Fig. 4(a)). This range is much

smaller than typical tapping amplitudes, so the majority of

the s-SNOM response lies outside the universality regime

and should indeed be probe shape dependent. Additionally,

recent experiment and modeling have shown that a quasi-

static formalism with ad hoc probe shapes is insufficient for

highly resonant materials such as on silicon carbide.19

In this section, we re-examine these issues by examining

two materials, the highly resonant Al2O3 and the dissipative

SiO2, and study the probe shape dependence of their

response as well as electrodynamic corrections. We find that

for dissipative materials shape dependence is weak and retar-

dation effects are of less importance, so the spheroid model

describes the s-SNOM experiment reasonably well. This

explains the success of our model in reproducing the

response of various materials in experiment. On the other

hand, we find the response of resonant materials to be highly

dependent on the probe shape and less well described within

the quasistatic approximation. For such materials, a full elec-

trodynamic treatment with the exact probe shape may be

required. Common numerical methods suitable for electrody-

namic treatment of light scattering by a spheroid near a sur-

face include T-matrix method46,47 and BEM.19 For the case

FIG. 12. (a) The s-SNOM signal s?3 computed for Al2O3 samples. The inset shows the probe shapes used (spheroidal, with L ¼ 25a, and a pear-shaped). The

two types of probes produce qualitatively similar but quantitatively different results. (b) Spheroids of longer length have drastically increased signal strength.

The inset depicts the probe shape and the values of L/a used. Note that this quasistatic calculation neglects radiative damping and antenna resonances (see Sec.

VIII). If included, such effects are expected to greatly reduce s?3 . In all cases, Dz ¼ 50 nm and a ¼ 30 nm. The value of s3 is taken either from the maximum of

the approach curves at each frequency (solid lines) or at the closest approach distance z0 ¼ 0:6 nm (dashed lines).

FIG. 13. (a) The reflection coefficient of SiO2
49 has a larger imaginary part than Al2O3 due to its inherent dissipation, leading to a weaker shape dependence in

the s-SNOM signal. (b) The signal of the pear-shaped probe is very close to that produced by the spheroid. (c) Increasing the probe length leads to a much

smaller increase in the signal strength. The overall shape of the spectrum is also preserved. All geometric parameters are the same as in Fig. 12.
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of a sphere near a surface, the calculation of necessary ma-

trix elements can be done efficiently using recursion tech-

nique similar to what we use here.48

We consider the probe shape dependence and the retarda-

tion effects separately. To study the former, we simulated the

s-SNOM signal of Al2O3 samples obtained with spheroidal

probes of different length. We also calculated (using BEM)

the results for pear-shaped probes that may better mimic the

inverted pyramids. As shown in Fig. 12(a), the signal for a

pear-shaped probe is qualitatively similar to that for the sphe-

roid of the same length, but there are quantitative differences.

For spheroids, we find that the signal strongly increases and

the peak frequencies steadily decrease as the length of the

probe increases at a fixed apex radius, as shown in Fig. 12(b).

These features can be explained by the scale invariance of the

problem. It implies that an increase in probe length is equiva-

lent to a simultaneous decrease in tapping amplitude and the

apex radius. The decrease in radius produces changes in both

the poles and residues. The former explains the shift in peak

frequencies. The latter is mostly canceled out by normaliza-

tion. In turn, the decrease in tapping amplitude leads to a

larger contrast between the sample and the reference as dis-

cussed in Sec. VI [see Fig. 9(b)], so the signal strength is dra-

matically increased.

The strong probe-shape dependence found above seem to

suggest that theoretical modeling of the s-SNOM experiments

must always be done using the actual shape to be reliable. In

fact, such a sensitivity to the probe shape pertains only to the

highly-resonant, i.e., large b materials. In Al2O3, this parame-

ter reaches the maximum value of jbj 
 12 (Fig. 2(a)). For

comparison, in Figs. 13(b) and 13(c), we show that the pear-

shaped probe and the spheroid produced almost identical sig-

nals for amorphous SiO2, a material with jbj � 1:5. (For ex-
perimental studies of this material see, e.g., Refs. 6 and 28.)

In this case, a factor of 16 increase in the probe length leads

to only a doubled signal strength, compared to a nearly ten-

fold increase for Al2O3 seen in Fig. 12(b).

The results above are obtained within the quasistatic

approximation. In reality, a probe half-length of 200a already

exceeds the diameter c=x of the radian sphere and one has to

consider retardation effects. Naively, contributions from such

effects should be eliminated by demodulation, as they pertain

to a length scale much larger than the tapping amplitude.

However, we show that one contribution—the radiative damp-

ing—survives demodulation. The radiative damping has an

effect similar to a finite Imb, i.e., the dissipation in the sam-

ple. Hence, for dissipative materials, one can neglect radiative

damping and still find reasonable agreement with experiment,

while doing so for highly resonant materials may lead to qual-

itatively wrong results. Let us illustrate these statements using

the simplest model for the probe—the point dipole. The elec-

trodynamic interaction between the dipole and the sample

with the dielectric constant � is given20 by a modified version

of Eq. (12)

g� ¼ c�
ð1

0

iq3

kz0 qð Þ
�kz0 qð Þ � kz1 qð Þ
�kz0 qð Þ þ kz1 qð Þ

e�2qztipdq; (62)

where the second fraction in the integrand is the full form of

the reflectivity rPðq;xÞ. [It is obtained from Eq. (60) by set-

ting r to zero.]

Suppose x and ztip are fixed, then the above integral

defines g� as a function of �, which is generally a complex

number. Alternatively, g� is a function of b ¼ ð�� 1Þ
=ð�þ 1Þ. The integration domain Eq. (62) includes momenta q

both inside and outside the light-cone. The radiative damping

effect arises from the integration over former, i.e., the

momenta q < kz0. This part of the integral yields a negative

imaginary contribution to g� , which shifts the pole of v� [Eq.

(11)] to the lower complex half-plane of b. The real parts of

the poles also change but this is less conceptually important

(see below). Consider now the remaining part of the integral,

over momenta q > kz0. It is easy to see that if

� ¼ �q2=ðq2 � x2=c2Þ, then

�kz0ðqÞ þ kz1ðqÞ ¼ 0; (63)

so that there is a pole on the integration path. As a result,

functions g� and v� have branch cuts at � 2 ð�1;�1� in the

complex � plane or equivalently at b 2 ½1;1Þ in the complex

b plane. These additional features are shown schematically in

Fig. 2(c). The physical origin of both the poles and the branch

cut is quite clear. The discrete poles has been discussed at

length in this article. They correspond to the polariton modes

localized near the tip (Fig. 1(b)). In turn, the branch cut corre-

sponds to the continuum of delocalized surface polaritons that

exist without the probe. Indeed, Eq. (63) is the well-known

equation for the spectrum of such excitations.50

Of the two features, the branch cut is not expected to

affect the signal as the small-momentum contribution is

greatly diminished by demodulation. Demodulation should

also make less important the change in the real parts of the

poles, because these real parts vary greatly with ztip on

account of the tapping motion of the probe. However, the

shift of the discrete poles away from the real axis is a qualita-

tive change and its effects remain after demodulation. Our

next objective is therefore to find this shift for the case of the

spheroidal probe.

A free standing spheroid has an effective polarizability

given by

v0;eff ¼
v0

1� i
2

3

x

c

� �3

v0

(64)

to the lowest order in x=c when radiative correction is con-

sidered.51,52 Modifying K accordingly [specifically K
m
1 , cf.

Eq. (29)], it is easily shown that this formula applies to our

geometry as well. Namely, the s-SNOM polarizability cor-

rected for the radiative damping is given by

v�rad ¼
v�

1� i
2

3

x

c

� �3

v�
; v� ¼

X

1

k¼0

R�
k

b�k � b
: (65)

Viewed in the complex b plane, this correction is equivalent

to the shift of the poles bk into the lower half-plane by
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�ið2=3Þðx=cÞ3Rk (to the leading order in x=c). Therefore,
both the radiative damping and the intrinsic dissipation in

the sample play a similar role: they increase the distance

from the poles to the curve traced by the surface reflectivity

b of the sample as x varies [Fig. 2(c)]. For a dissipative ma-

terial, the curve begins far from the poles, and so further

increase in the distance produces little change. Conversely,

for highly resonant materials the bðxÞ curve passes close to

the real axis, and so radiative damping may obscure or elimi-

nate the fine features of the signals, such as multiple resonant

peaks discussed in Sec. VI. It is worth noting, however, that

while it may be important for s-SNOM in infrared or visible

domains, the radiative damping should be rather weak in the

(experimentally more challenging) terahertz range, where

typical s-SNOM probes would fit well inside the radian

sphere.

Finally, a class of retardation effects we have not

addressed here are antenna resonances arising when the

length of the probe exceeds several times the diameter of the

radian sphere. They give rise to additional peaks in the s-

SNOM signal as a function of x. For most materials, such

resonances are removed once the s-SNOM signal is normal-

ized to a reference sample; however, for strongly resonant

materials such as SiC and presumably also Al2O3 we studied

here, the cancellation is not complete.19

IX. DISCUSSION AND CONCLUSION

Further progress in the s-SNOM and related areas of

near-field microscopy requires a quantitatively reliable pro-

cedure for determining the fundamental response function

rPðq;xÞ from the amplitude and phase of the s-SNOM scat-

tering data, from which one can proceed to the next step of

inferring the optical constants of the studied sample.

Typically, materials with a higher absolute value of rPðq;xÞ
produce a higher amplitude s-SNOM signal. However, the

peaks in the s-SNOM signal are often red-shifted with

respect to those in jrPðq;xÞj or Im rPðq;xÞ.
Given additional information about the system, these

inverse problems can be tackled by fitting the experimental

data to the solution of the direct problem with a trial form of

rPðq;xÞ as the input.19 Unfortunately, the direct problem is

also difficult to solve. The three-dimensional nature of this

problem and the presence of widely different length scales

make realistic simulations53–55 of s-SNOM experiments very

computationally intensive. This led to popularity of simple

ad hoc approximations known as the point-dipole24–26 and

the finite-dipole model,6,27,56,57 in which the actual charge

distribution induced on the probe is approximated by a

point-like image dipole or a combination thereof with addi-

tional point charges.

The point-dipole model2 postulates that Eqs. (9a)–(12)

that are rigorous in the asymptotic long-distance limit ztip �
L remain qualitatively correct at much shorter ztip if the input

physical parameters are suitably renormalized. Thus, the

bare polarizabilities v�0 become the adjustable parameters of

the model. It is customary to assume that the in-plane polar-

izability v
k
0 is negligible compared the out-of-plane one,

which is taken to be

v?0 ¼ a3; (66)

where a is of the order of the curvature radius of the tip.

Another adjustable parameter5,58 b�1 specifies the position

of the effective dipole inside the probe

zp ¼ baþ ztip: (67)

Clearly, the point-dipole model accounts only for the sharp

tip and ignores the body of the probe, as v� for the point-

dipole in Eq. (11) is much smaller than v�0 for a tip with

L � a. If the point-dipole model were literally correct, the

radiating dipole of the probe in typical s-SNOM experiments

would be so small that no measurable signal would be

observed.

The finite-dipole model improves upon the point-dipole

one by including the missing antenna-like enhancement

approximately. It assumes that the electric field of a spheroi-

dal probe of length 2L is equivalent to that of several point

charges of total zero charge that are positioned inside the

spheroid near both of its ends. For small ztip=L, this

model56,59 yields the following functional form of the probe

polarizability:

vfdp ¼ constþ R
fdp
0

b
fdp
0 � b

; b
fdp
0 
 1:4þ O

z3tip

L3

� �

; (68)

where R
fdp
0 / aL2. The finite-dipole model was shown to give

a good qualitative agreement with s-SNOM data obtained for

quartz, amorphous SiO2, and SiC samples once parameters

R
fdp
0 and b

fdp
0 are suitably adjusted.6 Thus, the best fit to the

data was achieved choosing the length 2L ¼ 600 nm of the

probe, which is about one third of the diameter c=x

 1700 nm of the radian sphere. Interestingly, this is approxi-

mately the value of 2L in the quasistatic calculation for which

one obtains, in the case of SiO2 sample, the same result for s3
as one gets from the full electrodynamic calculation for a

probe of a realistic (much longer) length.19

Agreement with the data notwithstanding, from the

theory point of view, Eq. (68) is unsatisfactory on at least

three counts. First, R
fdp
0 does not follow the correct scaling

L3=lnL as a function of L, thus underestimating the probe

polarizability. Second, the constant term in Eq. (68) violates

the general requirement that v ! 0 as b ! 1, corresponding

to the case when the applied field is screened completely by

the induced charges in the sample. Third, b
fdp
0 goes to �1:4

when ztip ¼ 0. Instead, all smooth probe shapes must behave

as a sphere at ztip � a and therefore yield b0 ¼ 1 at ztip ¼ 0.

The fact that finite-dipole model violates these general

requirements suggest its limited usability. Figure 14 is an

illustration of how widely different the predictions of the four

discussed s-SNOM models can be for the case of Al2O3.

Additional examples of similarly large differences for SiO2

and SiC samples can be found in previous works of the pres-

ent authors and their collaborators.19,28 All these examples

compel us to conclude that the prior success of the point- and

finite-dipole models in fitting experimental data has to be due

to insufficient range of the data, multitude of adjustable pa-

rameters, and also the demodulation and normalization
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procedures that mask the errors in both the functional form

and the magnitude of the calculated signal.

Another way to explain the difference between the ear-

lier ad hoc models and our GSM is as follows. For the case

of a sample with a local reflectivity b, the exact scattering

problem of a dielectric probe near a surface reduces to a gen-

eralized eigenproblem,21 which has an infinite number of

eigenmodes, as we discussed in Sec. I. In contrast, both the

point- and the finite-dipole models attempt to approximate

the infinite number of eigenmodes by a single one.

Since the real-space potential distribution of the eigenm-

odes [Fig. 1(b)] depends on the shape and size of the probe

and probe-sample distance but not on b, we can describe

interaction of the probe with an arbitrary sample efficiently

using the precalculated basis of such eigenmodes. This

allows one to use our GSM approach to model s-SNOM

response for a wide range of materials. However, calcula-

tions for realistic probe shapes are not always practical. In

search of a broadly applicable yet simple model, we have

chosen the prolate spheroid to be our probe shape, as it cap-

tures the essential features of the actual probes—a sharp

apex and a strongly elongated shaft. We quantified the

eigenmodes of the probe-sample system in the form of poles

and residues of the polarizability functions v� ,29 allowing an

expedient, in fact, instantaneous calculation of the s-SNOM

response. The point-dipole, finite-dipole, and other ad hoc

models no longer have the advantage of computational speed

and should now be considered obsolete.

Recent work19 has shown that in the strong-coupling re-

gime of the probe-sample interaction a fully electrodynamic

treatment using the BEM and realistic probe shape is neces-

sary in order to reproduce the measurements. This regime is

realized experimentally6,19 when using samples of SiC, a ma-

terial for which jbj can be as high as 15. The same

considerations apply for Al2O3 for which jbj can reach 12

(see Fig. 2(a)). Our GSM theory gives analytical insight into

near-field response of such materials. We have shown that

due to simultaneous excitation of multiple eigenmodes, novel

features of the s-SNOM signal such as multi-peaked spectra

and nonmonotonic approach curves can appear. These fea-

tures are however very sensitive to experimental parameters

such as tapping amplitude, minimum approach distance, and

even the data collection protocol. Retardation effects, espe-

cially radiative damping can also qualitatively alter the signal

and must be considered. In order to observe the predicted

anomalous approach curves and multi-peak spectra, it may be

necessary to make efforts to minimize the radiative damping,

which requires working with shorter probes or at lower fre-

quencies. In contrast, in the weak- and moderate-coupling

regimes, which are relevant for the vast majority of samples,

the lowest-order eigenmode is dominant. Hence, the approach

curves should be monotonic in ztip, while the spectra should

be mostly insensitive to experimental details and retardation

effects. This is the regime where our spheroidal probe model

can be used with the greatest confidence.

Our GSM theory also applies to a more complicated

problem where the sample reflectivity is nonlocal, i.e.,

momentum-dependent. Here, the salient advantages of our

method are two-fold. First, in the case of a weak nonlocality,

our GSM provides a mapping of the nonlocal problem to a

local one. Thereby, the sample-independent eigenmode

decomposition is retained, providing an intuitive interpreta-

tion of the scattering signal. Second, our numerical algorithm

(see the supplementary material) is much more efficient than

the standard BEM because the number of necessary matrix

element calculations scales linearly instead of quadratically

with the matrix size. It will be worthwhile to compare the

actual computational speed of our algorithm with that of a

recently developed and significantly more efficient BEM that

utilizes pre-calculated matrix elements.19

We hope that the improved physical understanding of

near-field probe-sample coupling enabled by the generalized

spectral method advanced in this work as well as the numeri-

cal procedures we developed for its implementation can be

of use for modeling and analysis of future s-SNOM and other

near-field experiments.
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I. THE ELECTROSTATIC PROBLEM OF A

SPHEROIDAL PROBE

The electric field created by a spheroidal ob-
ject is most conveniently described in the prolate
spheroidal coordinates (ξ, η, φ) where the origin of
the coordinate system is located at the center of the
probe, as shown in Fig. 3. The relationships to the
cylindrical polar coordinates (ρ, φ, z) are

z = F ξη , ρ = F
√

ξ2 − 1
√

1− η2 . (S1)

In the spheroidal coordinate each spatial position is
specified by ξ ∈ [1,∞), η ∈ [−1, 1], and φ is the usual
azimuthal angle. Contours of constant ξ are a series
of concentric spheroids centered at the origin, with
the major axis along the z direction and common
foci at z = ±F . For each such spheroid, ξ is equal
to the ratio of its major semi-axis and focal length.
We consider the case when the surface of the probe
coincides with one of the spheroidal surfaces ξ =
ξ0 = L/F , where L is the half-length or major semi-
axis of the probe. Related quantities such as the
minor semi-radius W of the probe or the radius of
curvature a at the apex are given by W =

√
L2 − F 2

and a = W 2/L.

It is well known that Laplace’s equation ∇2Φ = 0
has separable solutions in the prolate spheroidal co-
ordinates. In particular, we are interested in solu-
tions outside a spheroidal probe that decay at large
ξ. Their most general form is written in terms of
a linear combination of spheroidal harmonics as fol-

lows:

Φsphd (ξ, η, φ) =

∞
∑

l=0

l
∑

m=−l

Bm
l Pm

l (η)eimφP
m
l (ξ<)Q

m
l (ξ>)

Pm
l (ξ0)

,
(S2)

where Bm
l are coefficients to be determined from

boundary condition, Pm
l (ζ) is the associated Leg-

endre polynomial defined on the interval [−1, 1] and
Pm
l (ζ) and Qm

l (ζ) are the associated Legendre func-
tion of the first kind and second kind (See, e.g.
Ref. 1) with

ξ< ≡ min(ξ, ξ0) , ξ> ≡ max(ξ, ξ0) . (S3)

With the above definition of ξ>,<, Eq. (S2) covers
both inside and outside the surface of the probe at
ξ0.
For the geometry considered in this paper

[Fig. 1(a)], the total potential Φ can be written as

Φ = Φ0 +Φplane +Φsphd , (S4)

where

Φ0(r) = −E0r (S5)

is the potential of the external uniform field, and
Φplane is the potential due to charges in the sam-
ple, which can be decomposed into evanescent plane
wave as

Φplane(r) =

∫

B(q)e−qzeiqρ
d2q

4π2
, (S6)

where the position vector r = ρ + zẑ is broken up
into its cylindrical polar coordinate components. We
determine B(q), as well as Bm

l from boundary con-
ditions.
To do that we quote two well-known mathemati-

cal results: the decompositions of evanescent plane
waves in terms of spheroidal harmonics and vice
versa. The first reads



eiqρ−qz =

∞
∑

l=0

l
∑

m=−l

2l + 1

2
(−)lim

(l −m)!

(l +m)!

√

2π

qF
Il+ 1

2
(qF )Pm

l (ξ)Pm
l (η)eim(φ−φq) , (S7)

with φ and φq being the azimuthal angles of ρ and q, respectively. The reverse is:

Qm
l (ξ)Pm

l (η) = (−)lim
(l +m)!

(l −m)!

∫

πF

q

√

2π

qF
Il+ 1

2
(qF )eiqρ+qze−im(φ−φq)

d2q

4π2
, (S8)

where Iν(z) is the modified Bessel function of the
first kind.2 These two relations follow easily from ad-
dition theorems of general Legendre functions such
as those in Ref. 1 and 3.
Near the sample surface z = −zp, the boundary

condition is

Φ̃ = B(q)e−qzp + Φ̃sphd(q, zp) ∝ eqzp − rP(q)e
−qzp ,
(S9)

where we use the notation

f̃(q, z) =

∫

f(r)e−iqρd2ρ (S10)

for a partial Fourier transformation. Eq. (S9) im-
plies:

B(q) = −rPe
−qzpΦ̃sphd(q, zp) . (S11)

The other boundary condition for a uniform
spheroidal probe with dielectric constant ǫtip is:

∂Φ

∂ξ

∣

∣

∣

∣

ξ→ξ
+
0

= ǫtip
∂Φ

∂ξ

∣

∣

∣

∣

ξ→ξ
−

0

. (S12)

Boundary conditions in Eqs. (S11) and (S12) with
the decompositions in Eqs. (S7) and (S8) allow one
to compute the unknown coefficients Bm

l . The re-
sult can be summarized by first defining an infinite
matrix:

Hll′ ≡ 2π

∫ ∞

0

rP(q)Il′+ 1
2
(q F )Il+ 1

2
(q F )e−2qzp

dq

q
,

(S13)
whose elements are integrals of rP(q). Then for each
integer m a quantity related to Bm

l , a column vector
defined by:

Am
l ≡ (−)l+m (l +m)!

(l −m)!

Bm
l

F
, (S14)

is the solution to the linear system of equations

∞
∑

l′=1

(Λm −H)ll′ A
m

l′ = bml . (S15)

The elements of the diagonal matrix Λm
ll′ = Λm

l δll′
are defined by

Λm
l =

(−1)m

2l + 1

4

ǫtip − 1

[

ǫtip
Qm

l (ξ0)

Pm
l (ξ0)

−
d

dξ0
Qm

l (ξ0)
d

dξ0
Pm
l (ξ0)

]

(S16)
and the numbers on the right-hand side of the equa-
tions are given by

bml =
4

3

(1 +m)!

(1−m)!
Cmδl1 , (S17)

where C0 = −Ez and C±1 = (Ex ∓ iEy)/2. Thus,
the form of matrix Λ is determined completely by
the geometry of the probe (in terms of ξ0) and its
dielectric constant ǫtip, while H describes the inter-
action between the sample reflection function rP and
the momentum selectivity of the modes. The column
vector b describes the uniform external field.
The coefficients Bm

l can be obtained directly from
Eq. (S14) after one solves for Am

l from Eq. (S15).
But for the purpose of determining the induced
probe dipole moment, only |m| ≤ 1 cases are im-
portant. By examining the asymptotic behavior of
the electrostatic potential Φ(r), one obtains the to-
tal dipole moment of the spheroid probe. Its Carte-
sian components are related to the components of
Am

l by

psp,0 = psp,z = −F 3

3
A0

1 ,

psp,1 =
psp,x − ipsp,y

2
=

F 3

3
A1

1 .

(S18)

If the probe is made of an ideal conductor, ǫtip →
∞, then Eq. (S16) simplifies to

Λm
l = (−1)m

4

2l + 1

Qm
l (ξ0)

Pm
l (ξ0)

, (S19)

which are all positive numbers. If the dielectric func-
tion of the probe is real and negative, then Λm

l can be
negative, too. It can also be zero, which corresponds

2



to a plasmon (or phonon) polariton resonance of the
probe. The resonances occur at discrete ǫtip values

ǫmtip,l =

d
dξ0

lnQm
l (ξ0)

d
dξ0

lnPm
l (ξ0)

, l = 1, 2, . . . , (S20)

see, e.g., Refs. 4 and 5 (where, in fact, a more gen-
eral case of anisotropic ǫtip is treated). For each m,
the sequence ǫmtip,l asymptotically approaches −1 as
l → ∞. The smallest, i.e., the most negative value
in each sequence is the starting one. It can be alter-
natively written as

ǫmtip,1 = 1− 1

Lν
, (S21)

where ν = ⊥ for m = 0, ν = ‖ for m = 1, and Lν

are the depolarization factors of the spheroid6

L⊥ = (ξ20 − 1)

[

1

2
ξ0 ln

(

ξ0 + 1

ξ0 − 1

)

− 1

]

, (S22)

L‖ =
1− L⊥

2
. (S23)

For prolate spheroids, these depolarization factors
obey the inequalities 0 < L⊥ < L‖ < 1

2 , and so

ǫ0tip,1 < ǫ1tip,1. For example, if L = 25a, which we

use in our calculations below, then ξ0 =
√

25/24,
ǫ0tip,1 = −16.9, and ǫ1tip,1 = −1.11. If the probe is
made out of platinum or iridium, which are com-
mon materials for AFM tips, its dielectric function
can indeed be negative. It is in principle possible to
achieve plasmonic resonances in such probes some-
where in the near-infrared or visible spectral range.
On the other hand, at mid-infrared frequencies, for
which we do calculations in this paper, the dielectric
functions of such metals are in the range of hundreds
or thousands. Such probes are very far from any of
the plasmonic resonances and the approximation of
the ideal conductor, Eq. (S19), can be safely used.

II. RATIONAL FITS OF POLES AND RESIDUES

The polarizability χν of the probe has the form

χν(β) =

∞
∑

k=0

Rν
k

βν
k − β

, ν =⊥ or ‖ , (S24)

for a sample that has momentum independent re-
flection, rP(q) = β. The poles βν

k and residues Rν
k

depend only on the geometry of the probe and not
on the sample, so a single set of poles and residues

can be used for any β. Following the method de-
scribed in Sec. I, we calculated and fitted the first
nine poles and residues of a spheroidal probe with
L = 25a for ν =⊥. Coefficients of the fit are cata-
loged in Table. I, where the poles are given by

log βk =

5
∑

i=0

aiα
i

/ 4
∑

i=0

biα
i , (S25)

and the residues are given by

Rka
−3Z−1 =

5
∑

i=0

ciZi

/ 3
∑

i=0

diZi , (S26)

with Z ≡ ztip/a, valid in the range 0.003 < Z < 10.
The fits for the residues apply only to the first eight
poles, k = 0 through 7. The remaining residue R8 is
constrained to obey the sum rule,

8
∑

k=0

Rk

βk

= χ0 . (S27)

III. THE SPHERICAL PROBE LIMIT

The spheroidal probe model presented in Ap-
pendix I is quite general and can be a good model for
tips of any aspect ratio L/a. Here we explore a par-
ticular limit of F → 0 and ξ → ∞ while keeping the
product Fξ → a constant. This corresponds to the
problem of a spherical probe of radius a. The deriva-
tion in Appendix I simplifies to that in Sec. 4.1 of
Ref. 7, and by using the following asymptotic forms
of various special functions:

√

2π

qF
Il+ 1

2
(qF ) ≃ 22l+1l!

(2l + 1)!

(

qF

2

)l

, (S28a)

Qm
l (ξ) ≃ (−)m

2ll!(l +m)!

(2l + 1)!
ξ−l−1 , (S28b)

Pm
l (ξ) ≃ (2l)!

2ll!(l −m)!
ξl , (S28c)

one can show that the decompositions Eqs. (S7)
and (S8) reduce to Eq. (4.9) and (4.10) of Ref. 7.
The characteristic equation Eq. (S15) for Bm

l re-
duces to:

∞
∑

l′=1

{

δll′

αla2l+1
− (l + l′)!

(l +m)!(l′ −m)!
Fl+l′

}

B̄m
l′

=
δl1

(l −m)!
Cm ,

(S29)
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TABLE I. Coefficients of the nine-pole rational fits for L = 25a.

k a5 a4 a3 a2 a1 a0 b4 b3 b2 b1 b0

0 3 −36.399 234.56 −762.76 1783.1 −0.015667 1 −10.345 83.048 −417.42 1522.2
1 5 −25.733 111.01 −93.002 290.11 0 1 −3.4964 27.841 11.949 87.231
2 7 −33.029 157.55 −118.29 1391.3 0 1 −0.9961 −2.6274 149.14 253.32
3 9 −36.251 173.3 −40.018 1879.9 0 1 −0.12625 −8.2396 185.03 246.31
4 11 −47.517 221.75 −85.286 2292.3 −0.00017314 1 −0.3866 −8.4205 180.3 237.17
5 13 −45.678 233.45 42.551 3435.5 −0.000094847 1 1.0728 −20.329 253.41 291.59
6 15 −46.254 254.23 223.28 2547 0 1 −0.75722 7.941 175.21 185.07
7 17 −27.808 235.93 770.95 1961.3 0 1 −1.8957 34.251 163.71 122.51
8 19 −65.583 251.72 −308.28 402.67 0.000032595 1 1.6624 4.104 −1.1364 23.24

k c5 c4 c3 c2 c1 c0 d3 d2 d1 d0

0 3.9999 303.23 5141.1 4811.1 282.17 1.4941 1 0.77084 0.023552 0.000027594
1 12.001 916.75 17089 33226 2371.9 12.255 1 1.4472 0.11961 0.0003052
2 24.001 1844.7 35207 90005 36.881 11.908 1 1.9006 0.012624 0.00025669
3 40 3166.2 65393 288144 224067 4417.7 1 4.1622 2.6905 0.09134
4 60.028 4584.9 87200 196974 5632.8 28.67 1 1.5802 0.066244 0.00048749
5 84.685 6304.9 122561 226585 4364.5 4.237 1 1.2714 0.044389 0.000077993
6 116.26 8216.9 166927 316568 98948 843.4 1 1.4088 0.44188 0.0087351
7 146.83 10354 214160 350367 77249 334.56 1 1.1606 0.28331 0.0034808

where

B̄m
l = (−)l+m(l +m)!

2ll!

(2l + 1)!
F l+1Bm

l (S30)

is similarly related to the induced charge distribution
of the probe,

αl =
l(ǫtip − 1)

l(ǫtip + 1) + 1
(S31)

is the multipole polarizability of the probe, and

Fl =
1

l!

∫ ∞

0

rP(q)q
le−2qd0dq (S32)

is the integral that characterizes the interaction be-
tween the spherical probe and the sample with d0 =
a + ztip. Eq. (S29), the characteristic equation for
a spherical probe, is derived in Ref. 7 as Eq. (4.20).
The solution to Eq. (S29) has some of the same prop-
erties as the spheroid case: B̄m

l = 0 for all l and
|m| > 1; B̄0

l is related to the charge distribution

due to the z component of the electric field and B̄±1
l

are related to the charge distribution due to the x-y
component of the electric field.
For the case of q independent rP(q, ω) = β(ω), in

which the integrals Fl reduces to:

Fl =
β

(2d0)l+1
, (S33)

there is an exact solution to the spherical character-
istic equation. Let

α = arccosh
d0
a

= arccosh
(

1 +
ztip
a

)

, (S34)

be a dimensionless parameter that characterizes the
sphere-to-sample distance relative to its size, and let

σk(β;α) =

∞
∑

m=0

(2m+ 1)k

e(2m+1)α − β
. (S35)

Using the following quantities:

p0 = χ0Ez , χ0 = a3 , (S36a)

q0 =
p0
a

(

coshα− sinhα
σ1

σ0

)

, (S36b)

pn = p0β
n

(

sinhα

sinh(n+ 1)α

)3

, (S36c)

qn =
βn sinhα

sinh(n+ 1)α

[

q0 −
p0
a

sinhnα

sinh(n+ 1)α

]

,

(S36d)

it can be shown that for a metallic sphere

B̄0
l = (−)l

∞
∑

n=0

qn(d0−dn)
l−pnl(d0−dn)

l−1 , (S37)
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rP(q) = β

a

ztip

p0 q0

p′0 q′0

d0

d0

pn−1 qn−1

p′
n−1 q′

n−1

dn−1

dn−1

pn qn

p′
n

q′
n

dn

dn

a2 = (d0 + dn−1)(d0 − dn)

0 =
∞∑

n=0

qn

p′
n
= βpn

q′
n
= −βqn

FIG. S1. The method-of-images solution of the problem
of a metallic sphere above a dielectric half-space with
the external field normal to the interface. The method
involves an infinite series of dipoles pn and point charges
qn located inside the sphere at distances dn above the
interface. The total charge inside the sphere is zero.

where

d0 − dn = a
sinhnα

sinh(n+ 1)α
. (S38)

The physical meaning of Eq. (S37) becomes clear
when one treats the problem with method of images
(Fig. S1). Suppose that an external electric field
Ez would have induced a bare dipole moment p0 in
the sphere. This would induce an image dipole in
the dielectric half-space, which would in turn induce
an image dipole and an image charge in the sphere.
The position and strength of each successive image
dipole and charge can be solved by recursion. Set-
ting the sample surface to z = 0, the position of the
center of the sphere is at z = d0. At each position
z = dn given by Eq. (S38) there is a point dipole
pn and a point charge qn. Charge q0 is determined
by the neutrality condition

∑

n qn = 0, which yields
Eq. (S36b). Summing up all the contributions to the
total dipole moment from both the dipoles and the
point charges inside the sphere, we get:

χsph,⊥

χ0
≡ ptotalz

p0
=

1

p0

∞
∑

n=0

[

pn + qn(dn − d0)
]

= 2 sinh3 α

(

σ2 −
σ2
1

σ0

)

.

(S39)

with σk given by Eq. (S35).
The above analysis resulting in Eq. (S39) is for

the case where the electric field is perpendicular to
the sample. For the case where the electric field is
parallel to the sample, the analysis is simpler in that
the positions of the image dipoles and their strength
are the same, but no image point charges are present.
Therefore, in this polarization:

χsph,‖

χ0
≡

ptotalxy

p0
= sinh3 α (σ2 − σ0) . (S40)

Both Eq. (S39) and (S40) conforms to our earlier
assertion that χ has the form of Eq. (S24):

χsph,‖ =

∞
∑

k=0

R
sph,‖
k

β
sph,‖
k − β

, χsph,⊥ =

∞
∑

k=0

Rsph,⊥
k

βsph,⊥
k − β

.

(S41)
For horizontal electric fields, χsph,‖ is singular when-
ever σ2 or σ0 is, so that

β
sph,‖
k = e(2k+3)α . (S42)

The corresponding residues are:

R
sph,‖
k = 4(k + 1)(k + 2)χ0 sinh

3 α . (S43)

For electric fields perpendicular to the sample, the

parenthesis in Eq. (S39) vanishes at each β
sph,‖
k , so

they are not poles of χsph,⊥. Instead, βsph,⊥
k occur

at the zeros of σ0 which has no simple analytic form.
The poles of the two polarizations, however, inter-
leave:

β
sph,‖
k < βsph,⊥

k . β
sph,‖
k+1 . (S44)

IV. BOUNDARY ELEMENT METHOD FOR

AXISYMMETRIC PROBES

The spheroidal probe belongs to a large class of
probes that has axial symmetry: its cross section is
a circle with radius w(z) varying as a function of
height. Here we briefly describe the method used to
calculate the polarizability χ of such probes. Divid-
ing the interval z ∈ [−L,L] that the probe occupies
into n segments, the j-th segment can be approxi-
mated as a ring with radius wj ≡ w(zj) and charge
Qj . In the presence of an external field, the charges
on rings Qj satisfies the equation:

n
∑

j=1

(Lij +Hij)Qj = −ϕi , (S45)

5



where

Lij =

∫

J0(qwi)J0(qwj)e
−q|zi−zj |dq (S46)

is the quasistatic interaction between the ith and the
jth rings,

Hij =

∫

rα(q)J0(qwi)J0(qwj)e
−q(zi+zj+2ztip+2L)dq

(S47)
is the interaction between the ith ring and the image
of the jth ring, and ϕi = φext(zi) is the external
potential at the i-th ring. Defining

K(w,w′; z) =
2

π

K
[

4ww′

(w+w′)2+z2

]

√

(w + w′)2 + z2
, (S48)

in terms of the complete elliptical integral of the first
kind K(z), we can write

Lij = K(wi, wj , zi − zj) , (S49)

while in the case of a q-independent rα(q, ω) = β(ω),
Hij can be simplified as

Hij = βHij , Hij = K(wi, wj , zi+zj+2ztip+2L) ,
(S50)

so that Eq. (S45) takes on the same form as the
equation for the spheroid derived in the text,

(

Λ
m − βH

)

A
m = b

m . (S51)

Indeed, Eq. (S51) can be viewed as a special case
of Eq. (S45) expressed in a different basis, and for
q-independent β(ω) the polarizability of the probe
always has the form of Eq. (S24). Eq. (S45) can
be easily implemented in a computer. However, for
general rα(q, ω) the evaluation of each element of
Hij as a numerical integral can be slow, making
this method computationally demanding when one
needs a large matrix size to achieve good accuracy.
Nevertheless, it serves well as a benchmark test for
comparison with other models. In particular, our
spheroidal model yields almost indistinguishable re-
sults and is an order of magnitude faster, due to the
recursive relation between matrix elements described
in Sec. V.

V. NUMERICAL IMPLEMENTATION FOR THE

SPHEROID MODEL

The integral

Hn,l ≡ 2π

∫ ∞

0

rα(q)In+ 1
2
(q F )Il+ 1

2
(q F )e−2qzp

dq

q
(S52)

n = 1

n = Nmax

l = 1 l = Nmax

n+ l ∈ even

n = 1

n = Nmax

l = 1 l = Nmax

n+ l ∈ odd

FIG. S2. Illustration of the algorithm for the recurrence
relation of Hn,l.

has no simple analytic form even in the simplest case
where the reflection coefficient rα(q, ω) does not de-
pend on momentum q. Further, the summation

∞
∑

l=1

(Λm −H)nl A
m

l = bmn , (S53)

runs through all l ≥ 1 and one does not expect a
closed form solution to the equation. In practice
Eq. (S53) can be solved numerically by truncating
the dimension of l at some largeNmax and evaluating
each of the N2

max elements.
Fortunately, not all N2

max elements of Hn,l needs
to be evaluated explicitly by integration. First, since
Hn,l is symmetric one only needs to independently
determine the upper triangular elements. Secondly,
the four neighboring elements of element Hn,l are
related to one another via the relation:

Hn+1,l −Hn−1,l

2n+ 1
=

Hn,l+1 −Hn,l−1

2l + 1
. (S54)

This relation allows one to compute the remaining
one of the four neighbors knowing any three. In
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TABLE II. Parameters of the optical constant of α-
Al2O3. The frequency unit is 1 cm−1.

ρ ǫ∞ j ωjLO γjLO ωjTO γjTO

o 3.05 1 908 22.4 569 7.86
2 482 2.96 439 3.23
3 387 5.18 384 6.03

e 2.9 1 885 21.6 582 4.17
2 481 3.21 482 3.42
3 511 1.42 400 4.68

fact, by repeated use of this relation all “interior”
elements can be determined recursively from the val-
ues of the boundary terms as illustrated in Fig. S2.
A similar construction was employed previously in
Ref. 8. Further, as also shown in Fig. S2 the up-
per triangular elements separate into two classes de-
pending on whether the sum n + l is odd or even.
Therefore, only 3(Nmax − 1) terms need to be eval-
uated through integration, consisting of those of the
main diagonal Hn,n, and the next upper diagonal
Hn,n+1, and the last column Hn,Nmax

.

VI. OPTICAL CONSTANT OF ALUMINUM OXIDE

The optical constant of α-Al2O3 used in our cal-
culations is given by

ǫρ(ω) = ǫ∞,ρ

∏

j

ω2
jLO,ρ − ω2 − iγjLO,ρω

ω2
jTO,ρ − ω2 − iγjTO,ρω

, (S55)

where the parameters are cataloged in Table. II.
They are adapted from Ref. 9 for temperature T =
300K.
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I. MATLAB CODE FOR THE SPHEROID MODEL

A. Introduction

In this article we describe in detail the Matlab code used to compute the s-SNOM signal of

a spheroidal probe over a sample occupying a half-space. We choose the case of a momentum

independent reflection coefficient β(ω) to demonstrate the calculation of poles and residues

for a given probe shape. With simple alterations the code can be used on samples with

nonlocal reflection.

The outline of the code is as follows. First, the matrix equation

N
∑

l′=1

(Λm −H)ll′ A
m

l′ = bml (C1)

is solved numerically to obtain the poles and residues for a range of tip-sample separation

ztip. Then, for given β(ω) the polarizability χ(ω, ztip) of the probe can be found through

χν(β) =
N−1
∑

k=0

Rν
k

βν
k − β

, ν =⊥ or ‖ . (C2)

Next, χ(ztip) is demodulated at each frequency ω to obtain the third harmonic χ3(z0, ω)

for a range of minimum approach distances z0. The third harmonic is then multiplied by

the far-field factor FFF = (1 + rP,FF)
2 to obtain the scattering signal s3 = χ3 · FFF, and

compared to a reference material s̄3 = ssamp
3 /sref3 . We choose bulk Al2O3 as the sample and

Si as the reference.

B. Defining the parameters

The code is written inside a function so that auxiliary functions can be defined in the

same file.

0003 function Spheroid

First we set up the geometry of the problem, the input frequencies and the sample pa-

rameters. The geometry of the spheroid is defined by two parameters:
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0005 a = 1; % radius of curvature of the apex of the spheroid

0006 L = 25*a; % long semi-axis of the spheroid

We use the radius of curvature a or a as the unit length. As long as β is momentum-

independent the problem is scale invariant, so that a can be any number if all other lengths

are adjusted accordingly. The value of the long semi-axis L is not strictly determined, but

its physical value must be much smaller than the wavelength while maintaining an elongated

shape.

The separation between the apex of the spheroid and the surface of the sample is ztip,

or ztip. We specify the minimum and maximum possible separation, and discretize the

space in between such that the grid is more dense at small ztip. This is to account for the

non-monotonicity of the approach curves at small ztip for highly resonant materials. The

minimum distance cannot be 0 due to numerical difficulties at very small ztip.

0008 zmin = 0.02*a; % corresponds to 0.6nm for a=30nm

0009 zmax = 6*a; % corresponds to 180nm

0010 Nz = 200; % number of grid points for tip sample separation

0011 Nz1 = ceil((Nz-1)/2); % half of the points lie between ztip=0.02-0.5a

0012 ztip = [linspace((zmin)^(1/3),(0.5-0.5/Nz1)^(1/3),Nz1).^3,...

0013 linspace(0.5, zmax, Nz-Nz1)];

The oscillation amplitude of the tip ∆z or Dz is used for demodulation. Its value can

change the resulting spectrum drastically for highly-resonant materials. Note that we must

have zmax ≥ 2Dz so that the whole range of oscillation is covered.

0015 Dz = 5/3*a; % corresponds to 50 nm

We use cm−1 as the unit for ω or w, the frequency grid for the resulting s-SNOM specrum.

For example w =1000 cm−1 corresponds to a wavelength of λ = 10µm.

0017 wmax = 900; % maximum frequency

0018 wmin = 550; % minimum frequency

0019 dw = 1; % difference between frequency grid points
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0020 Nw = (wmax-wmin)/dw+1; % number of frequency grid points

0021 w = (wmin:dw:wmax);

ǫ or eps samp and eps ref are the dielectric functions of the sample and the refer-

ence. ǫAl2O3
is defined in a separate function eps Al2O3, while ǫSi is taken to be fre-

quency independent with a small imaginary part. The reflection coefficient β(ω) is given

by β = (ǫ− 1)/(ǫ+ 1).

0023 eps samp = eps Al2O3(w); % Al2O3

0024 eps ref = 11.7+0.1*1i; % Si

0025 beta samp = (eps samp-1)./(eps samp+1);

0026 beta ref = (eps ref-1)./(eps ref+1);

C. Computing χ(ztip, ω)

Next we compute χsamp(ω) and χref(ω) from βk and Rk, which are calculated for every

ztip using the function PolesResidues defined later in the code. The poles and residues are

independent of sample material and need to be calculated only once for each ztip. This is

reflected in the fact that PolesResidues takes only geometrical arguments.

The infinite-dimensional eigenproblem is truncated into N dimensions. For a highly reso-

nant material like Al2O3 a large N is needed for convergence. Note that increasing N drasti-

cally increases computation time.

Progress is reported every 10 seconds with a timer.

0028 t start = clock; % record time at the start of computation

0029 t last = t start; % record time at the finish of previous iteration

0030 report int = 10; % report progress if >10 seconds has passed

0031 fprintf(1,’\t%s: Spheroid Polarizability started\n’,datestr(clock));
0032 % report current time

0033

0034 N=200; % dimension of eigenproblem

0035
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0036 betak = zeros(N,Nz); % array storing poles

0037 Rk = zeros(N,Nz); % array storing residues

0038 chi samp = zeros(Nz,Nw); % array storing tip polarization with sample

0039 chi ref = zeros(Nz,1); % array storing tip polarization with reference

0040 % Si is frequency independent, so Nw=1 for Si

0041

0042 for h = 1 : Nz % for loop over all ztip

0043 [betak Rk ] = PolesResidues(ztip(h), a, L, N);

0044 % calculating poles and residues

0045 betak(:,h) = betak ;

0046 Rk(:,h) = Rk ;

0047

0048 for k = 1 : N % for loop over all poles and residues

0049 chi samp(h,:) = chi samp(h,:)+Rk(k,h)./(betak(k,h)-beta samp);

0050 chi ref(h,:) = chi ref(h,:)+Rk(k,h)./(betak(k,h)-beta ref);

0051 % application of the formula for tip polarization

0052 end

0053

0054 t cur = clock; % report time used if >10s elapsed since last report

0055 d time = etime(t cur, t last);

0056 if(d time > report int)

0057 d time2 = etime(t cur, t start); % report time elapsed since start

0058 t last = t cur; % reset the time of last report

0059 fprintf(1, ’%.1fs:%.0f / %.0f\n’, d time2, h, Nz);

0060 end

0061 end
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D. Demodulating for χ3(z0, ω)

Now we find the third harmonic χ3 from χ through demodulation. The function

Demodulation takes the computed χ, chi samp and chi ref, the oscillation amplitude ∆z

or Dz, and the harmonic order Nh = 3 as arguments and returns χ3 for each material. χ3 is a

function of z0, the minimum separation between the tip apex and the sample during probe

oscillation. We use part of the ztip grid for z0, with the constraint max(z0) = max(ztip)−2∆z

to prevent going beyond the available range in ztip of χ.

0063 t p=etime(clock,t start);% report total computing time for tip polarization

0064 fprintf(1,’\n\tPolarization calculation complete in %.1f s’,t p);

0065

0066 t start2 = clock; % record start time for demodulation

0067

0068 Nh = 3; % harmonic order

0069

0070 chi3 samp = Demodulation(chi samp,Dz,Nh,ztip);

0071 chi3 ref = Demodulation(chi ref,Dz,Nh,ztip);

0072

0073 t d=etime(clock,t start2); % report total computing time for demodulation

0074 fprintf(1,’\n\t Demodulation complete in %.1f s\n\n’,t d);

E. Determining s3(ω)

To find s3(z0, ω), we multiply χ3 by the far-field factor (FFF), FFF(ω) = (1 + rP,FF)
2

where

rP,FF =
ǫ1cosθ − ǫ0

√

ǫ1/ǫ0 − sin2θ

ǫ1cosθ + ǫ0
√

ǫ1/ǫ0 − sin2θ
(C3)

with an incident angle θ = π/4. ǫ0(ω) is the dielectric function of the upper half-space (air,

ǫ0 = 1) while ǫ1(ω) is that of the lower half-space (sample).

0076 rPFF samp = (2^-0.5*eps samp-(eps samp-0.5).^0.5)./ ...
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0077 (2^-0.5*eps samp+(eps samp-0.5).^0.5);

0078 FFF samp = (1+rPFF samp).^2;

0079

0080 rPFF ref = (2^-0.5*eps ref-(eps ref-0.5).^0.5)./ ...

0081 (2^-0.5*eps ref+(eps ref-0.5).^0.5);

0082 FFF ref = (1+rPFF ref).^2;

0083

0084 s3 samp = chi3 samp.*(ones(N0,1)*FFF samp); % N0 is the size of z0

0085 s3 ref = chi3 ref.*(ones(N0,1)*FFF ref);

Due to the non-monotonicity of the s3 approach curves for highly resonant materials,

there are ambiguities in how the s3 spectrum should be taken. Here we use two different

protocols. For the first protocol s3(ω) is taken at a fixed z0 for all frequencies; For the second

we take the maximum of each approach curve as the data point. For the first protocol we

choose z0 = 0.02a = 0.6 nm.

0087 s3 samp fixed = s3 samp(1,:);

0088 s3 ref fixed = s3 ref(1,:);

0089 s3 fixed = s3 samp fixed./s3 ref fixed; % s3 spectrum using protocol 1

0090

0091 s3 samp max = max(s3 samp);

0092 s3 ref max = max(s3 ref);

0093 s3 max = s3 samp max./s3 ref max; % s3 spectrum using protocol 2

The final result is the relative s3 spectrum s̄3(ω) = ssamp
3 /sref3 .

F. Results

We plot the |s̄3| spectra from the two protocols, as well as βk(ztip) and Rk(ztip).

G. |s̄3| spectra

0095 figure(1); clf;
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0096

0097 set(gcf,’position’,[300 300 700 500])

0098 axes(’Position’, [0.2 0.2 0.75 0.70]);

0099

0100 hold on

0101

0102 hp = plot(w, abs(s3 fixed)); % protocol 1

0103 set(hp, ’Linewidth’, 2, ’Color’, ’b’);

0104

0105 hp = plot(w, abs(s3 max)); % protocol 2

0106 set(hp, ’Linewidth’, 2, ’Color’, ’r’);

0107

0108 hold off

0109

0110 axis square

0111

0112 hleg = legend(’fixed $z 0$’,’maximum’);

0113 set(hleg,’interpreter’,’Latex’,’Fontsize’,18,’location’,’southeast’);

0114

0115 ylabel(’$|\bar{s}^{\perp} 3|$’,’Interpreter’,’Latex’,’Fontsize’,18);

0116 xlabel(’$\omega\,\mathrm{(cm^{-1})}$’,’Interpreter’,’LaTeX’,’Fontsize’,18);
0117

0118 set(gca,’Fontsize’,18,’box’,’on’,’xminortick’,’on’,’yminortick’,’on’,...

0119 ’TickLength’, [0.03 0.05],’xlim’,[550 900]);

H. βk(α), α = cosh−1(ztip/a+ 1)

0121 figure(2); clf;

0122

0123 set(gcf,’position’,[300 300 700 500])
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0124 axes(’Position’, [0.2 0.2 0.75 0.70]);

0125

0126 hp = plot(acosh(ztip/a+1), betak(1:4,:)); % plotting the first 4 poles

0127 set(hp, ’Linewidth’, 2);

0128

0129 axis square

0130

0131 hleg = legend(’$k=0$’,’$k=1$’,’$k=2$’,’$k=3$’);

0132 set(hleg,’interpreter’,’latex’,’Fontsize’,18,’location’,’northwest’);

0133

0134 ylabel(’$\beta k$’,’Interpreter’,’Latex’,’Fontsize’,18);

0135 xlabel(’$\alpha$’,’Interpreter’,’LaTeX’,’Fontsize’, 18);

0136

0137 set(gca,’XTick’,0:0.5:3)

0138 set(gca,’YTick’,10.^(0:5))

0139

0140 set(gca,’Fontsize’,18,’box’,’on’,’xminortick’,’on’,’yminortick’,’on’,...

0141 ’TickLength’,[0.03 0.05],’xlim’,[acosh(0.02+1) acosh(6+1)],’yscale’,’log’);
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I. Rk(ztip)

0144 figure(3); clf;

0145

0146 set(gcf,’position’,[300 300 700 500])

0147 axes(’Position’, [0.2 0.2 0.75 0.70]);

0148

0149 hp = plot(ztip/a, Rk(1:4,:)); % plotting the first 4 residues

0150 set(hp, ’Linewidth’, 2);

0151

0152 axis square

0153

0154 hleg = legend(’$k=0$’,’$k=1$’,’$k=2$’,’$k=3$’);

0155 set(hleg,’interpreter’,’latex’,’Fontsize’,18,’location’,’northwest’);

0156

0157 ylabel(’$R k$’,’Interpreter’,’Latex’,’Fontsize’,18);

0158 xlabel(’$z_\mathrm{tip}$’,’Interpreter’,’LaTeX’,’Fontsize’, 18);

0159

0160 set(gca,’XTick’,10.^(-2:2))

0161 set(gca,’YTick’,10.^(1:6))

0162

0163 set(gca,’Fontsize’,18,’box’,’on’,’xminortick’,’on’,’yminortick’,’on’,...

0164 ’TickLength’,[0.03 0.05],’xlim’,[0.02 6],’xscale’,’log’,’yscale’,’log’);

The results of the computation is saved into a .mat file.

0166 save sphd perp L25 Dz5over3 N200 Al2O3 Si.mat ...

0167 w ztip betak Rk chi samp chi ref s3 samp s3 ref s3 fixed s3 max;
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J. Auxiliary function: eps Al2O3

This function calculates the dielectric constant of Al2O3, ǫeff =
√
ǫoǫe, where o and e stand

for the ordinary and extraordinary axis, respectively.

0169 function res = eps Al2O3(w)

0170 res1 = 2.9.*(511.05^2-x.^2-1i*1.42*x)./(399.68^2-x.^2-1i*4.68*x)...

0171 .*(480.93^2-x.^2-1i*3.21*x)./(481.58^2-x.^2-1i*3.42*x)...

0172 .*(884.75^2-x.^2-1i*21.57*x)./(582^2-x.^2-1i*4.17*x);

0173 res2 = 3.05.*(387.46^2-x.^2-1i*5.18*x)./(384.02^2-x.^2-1i*6.03*x)...

0174 .*(481.96^2-x.^2-1i*2.96*x)./(439.22^2-x.^2-1i*3.23*x)...

0175 .*(908.23^2-x.^2-1i*22.37*x)./(569.35^2-x.^2-1i*7.86*x);

0176 res = sqrt(res1).*sqrt(res2);

0177 idx = find(imag(res) < 0); % taking the correct root of the square root
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0178 res(idx) = -res(idx);

0179 end

K. Auxiliary function: PolesResidues

To find the poles and residues we need to solve the eigenproblem (Λ−βkH)uk = 0. Below

we construct Λ and H using formulas derived in the text, and compute the poles βk and

residues Rk.

0180 function [betak Rk] = PolesResidues(ztip, a, L, N)

L. Λ

We begin by constructing Λ. For field in the perpendicular direction, it is composed of

Legendre functions Pn(ξ) and Qn(ξ) defined on the range ξ > 1,

Λnn′ =
4

2n+ 1

Qn(ξ0)

Pn(ξ0)
δnn′ . (C4)

The argument ξ is the inverse eccentricity of the ellipse that forms the spheroid, ξ = ξ0 =

L/F , where F is the focal length of the spheroid.

0182 W = sqrt(a * L); % short semi-axis

0183 F = sqrt(L^2 - W^2); % focal length

0184 xi0 = L / F; % inverse eccentricity

To generate Pn(ξ) for all n’s, we use forward recursion of the ratios pn ≡ Pn/Pn+1, starting

from n = 0 and p0 = 1/ξ0.

0186 p = zeros(1, N - 1); % array storing the ratios p

0187 p(1) = 2 / (3 * xi0 - 1 / xi0); % the n = 1 term

0188

0189 for n = 2: N - 1

0190 p(n) = (n + 1) / ((2 * n + 1) * xi0 - n * p(n - 1));

0191 % the recursion relation for p

0192 end
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Qn(ξ) are generated by backward recursion of the ratios qn ≡ Qn+1/Qn, starting from some

large n = N+nmax where qn ∼ q∞ = 1/(ξ +
√

ξ2 − 1) and use Q1 = 1
2
ξ0 log

ξ0+1
ξ0−1

− 1 when

n = 1 is reached.

0194 qinf = 1/(xi0 + sqrt(xi0^2 - 1)); % asympototic limit at large n

0195 nmax = -N / (0.01 + log(qinf)); % some large n > N

0196 tmp = qinf; % approximate q at large n by qinf

0197

0198 for n = N + nmax - 1: -1: N - 1

0199 tmp = (n + 1) / ((2 * n + 3) * xi0 - (n + 2) * tmp);

0200 % transient values of q from n = N+n max to

0201 % n = N-1 using the recursion relation for q

0202 end

0203

0204 q = zeros(1, N-1); % array storing the ratios q

0205 q(N-1) = tmp;

0206

0207 for n = N - 2: -1: 1

0208 q(n) = (n + 1) / ((2 * n + 3) * xi0 - (n + 2) * q(n + 1));

0209 % useful values of q

0210 end

In terms of qn and pn, Λn = 4
2n+1

Q1

P1
Πn−1

k=1qkpk.

0212 Q1 P1 = 0.5 * log((xi0 + 1) / (xi0 - 1)) - 1 / xi0; % Q1/P1

0213 Lambda = 4 ./ (3: 2: 2 * N + 1).*cumprod([Q1 P1, q .* p]);

M. H

Next we construct the matrix H. The elements of H are given by

Hnn′ ≡ 2π

∫ ∞

0

In′+ 1
2
(q F )In+ 1

2
(q F )e−2q(ztip+L)dq

q
. (C5)
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This integral is done using the function H quad for given (n , n′).

The elements of H also have recursion relations among themselves,

Hn+1,l −Hn−1,l

2n+ 1
=

Hn,l+1 −Hn,l−1

2l + 1
. (C6)

This allows quick computation of the fourth element knowing the other three. Therefore

we only compute diagonal elements, next to diagonal elements, and the N -th column by

integration, then find the rest by recursion.

0215 H = zeros(N, N); % array storing elements of H

0216

0217 for n = 1: N

0218 H(n, n) = H quad(n, n); % diagonal elements

0219 end

0220 for n = 1: N-1

0221 H(n, n + 1) = H quad(n, n + 1); % next to diagonal elements

0222 end

0223 for n = 1: N-2

0224 H(n, N) = H quad(n, N); % N-th column

0225 end

0226

0227 for g = N-2: -1: 2

0228 for l = 1: g-1

0229 n = g-l+1;

0230 n2 = N-l;

0231 H(n-1, n2) = H(n + 1, n2) - (2 * n + 1) / (2 * n2 + 1)...

0232 * (H(n, n2 + 1) - H(n, n2 - 1));

0233 % rest of the upper triangle found using recursion

0234 end

0235 end

The elements of Λ and H span across a large numerical range. To increase the accuracy of

the eigenvalues and eigenvectors, we rescale the matrices such that the first matrix becomes
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identity, (Λ−1/2Λ − βkΛ
−1/2H)(Λ−1/2vk) ≡ (I − βkH

′)vk, where vk ≡ Λ1/2uk, using the fact

that Λ is diagonal and positive definite.

0237 irtLambda = 1 ./ sqrt(Lambda); % square root of inverse Lambda

0238

0239 for n = 1: N

0240 for l = n: N

0241 H(n, l) = H(n, l) * irtLambda(n) * irtLambda(l);

0242 % this is now H’

0243 H(l, n) = H(n, l);

0244 % H’ is symmetric, copy the upper triangle into the lower one

0245 end

0246 end

N. Solving the eigenproblem

Now we compute the eigenvalues βk and the eigenvectors vk. The residues are related to

vk by Rk = 4
9

F 3

Λ1Mkk

|vk,1|2, where M ≡ V †H ′V , V is composed of columns vk, and vk,1 is the

first element of the k-th column of V .

0248 [V, betak] = eig(eye(N), H); % solve the eigenproblem

0249 % V stores the eigenvectors vk

0250 betak=diag(betak); % turn diagonal matrix into a column

0251

0252 M = (V’ * H * V);

0253

0254 Rk=4/9*F^3/Lambda(1)*abs(V(1,:)’).^2./diag(M);

0255

0256 [~,index] = sort(1./betak,’descend’);

0257 % sort the k’s so that smaller eigenvalue comes first

0258
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0259 betak=betak(index);

0260 Rk=Rk(index);

O. H quad

This function computes the integral for the element of H. We use the change of variable

x = qF .

0262 function H nl = H quad(n, l)

0263 nn = n + 0.5;

0264 ll = l + 0.5;

0265

0266 zF = xi0 + ztip / F; % this is (ztip+L)/F

0267

0268 H nl = quadgk(@(x)intH(x, nn, ll), 0, inf);

0269 % the integrand is defined below

0270 function res = intH(x, nn, ll)

0271 B = besseli(nn, x, 1) .* besseli(ll, x, 1);

0272 res = 2 * pi .* exp(-2 * (zF - 1) * x) ./ (x + eps) .* B;

0273 % the additional exp(2x) comes from besseli

0274 end

0275 end % end of H quad

0276 end % end of PolesResidues

P. Auxiliary function: Demodulation

The n-th harmonic (χn) of χ is given by

χn =
1

T

∫ T

0

χ(ztip(t), ω)e
inΩtdt , T =

2π

Ω
, (C7)

where ztip(t) = z0 + ∆z(1 − cosΩt). Demodulation takes χ(ztip, ω), approximate the χ

approach curve at each frequency by a smooth curve, and do the integral. We use a change
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of variable x = Ωt, so the range of integration is x = 0 to 2π. Noting that χ(x, ω) is an even

function of x, we integrate with cosnx instead of einx over the range x = 0 to π. The output

chiNh is the Nh-th order harmonic χn(z0, ω).

0278 function chiNh=Demodulation(chi,Dz,Nh,ztip)

0279

0280 Nchi = size(chi); % Nchi = (Nz, Nw)

0281 Nw = Nchi(2); % Nw = Nw, size of frequency grid

0282

0283 N0 = find(ztip + 2 * Dz <= ztip(end), 1, ’last’);

0284 % find the largest ztip satisfying constraint

0285 z0 = ztip(1: N0); % use these valid ztip’s as z0

0286

0287 chiNh = zeros(N0,Nw ); % array storing the computed n-th harmonic

0288

0289 for i = 1 : Nw

0290 chi spline = spline(ztip, chi(:,i));

0291 % approximate chi by a smooth curve using spline

0292 for j = 1: N0

0293 chiNh(j,i) = quadgk(@intChiNh, 0, pi) / pi;

0294 % intChiNh defines the integrand of the integral

0295 end

0296 end

0297

0298 function res = intChiNh(x)

0299 res = ppval(chi spline, z0(j) + Dz * (1 - cos(x))) .* cos(Nh * x);

0300 % the integrand is chi(z0 + Dz*(1 - cos x)) * cos nx

0301 end

0302 end % end of Demodulation

0303 end % end of Spheroid
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