UC San Diego
 UC San Diego Previously Published Works

Title

Generalized spectral method for near-field optical microscopy

Permalink
https://escholarship.org/uc/item/1c93n54q

Journal

JOURNAL OF APPLIED PHYSICS, 119(5)

ISSN

0021-8979

Authors

Jiang, B-Y
Zhang, LM
Castro Neto, AH
et al.
Publication Date
2016
DOI
10.1063/1.4941343

Peer reviewed

Generalized spectral method for near-field optical microscopy

B.-Y. Jiang, ${ }^{1}$ L. M. Zhang, ${ }^{1}$ A. H. Castro Neto,,${ }^{2,3}$ D. N. Basov, ${ }^{1}$ and M. M. Fogler ${ }^{1}$
${ }^{1}$ Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
${ }^{2}$ Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
${ }^{3}$ Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore 117542

(Received 14 September 2015; accepted 22 January 2016; published online 5 February 2016)

Abstract

Electromagnetic interaction between a sub-wavelength particle (the "probe") and a material surface (the "sample") is studied theoretically. The interaction is shown to be governed by a series of resonances corresponding to surface polariton modes localized near the probe. The resonance parameters depend on the dielectric function and geometry of the probe as well as on the surface reflectivity of the material. Calculation of such resonances is carried out for several types of axisymmetric probes: spherical, spheroidal, and pear-shaped. For spheroids, an efficient numerical method is developed, capable of handling cases of large or strongly momentum-dependent surface reflectivity. Application of the method to highly resonant materials, such as aluminum oxide (by itself or covered with graphene), reveals a rich structure of multi-peak spectra and nonmonotonic approach curves, i.e., the probe-sample distance dependence. These features also strongly depend on the probe shape and optical constants of the model. For less resonant materials such as silicon oxide, the dependence is weak, so that the spheroidal model is reliable. The calculations are done within the quasistatic approximation with radiative damping included perturbatively. © 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941343]

I. INTRODUCTION

The problem of electromagnetic interaction between a material surface and a small external particle is fundamental to numerous physical phenomena and spectroscopic techniques, including surface-enhanced Raman scattering, surface fluorescence, adsorbed molecules spectroscopy, and near-field microscopy. From the point of view of electromagnetic theory, it is a special kind of scattering problem where the scatterer resides in a uniform half-space, e.g., vacuum, while the effect of the other half-space-the sample-is represented by the surface reflectivity $r_{\alpha}(q, \omega)$. The reflectivity may depend on the in-plane momentum q, frequency ω, and polarization $\alpha=\mathrm{P}$ or S . Far-field optics describes the regime $q<\omega / c$. Momenta $q \gg \omega / c$, which correspond to in-plane distances $\Delta \rho$ much smaller than the diameter c / ω of Wheeler's radian sphere, ${ }^{1}$ are the domain of near-field optics.

This work is motivated by recent advancements of the scattering-type near-field optical microscopy ${ }^{2,3}$ (s-SNOM), which has become one of the leading tools for measuring optical response of diverse materials on spatial scales as short as $5-20 \mathrm{~nm}$. Thanks to technical improvements and the development of tunable and broad-band infrared sources, ${ }^{4-7}$ the s-SNOM has provided insights into properties of complex oxides, ${ }^{8-14}$ organic monolayers, ${ }^{15}$ graphene, and other twodimensional crystals. ${ }^{5,16-18}$

The schematics of a s-SNOM experiment is shown in Fig. 1(a). A sharp elongated probe is brought into close proximity of a sample and is illuminated by an external electromagnetic wave with electric field $\boldsymbol{E}_{\text {ext }} e^{-i \omega t}$. Its interaction with the probe creates scattered waves $e^{i q \rho+i k^{z} z-i \omega t}, \boldsymbol{\rho}=(x, y)$, with arbitrary in-plane momentum \boldsymbol{q}, including large- q evanescent waves,
$k^{z}=\sqrt{(\omega / c)^{2}-q^{2}} \simeq i q$. Multiple reflections of these waves inside the probe-sample nanogap cause small but important changes in the total radiating dipole moment $p e^{-i \omega t}$ of the probe. These changes are detected by measuring the far-field scattering signal as a function of the probe coordinates. This signal is proportional to the probe polarizabilities

$$
\begin{equation*}
\chi^{\perp} \equiv p^{z} / E_{\mathrm{ext}}^{z}, \quad \chi^{\|} \equiv p^{x} / E_{\mathrm{ext}}^{x} \tag{1}
\end{equation*}
$$

which have the dimension of volume.
The goal of this paper is to study the properties of functions χ^{\perp} and $\chi^{\|}$. For simplicity, we consider only axisymmetric probes. We are especially interested in probes of large aspect ratio. In the experiment, strongly elongated probes are used because of high longitudinal polarizability χ^{\perp}, which promotes an efficient coupling between evanescent and farfield radiation modes-the "antenna" effect-making the detection of the near-field component possible.

We assume that the length of the probe is much smaller than the diameter of the radian sphere c / ω, so that the scattering problem can be treated within the quasistatic approximation. The probe shape we examine the most is a prolate spheroid. At first glance, both of these assumptions are unrealistic because actual probes are not spheroidal and their length (typically, tens of $\mu \mathrm{m}$) can often exceed c / ω for ω in infrared or optical frequency domain. Yet this model was previously found to yield quantitative agreement with the sSNOM experimental data for many materials. This apparent agreement can be expected in cases where the surface reflectivity $r_{\alpha}(q, \omega)$ of the sample is not too large, and the aspect ratio of the probe does not vary greatly from one experiment to the next. Under such conditions, the gross features of the

FIG. 1. (a) Schematics of a s-SNOM experiment in which a polarizable probe is used to examine a sample characterized by the surface reflectivity $r_{\alpha}(q)$. The external electric field $\boldsymbol{E}_{\text {ext }}$ incident on the system creates evanescent waves inside the probe-sample gap. This modifies the dipole moment \boldsymbol{p} of the probe, which is detectable by its far-field radiation. (b) The real-space potential distribution for the first four eigenmodes of the probe polarizability χ^{\perp} computed numerically for a spheroidal probe of half-length $L=25 a$. The axes are the x - and z-coordinates in units of a, the curvature radius of the apex of the probe. The probe's location is represented by the uniformly shaded beige area in the upper left corner of each panel.
s-SNOM scattering amplitude should indeed have only a modest dependence on the exact shape of the probe and other experimental parameters. However, fine details of the scattering amplitude are shape-dependent even in this case ${ }^{19}$ and they may be discerned as the instrumental resolution improves. Furthermore, for samples with high reflectivity, even the gross features become sensitive to the shape and size of the probe. To demonstrate these trends in this paper, we study the longitudinal and the transverse polarizabilities in great detail. We will ignore the S-polarization reflectivity $r_{\mathrm{S}}(q, \omega)$ because for most materials it becomes very small at $q \gg \omega / c$. Hence, χ^{ν} are functionals of the remaining reflectivity function $r_{\mathrm{P}}(q, \omega)$ and the probe-sample distance $z_{\text {tip }}$. We show that such functionals can be quite complicated, especially for strongly momentumdependent reflectivity typical of layered and/or ultrathin materials. Therefore, it is good to start with a simpler case of a bulk medium with a q-independent reflectivity

$$
\begin{equation*}
\beta(\omega) \equiv r_{\mathrm{P}}(q, \omega) \tag{2}
\end{equation*}
$$

so that for a fixed $z_{\text {tip }}$ and ω, the probe polarizabilities are functions of a single parameter β.

It should be clarified that while the absolute reflectivity may not exceed unity for the radiative modes $q<\omega / c$ because of energy conservation, for the evanescent ones $q>$ ω / c it is allowed do so. Large β 's are indicative of weakly damped surface modes in a material, e.g., surface phonons in dielectrics or surface plasmons in metals. We use the umbrella term "surface polaritons" for all such modes. The energy loss due to evanescent modes is governed not by $|\beta|$ but by $\operatorname{Im} \beta$ which must be nonnegative at $q>\omega / c$. (To compute the losses, $\operatorname{Im} \beta$ needs to be integrated over q with a weight that depends on the probe-sample distance. ${ }^{20}$) In the limit of vanishingly small dissipation, $\operatorname{Im} \beta(\omega)$ tends to a δ-function peak at the mode frequency. In practice, $\operatorname{Im} \beta$ (and consequently $|\beta|)$ as high as $10-20$ is possible for well-ordered crystalline solids, e.g., aluminum oxide $\mathrm{Al}_{2} \mathrm{O}_{3}$ possessing sharp phonon modes [Fig. 2(a)]. Therefore, a robust theoretical formalism must be capable of computing functions $\chi^{\nu}(\beta)$ in the entire upper complex half-plane. To meet this requirement, such a formalism must correctly reproduce the analytic properties of functions $\chi^{\nu}(\beta)$. We adopt a version of the generalized spectral method (GSM) in which the total field outside the probe
and sample is decomposed into eigenfunctions of an auxiliary homogeneous problem, and the role of eigenvalues is played by the reflectivity β, the so-called β-method in the terminology of Ref. 21. (Similar formalism is also known in the theory of conductivity of heterogeneous media. ${ }^{22,23}$) Following Refs. 21-23, one can show, for the quasistatic case, that for any probe-sample distance $z_{\text {tip }}>0$ functions $\chi^{\nu}(\beta)$ are meromorphic. In other words, they admit the series representations

$$
\begin{equation*}
\chi^{\nu}(\beta)=\sum_{k=0}^{\infty} \frac{R_{k}^{\nu}}{\beta_{k}^{\nu}-\beta}, \quad \nu=\perp \text { or } \|, \tag{3}
\end{equation*}
$$

where the sequence of poles β_{k}^{ν} has no accumulation points, and so, no upper limit. Additionally, we will show that if the probe is made of an ideal conductor and no other sources of dissipation are present, then the poles $\beta_{k}^{\nu}>1$ and the residues $R_{k}^{\nu}>0$ are real. If the dielectric constant $\epsilon_{\text {tip }}$ of the probe is considered fixed, R_{k}^{ν} and β_{k}^{ν} depend only on the geometric factors: the probe shape, size, and its distance $z_{\text {tip }}$ to the surface. All these results comply with the general theory of the β-method developed in Ref. 21.

The poles β_{k}^{ν} grow exponentially with k but their ratios with R_{k}^{ν} are bounded and satisfy the sum rule

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{R_{k}^{\nu}}{\beta_{k}^{\nu}}=\chi_{0}^{\nu} \tag{4}
\end{equation*}
$$

Here, $\chi_{0}^{\nu} \equiv \chi^{\nu}(\beta=0)$ is the polarizability of an isolated probe, which does not depend on $z_{\text {tip }}$. These properties ensure convergence of the series (3) at any $\beta \neq \beta_{k}^{\nu}$. On the other hand, if a material-specific $\beta(\omega)$ approaches any of β_{k}^{ν}, a resonant peak in χ^{ν} and ultimately, in the near-field signal, would be observed.

The divergence of χ^{ν} at a given pole implies that a nonzero dipole, i.e., free oscillations may exist in the absence of any external field. Physical intuition about this regime is aided by the method of images, according to which real charges Q_{i} on the probe interact with their virtual images $-\beta Q_{i}$ inside the sample and for $\beta>1$ achieve a runaway positive feedback. However, one must keep in mind that these eigenmodes arise only in the auxiliary problem where the sample is substituted by a fictitious material of reflectivity β_{k}^{ν}. The divergence never actually happens in real materials due to their inherent dissipation, which enters in the form

FIG. 2. (a) Near-field reflectivity $\beta(\omega)$ of bulk $\mathrm{Al}_{2} \mathrm{O}_{3}$ discussed in Sec. VI. Whenever the condition $\operatorname{Re} \beta(\omega)=\beta_{k}^{\nu}$ is met, a local maximum appears in $\operatorname{Im} \chi^{\nu}$. The frequencies of three such resonances are indicated by the dashed lines. (b) In the complex plane of β, the poles β_{k}^{ν} lie on the positive real axis, while real materials trace curves in the upper half plane, shown in red. (c) A full electrodynamic treatment predicts that the poles shift into the lower half-plane and an additional nonanalyticity in the form of a branch cut $[1, \infty)$ appears.
of a positive imaginary part in β as shown in Figs. 2(a) and 2(b). The resonances are further damped due to the shifting of the poles β_{k}^{ν} to the lower complex half-plane when radiative corrections are considered [Fig. 2(c)], as discussed in more detail in Sec. VIII. For a generic probe that ends in a rounded tip, the amplitude of the eigenmodes is the greatest near the tip, as illustrated in Fig. 1(b) for a spheroidal probe. Overall, this physical picture of tip-localized eigenmodes is an elegant and economical approach to understanding the mechanism of probe-sample coupling.

The main objective of the present work is to elucidate the analytical properties of the coefficients β_{k}^{ν} and R_{k}^{ν}. We focus on the practically interesting case where the probe length L is much larger than the curvature radius a of the probe tip. We show that for such strongly elongated probes three regimes can be distinguished. The first is the short-distance limit $z_{\text {tip }} \ll a$ where the behavior of β_{k}^{ν} is universal. We show that it can be derived from the known exact solutions for spherical particles (Sec. II). The second is the long-distance limit, $z_{\text {tip }} \gg L$, where the probe acts as a point-dipole and the functional form of the resonance parameters is again universal. The remaining third regime $a<z_{\text {tip }}<L$ is the most nontrivial one where β_{k}^{ν} and R_{k}^{ν} depend on the probe shape.

For all the probe geometries, we study the poles β_{k}^{ν} grows exponentially with k, and so for moderate values of β it is permissible to truncate the series in Eq. (3) after one or a few leading terms. This truncation is effectively done in simplified models ${ }^{6,24-27}$ of the probe-sample coupling (see Sec. IX). However, this simplification may lead to qualitatively and quantitatively wrong results at small $z_{\text {tip }}$ and/or for large β. The latter characterize highly polar materials such as $\mathrm{SiO}_{2}{ }^{28}$ (a commonly used substrate) and the already mentioned $\mathrm{Al}_{2} \mathrm{O}_{3}$ (an important reference material of infrared optics).

Besides addressing analytical properties of the probe polarizabilities, we also discuss methods for their numerical computation. For the simplest case of a momentum-independent reflectivity, the calculation can be made virtually instantaneous with the help of Eq. (3) once the first few β_{k}^{ν} and R_{k}^{ν} are computed and stored. For specific case of a spheroidal probe, this calculation can be further accelerated using the spheroidal
harmonics basis instead of the standard boundary element method (BEM). Since the number of relevant poles and residues is relatively small, for further convenience, they can be fitted to analytical forms, see an example for $L=25 a$ spheroidal probe in Ref. 29. The speed becomes a crucial consideration if the calculations have to be done repeatedly. An important example is extracting optical constants of the sample from near-field spectroscopy data by curve-fitting algorithms. ${ }^{19}$ One may anticipate to find a considerable speed-up if this inverse problem was treated using the GSM. The acceleration occurs because the unknown physical parameter $\beta=\beta(\omega)$ of the sample and the geometric parameters β_{k}^{ν} and R_{k}^{ν} of the probe stand clearly separated. The GSM also applies for momentum-dependent $r_{\mathrm{P}}(q, \omega)$, e.g., for layered samples; however, in the current implementation, the speed-up compared with the BEM is less significant.

The remainder of the article is organized as follows. In Sec. II, we analyze the universal aspects of the short- and the long-distance regimes. In Sec. III, the spheroidal probe model is considered. The equations for the poles and residues are presented and the results of their numerical solution for the case of a q-independent r_{P} are discussed. In Sec. IV, we explore the effects due to a weakly q-dependent surface reflectivity. In Sec. V, we discuss caveats in the simulation of the s-SNOM experiment. In Sec. VI, we apply our numerical method to computing the near-field response of bulk $\mathrm{Al}_{2} \mathrm{O}_{3}$, a strongly polar material. In Sec. VII, we perform the calculation for the same $\mathrm{Al}_{2} \mathrm{O}_{3}$ substrate but covered with graphene, which is a system with a strongly q-dependent reflectivity. In Sec. VIII, we discuss the effects of the probe shape and retardation on these calculations. We also do a similar comparison for SiO_{2}, a less polar material. In Sec. IX, we discuss prior theoretical work and close with concluding remarks. Technical details of the derivations and the source code of our computer program are available in the supplementary material.

II. PROBE-SAMPLE INTERACTION IN SHORT- AND LONG-DISTANCE LIMITS

We start with a qualitative analysis of the short-distance regime defined by the condition $z_{\text {tip }} \ll a$. In this limit, the structure of the localized polariton modes can be understood
intuitively by analogy ${ }^{30}$ to electromagnetic modes in an open cavity. The probe-sample gap can be approximated by a cavity with height $z(\rho) \simeq z_{\text {tip }}+\left(\rho^{2} / 2 a\right)$ gradually increasing as a function of the radial position ρ. For simplicity, let us assume the surface reflectivity of the probe is equal to unity, as for an ideal conductor. To have free oscillations exist in such a cavity, the surface reflectivity β of the sample must exceed unity, compensating for the exponential decay of the evanescent waves. The condition of the self-sustained oscillations is $\beta \exp \left(2 i k^{z}(\rho) z(\rho)\right)=1$. Accordingly, the local radial momentum $q(\rho) \simeq-i k^{z}(\rho)=\log \beta / 2 z(\rho)$. Imposing the quasiclassical Bohr-Sommerfeld quantization condition $\int_{0}^{\infty} d \rho q(\rho)=\pi[k+\mathcal{O}(1)]$ for mode number k, we obtain

$$
\begin{equation*}
\log \beta_{k} \simeq[k+\mathcal{O}(1)] \sqrt{\frac{8 z_{\text {tip }}}{a}}, \quad z_{\text {tip }} \ll a \tag{5}
\end{equation*}
$$

The mode is localized at distances $\rho \lesssim \sqrt{z_{\text {tip }} a}$. The validity of this qualitative analysis is supported by the exact results for spherical particles. For the $\nu=\|$ part, the following compact formulas for the poles and residues are available: ${ }^{30-32}$

$$
\begin{gather*}
\beta_{k}^{\|}(\alpha)=e^{(2 k+3) \alpha} \tag{6}\\
R_{k}^{\|}(\alpha)=4(k+1)(k+2) a^{3} \sinh ^{3} \alpha \tag{7}
\end{gather*}
$$

where

$$
\begin{equation*}
\alpha=\operatorname{arccosh}\left(\frac{z_{\mathrm{tip}}}{a}+1\right) . \tag{8}
\end{equation*}
$$

It is easy to check that Eqs. (5) and (6) agree in the limit of small α. (Dependence of β_{k}^{\perp} on α is qualitatively similar; however, the residues scale as $R_{k}^{\perp} \sim k a^{3} \alpha^{2}$ at small $\alpha{ }^{29}$) It is reasonable to think that the behavior of $\beta_{k}^{\nu}(\alpha)$ at $\alpha \ll 1$ should be common for any shape ending in a rounded tip. As long as the modes are localized at $\rho \ll a$, they should be affected weakly by rest of the probe. This hypothesis is supported by numerical calculations presented later in this article.

Consider next the long-distance limit $z_{\text {tip }} \gg L$. In this case, the probe-sample interaction can be analyzed using the multipole expansion. For the lowest resonance $k=0$, it is sufficient to include only the dipole term. The dipole moment of the probe is given by $p^{\nu}=\chi_{0}^{\nu} E_{\mathrm{tot}}^{\nu}$, where $E_{\mathrm{tot}}^{\nu}=E_{\mathrm{ext}}^{\nu}+E_{\mathrm{ind}}^{\nu}$ is the total field at the probe position and $E_{\text {ind }}^{\nu}$ is the field induced by the image dipole. In particular, $E_{\text {ind }}^{\perp}=\beta p^{\perp} / 4 z_{\text {tip }}^{3}$ and $E_{\text {ind }}^{\|}=\beta p^{\|} / 8 z_{\text {tip }}^{3}$. Solving these equations for p^{ν} and casting the result for $\chi^{\nu}=p^{\nu} / E_{\text {ext }}^{\nu}$ in the form (3), we get

$$
\begin{align*}
\beta_{0}^{\perp} \simeq 4 z_{\text {tip }}^{3} / \chi_{0}^{\perp}, & R_{0}^{\perp} \simeq 4 z_{\text {tip }}^{3} \tag{9a}\\
\beta_{0}^{\|} \simeq 8 z_{\text {tip }}^{3} / \chi_{0}^{\|}, & R_{0}^{\|} \simeq 8 z_{\text {tip }}^{3} \tag{9b}
\end{align*}
$$

For the sphere $\chi_{0}^{\nu}=a^{3}$, so that the last pair of equations agrees with the exact result (6) and (7). The $k>0$ resonances are dominated by higher-order multipoles. The principal dependence of the poles and residues on α is expected to be the same as for the sphere, i.e.,

$$
\begin{equation*}
\beta_{k}^{\nu} \sim\left(\frac{z_{\text {tip }}}{a}\right)^{2 k+3}, \quad R_{k}^{\nu} \sim \frac{2}{c^{\nu}}(k+1)(k+2) z_{\text {tip }}^{3} \text { if } z_{\text {tip }} \gg L \tag{10}
\end{equation*}
$$

where $c^{\perp}=1$ and $c^{\|}=1 / 2$. The forms for R_{k}^{ν} are verified numerically in Sec. III. Equations (9a), (9b), and (10) imply that in the large $z_{\text {tip }}$ limit the sum rule (4) is saturated by the $k=0$ mode alone.

The case of a q-dependent reflectivity can be treated similarly. Thus, for $k=0$, one finds ${ }^{26}$

$$
\begin{gather*}
\chi^{\nu}\left(\omega, z_{\text {tip }}\right)=\frac{\chi_{0}^{\nu}}{1-\chi_{0}^{\nu} g^{\nu}\left(\omega, z_{\text {tip }}\right)} \tag{11}\\
g^{\nu}\left(\omega, z_{\text {tip }}\right)=c^{\nu} \int_{0}^{\infty} r_{\mathrm{P}}(q, \omega) e^{-2 q z_{\text {tip }}} q^{2} d q \tag{12}
\end{gather*}
$$

Note that the integral in Eq. (12) is dominated by the inplane momenta $q \sim 1 / z_{\text {tip }}$, which we assume to be well outside the light cone, $q \gg \omega / c$. At $z_{\text {tip }}>c / \omega$, this condition no longer holds and one has to include retardation effects (see Sec. VIII).

In summary, in this section, we presented arguments that the limiting case formulas (5) and (9a)-(12) apply to perfectly conducting probes of arbitrary shapes. For the sphere $L=a$ and for probes of modest aspect ratio $L \gtrsim a$, these formulas match by the order of magnitude at $z_{\text {tip }} \sim a$. However, for strongly elongated probes $L \gg a$, an additional intermediate regime $a \ll z_{\text {tip }} \ll L$ exists which requires further study. The simplest example of such a shape is the prolate spheroid and we discuss it in Section III.

III. INTERMEDIATE DISTANCES: SPHEROIDAL PROBE

Unlike the problem of a sphere, that of a spheroidal probe cannot be solved analytically. However, we can take advantage of the separation of variables in prolate spheroidal coordinates (Fig. 3), which enables a more efficient numerical solution. ${ }^{33}$ In this coordinate system, the spheroid is a surface of constant $\xi=L / F \equiv \xi_{0}$. The focal length F, the

FIG. 3. The prolate spheroidal coordinate system. Contours of constant $\xi(\eta)$ are confocal spheroids (hyperboloids). The unit vector $\hat{\boldsymbol{r}}$ and polar angle θ of spherical polar coordinates and unit vectors $\hat{\rho}$ and \hat{z} of cylindrical polar coordinates are also shown for reference.
major semi-axis L, the minor semi-axis W, and the curvature radius a of the spheroid apex are related by

$$
\begin{equation*}
F=\sqrt{L^{2}-W^{2}}, \quad a=W^{2} / L \tag{13}
\end{equation*}
$$

This implies $\xi_{0}=[1-(a / L)]^{-1 / 2}$. We assume that the major axis of the spheroid is along the z-axis. If the distance between the spheroid and the sample is $z_{\text {tip }}$, the sample surface is at $z=-L-z_{\text {tip }}$.

We consider the quasistatic limit where the scalar potential has the harmonic time dependence $\propto e^{-i \omega t}$. Its spatial part must obey the Laplace equation in the domain outside both the spheroid and the sample. Therefore, it can be expanded into spheroidal harmonics, which are products of the generalized Legendre functions of the first and second kind $P_{l}^{m}(x)$ and $Q_{l}^{m}(x)$. Here, $m=0, \pm 1, \pm 2, \ldots$ is the z-axis angular momentum and l must be greater or equal to $|m|$. As shown in Ref. 29, the expansion coefficients $A^{m}{ }_{l}$ can be related to the charge distribution on the spheroid. For example, $A^{m}{ }_{0}$ is proportional to the total oscillating charge of the spheroid $\propto e^{-i \omega t}$. For a passive probe, $A^{m}{ }_{0}=0$. The $l=1$ terms determine the components of the dipole moment induced on the probe

$$
\begin{equation*}
p_{z}=-\frac{1}{3} F^{3} A^{0}{ }_{1}, \quad p_{x}-i p_{y}=\frac{2}{3} F^{3} A^{1}{ }_{1} . \tag{14}
\end{equation*}
$$

For each m, the set of coefficients $A^{m}{ }_{l}$ satisfies the infiniteorder system of linear equations

$$
\begin{equation*}
\sum_{l^{\prime}=1}^{\infty}\left(\Lambda_{l l^{\prime}}^{m}-H_{l l^{\prime}}\right) A_{l^{\prime}}^{m}=b^{m}{ }_{l} \tag{15}
\end{equation*}
$$

where $\Lambda_{l l^{\prime}}^{m}$ and $H_{l l^{\prime}}$ are defined by Eqs. (21) and (24) below. According to Eq. (14), to find \boldsymbol{p}, we need to consider only $m=0$ and $m=1$. The requisite coefficients $b^{m}{ }_{l}$ on the righthand side of Eq. (15) are given by

$$
\begin{gather*}
b^{0}{ }_{1}=-\frac{4}{3} E^{z} \tag{16}\\
b^{1}{ }_{1}=\frac{4}{3}\left(E_{x}-i E_{y}\right), \quad b^{-1}{ }_{1}=\frac{1}{3}\left(E_{x}+i E_{y}\right) . \tag{17}
\end{gather*}
$$

If the external field $\boldsymbol{E}_{\text {ext }}=E_{x} \hat{\boldsymbol{x}}+E_{y} \hat{\boldsymbol{y}}+E_{z} \hat{z}$ is uniform, all other $b^{m}{ }_{l}$ vanish. Once we solve the system (15) for $m=0$, we can find the transverse polarizability from

$$
\begin{equation*}
\chi^{\perp}=\frac{p^{z}}{E^{z}}=\frac{4}{9} F^{3} \frac{A^{0}{ }_{1}}{b^{0}} \tag{18}
\end{equation*}
$$

In turn, the solution for $m=1$ would give us $A^{1}{ }_{1}$ and

$$
\begin{equation*}
\chi^{\|}=\frac{p_{x}-i p_{y}}{E_{x}-i E_{y}}=\frac{8}{9} F^{3} \frac{A^{1}{ }_{1}}{b^{1}{ }_{1}} . \tag{19}
\end{equation*}
$$

Equation (15) we wish to solve can be cast in a matrix form

$$
\begin{equation*}
\left(\Lambda^{m}-\mathbf{H}\right) \mathbf{A}^{m}=\mathbf{b}^{m} . \tag{20}
\end{equation*}
$$

Matrix Λ^{m} is diagonal, $\Lambda^{m}{ }_{l l^{\prime}}=\Lambda_{l}^{m} \delta_{l l^{\prime}}$, where

$$
\begin{equation*}
\Lambda_{l}^{m}=\frac{(-1)^{m}}{2 l+1} \frac{4}{\epsilon_{\text {tip }}-1}\left[\epsilon_{\text {tip }} \frac{Q_{l}^{m}\left(\xi_{0}\right)}{P_{l}^{m}\left(\xi_{0}\right)}-\frac{\frac{d}{d \xi_{0}} Q_{l}^{m}\left(\xi_{0}\right)}{\frac{d}{d \xi_{0}} P_{l}^{m}\left(\xi_{0}\right)}\right] \tag{21}
\end{equation*}
$$

and $\epsilon_{\text {tip }}$ is again the dielectric constant of the spheroid. If the probe is made of an ideal conductor, $\epsilon_{\text {tip }} \rightarrow \infty$, then Eq. (21) simplifies to

$$
\begin{equation*}
\Lambda_{l}^{m}=(-1)^{m} \frac{4}{2 l+1} \frac{Q_{l}^{m}\left(\xi_{0}\right)}{P_{l}^{m}\left(\xi_{0}\right)} \tag{22}
\end{equation*}
$$

All these Λ_{l}^{m} are actually positive numbers because the factor $(-1)^{m}$ is compensated by the same factor in the definition of $Q_{l}^{m}\left(\xi_{0}\right)$. The behavior of Λ_{l}^{m} at large l is approximately exponential, as can be deduced from the asymptotic formula

$$
\begin{equation*}
(-1)^{m} \frac{Q_{l}^{m}\left(\xi_{0}\right)}{P_{l}^{m}\left(\xi_{0}\right)} \simeq \pi e^{-(2 l+1) \alpha_{0}}, \quad \alpha_{0} \equiv \operatorname{arccosh} \xi_{0} \tag{23}
\end{equation*}
$$

In Sec. VI, we also consider the case where $\epsilon_{\text {tip }}$ is a finite positive number. In this case, the decay of Λ_{l}^{m} at large l is also exponential but with a different factor in front.

The elements of matrix \mathbf{H} in Eq. (20) are given by

$$
\begin{equation*}
H_{l l^{\prime}} \equiv 2 \pi \int_{0}^{\infty} r_{\mathrm{P}}(q, \omega) I_{l+\frac{1}{2}}(q F) I_{l^{\prime}+\frac{1}{2}}(q F) e^{-2 q z_{\mathrm{p}}} \frac{d q}{q} \tag{24}
\end{equation*}
$$

where $I_{\nu}(z)$ are the modified Bessel functions of the first kind and

$$
\begin{equation*}
z_{\mathrm{p}} \equiv z_{\text {tip }}+L \tag{25}
\end{equation*}
$$

As mentioned in Sec. I, the reflectivity $r_{\mathrm{P}}(q, \omega)$ may have strong peaks at the dispersion curves $\omega(q)$ of the surface polaritons of the sample. In practice, $r_{\mathrm{P}}(q, \omega)$ is always finite, so that the integrand in Eq. (24) is well-behaved and exponentially decreasing. A fast method of computing $H_{l l^{\prime}}$ numerically is explained in the supplementary material. In the remainder of this section, we will assume that $r_{\mathrm{P}}(q, \omega)$ is q-independent. We will show that the polarizabilities of the spheroidal probe are meromorphic functions as stated in Sec. I. We will also present our analytical and numerical results concerning the behavior of their poles and residues.

If $r_{\mathrm{P}}(q, \omega)=\beta=$ const, then matrix \mathbf{H} factorizes $\mathbf{H}=$ $\beta \overline{\mathbf{H}}$ and Eq. (20) becomes

$$
\begin{equation*}
\left(\Lambda^{m}-\beta \overline{\mathbf{H}}\right) \mathbf{A}^{m}=\mathbf{b}^{m} \tag{26}
\end{equation*}
$$

A particular case of this equation for $z_{\text {tip }}=0$ was previously derived in Ref. 33. In general, Eq. (26) implies that \mathbf{A}^{m} as a function of β has poles β_{k}^{ν} that are the solutions of the eigenvalue problem

$$
\begin{equation*}
\left(\Lambda^{m}-\beta_{k}^{\nu} \overline{\mathbf{H}}\right) \mathbf{u}_{k}=0 \tag{27}
\end{equation*}
$$

The substitution $\mathbf{u}_{k}=\left(\Lambda^{m}\right)^{-1 / 2} \mathbf{v}_{k}$ transforms it to

$$
\begin{equation*}
\mathbf{v}_{k}=\beta_{k}^{\nu} \mathbf{M} \mathbf{v}_{k}, \quad \mathbf{M}=\left(\Lambda^{m}\right)^{-1 / 2} \overline{\mathbf{H}}\left(\Lambda^{m}\right)^{-1 / 2} \tag{28}
\end{equation*}
$$

Since all Λ_{l}^{m} are assumed to be positive, matrix \mathbf{M} is real and symmetric, and so its eigenvalues $\left(\beta_{k}^{\nu}\right)^{-1}$ are real and its eigenvectors \mathbf{v}_{k} can be chosen to be orthonormal. Assuming \mathbf{v}_{k} forms a complete basis, the solution \mathbf{A}^{m} of Eq. (26) can be sought as a linear combination of the corresponding \mathbf{u}_{k}. Taking into account Eqs. (18) and (19), we arrive at Eq. (3) with

$$
\begin{equation*}
\frac{R_{k}^{\nu}}{\beta_{k}^{\nu}}=\chi_{0}^{\nu}\left|\left(\mathbf{v}_{k}\right)_{0}\right|^{2}, \quad \chi_{0}^{\nu}=\frac{4}{9} \frac{m+1}{\Lambda_{1}^{m}} F^{3} \tag{29}
\end{equation*}
$$

where, once again, $m=0$ for $\nu=\perp, m=1$ for $\nu=\|$, and $\left(\mathbf{v}_{k}\right)_{0}$ is the first component of vector \mathbf{v}_{k}. The completeness of the basis entails $\sum_{k}\left|\left(\mathbf{v}_{k}\right)_{0}\right|^{2}=1$, leading to the sum rule (4). The explicit formulas for χ_{0}^{ν} that follow from Eqs. (22) and (29) are

$$
\begin{gather*}
\chi_{0}^{\perp}=\frac{L^{3}}{3 \xi_{0}^{3}}\left[\frac{1}{2} \ln \left(\frac{\xi_{0}+1}{\xi_{0}-1}\right)-\frac{1}{\xi_{0}}\right]^{-1}=\frac{V}{4 \pi L^{\perp}}, \tag{30a}\\
\chi_{0}^{\|}=\frac{2 L^{3}}{3 \xi_{0}^{3}}\left[\frac{\xi_{0}}{\xi_{0}^{2}-1}-\frac{1}{2} \ln \left(\frac{\xi_{0}+1}{\xi_{0}-1}\right)\right]^{-1}=\frac{V}{4 \pi L^{\|}}, \tag{30b}
\end{gather*}
$$

where $V=(4 \pi / 3) L^{2} a$ is the volume of the spheroid and L^{ν} are the depolarization factors of the spheroid ${ }^{34}$

$$
\begin{gather*}
L^{\perp}=\left(\xi_{0}^{2}-1\right)\left[\frac{1}{2} \xi_{0} \ln \left(\frac{\xi_{0}+1}{\xi_{0}-1}\right)-1\right] \tag{31}\\
L^{\|}=\frac{1-L^{\perp}}{2} \tag{32}
\end{gather*}
$$

These formulas should be familiar from classical electrostatics or from the theory of light scattering by small particles. ${ }^{34}$ For strongly elongated spheroid $L \gg a, \xi_{0} \simeq 1$, they yield

$$
\begin{align*}
\chi_{0}^{\perp} & \simeq \frac{2}{3} \frac{L^{3}}{\ln (4 L / a)} \tag{33a}\\
\chi_{0}^{\|} & \simeq \frac{2}{3} L^{2} a \tag{33b}
\end{align*}
$$

In Sec. I, we stated that the sequence β_{k}^{ν} may not have accumulation points. For the present case of a spheroidal probe, this can be proven directly from the properties of matrix \mathbf{M}. The first step is to show that the matrix elements of $\overline{\mathbf{H}}$ obey the asymptotic bound

$$
\begin{equation*}
\ln \bar{H}_{l l^{\prime}}<-\left(l+l^{\prime}+1\right) \operatorname{arccosh}\left(\frac{z_{\mathrm{p}}}{F}\right) \tag{34}
\end{equation*}
$$

at large l and l^{\prime}. This can be established using the saddlepoint integration in Eq. (24). Together with Eqs. (22) and (23), this bound ensures that at $z_{\text {tip }}>0$ the high-order matrix elements of \mathbf{M} decay exponentially

$$
\ln M_{l l^{\prime}}<-\left(l+l^{\prime}+1\right)\left[\operatorname{arccosh}\left(\cosh \alpha+\frac{z_{\text {tip }}}{F}\right)-\alpha\right]
$$

Here, α [Eq. (8)] parametrizes the probe-sample distance $z_{\text {tip }}$. Hence, the double series $\sum_{l l^{\prime}} M_{l l^{\prime}}^{2}=\operatorname{tr} \mathbf{M}^{2}$ is convergent. Considering the identity

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\beta_{k}^{\nu}\right)^{-2}=\operatorname{tr} \mathbf{M}^{2}<\infty \tag{35}
\end{equation*}
$$

we see that the accumulation points are ruled out. On the contrary, $\operatorname{tr} \mathbf{M}^{2}$ diverges at $z_{\text {tip }}=0$ and one accumulation point does exist: $\beta=1$. For the sphere, this can be found directly from Eq. (7) by setting $\alpha=0$.

In the spherical limit $\xi_{0} \rightarrow \infty$, an analytical solution of our equations exists although it is not obvious. We deduced the form of this solution from the method of images. ${ }^{29}$ At finite ξ_{0}, we resorted to solving the problem numerically. As already mentioned, due to an exponential growth of β_{k}^{ν} with k, only a first few of such poles are usually needed for evaluating the polarizabilities in question χ^{ν}. To compute such β_{k}^{ν} and the corresponding R_{k}^{ν}, we used the following procedure. Given L / a and α, we would generate an $N \times N$ matrix made of the first N rows and columns of the full infinite matrix M. We would diagonalize this finite-size matrix by standard library routines. ${ }^{35}$ The obtained eigenvalues approximate the first N poles β_{k}^{ν}. We would gradually increase the matrix size until the poles we are interested in would show no variation as a function of N within the desired accuracy. The larger L / a and the smaller α, the higher N was needed. We found this procedure workable as long as $N \mathrm{did}$ not exceed about 500. As a rule, the higher eigenvalues of larger matrices would either fail to reach the accuracy or would show an α-dependence inconsistent with physical principles. This behavior stems most likely from roundoff errors. In principle, one can combat them by utilizing higher-precision arithmetic but we did not pursue this route. For $L=25 a$, the computation of the first nine poles with at least two-digit accuracy was possible for $\alpha>0.08$, i.e., $z_{\text {tip }}>0.003 a$. The residues R_{k}^{ν} were obtained from the eigenvectors of the truncated matrix \mathbf{M} using Eqs. (29), (30a), and (30b). In the interval $0<\alpha<0.08$, we used the linear interpolation between $\beta_{k}^{\nu}(\alpha=0.08)$ and $\beta_{k}^{\nu}(\alpha=0)=1$.

The results of these calculations are presented in Fig. 4 for the first four modes, $k=0$ to 3 . The solid lines in panels (a) and (c) show β_{k}^{\perp} and $\beta_{k}^{\|}$, respectively, as a function of α. The corresponding quantities for a sphere are shown by the dashed lines. The residues R_{k}^{ν} / a^{3} are plotted in panels (b) and (d). The first nine pole-residue pairs of the spheroid for $\nu=\perp$ have also been fitted with an error of 5% or smaller to a combination of elementary functions in the range $0.003 a<z_{\text {tip }}<10 a$. The fitting formulas and their coefficients are cataloged in Ref. 29. The residue R_{8}^{\perp} behaves differently from the others because it was constrained to satisfy the sum rule (4). Using these formulas, one can find the response χ^{\perp} with negligible computational cost for any $\beta(\omega)$ as long as its value is not extremely large. Note that although these results are for perfectly conducting spheroids $\epsilon_{\text {tip }}=\infty$, calculations for arbitrary finite $\epsilon_{\text {tip }}$ can be done in the same way except one has to use Eq. (21) instead of Eq. (22).

Let us now compare the obtained dependence of β_{k}^{ν} on $z_{\text {tip }}$ with the limiting asymptotic behavior predicted in Sec. II. First, at $z_{\text {tip }} \ll a$, the poles of the spheroid approach that of a sphere, as expected (see Figs. 4(a) and 4(c)). The other

FIG. 4. (a) The first four poles β_{k}^{ν} of the polarizability χ^{ν} for perfectly conducting spheroids. The probe-sample distance is parameterized by $\alpha=$ $\operatorname{arccosh}\left(1+z_{\text {tip }} / a\right)$ [Eq. (8)]. The solid lines are for a strongly elongated spheroid $L=25 a$ and the dashed lines are for a nearly spherical one $L=1.01 a$. The external field is in the z-direction, $\nu=\perp$. (b) The corresponding residues R_{k}^{\perp} divided by a^{3}. Poles for different shapes converge at small $z_{\text {tip }}$, while residues converge at large $z_{\text {tip. }}$. (c) and (d) Similar plots for the external field in the $x-y$ plane, $\nu=\|$.
limit is $z_{\text {tip }} \gg L$, where the point-dipole formulas (9a) and (9b) should apply. In Fig. 4, it is seen that the lowest eigenvalue of both shapes indeed have the correct behavior. The intermediate regime $a \ll z_{\text {tip }} \ll L$ is the most nontrivial one. We argue that in this regime function $\beta_{0}^{\perp}\left(z_{\text {tip }}\right)$ behaves as

$$
\begin{equation*}
\beta_{0}^{\perp}\left(z_{\text {tip }}\right)=c \ln \left(z_{\text {tip }} / a\right), \quad a \ll z_{\text {tip }} \ll L \tag{36}
\end{equation*}
$$

with some coefficient $c \sim 1$ independent of L. To arrive at this formula, we first find bounds on β_{0}^{\perp} using the following theorem. Consider two perfectly conducting probes of different sizes. If the surface of one probe can be inscribed into the other, then the first probe must have a larger β_{0}^{ν}. This statement is physically natural because self-sustained oscillations around the smaller body require a larger compensation from the surface reflectivity (cf. Sec. II). It can also be proven mathematically from the variational principle. ${ }^{21,36}$ To place bounds on β_{0}^{\perp} of the spheroid, we can consider two other probes, a larger one and a smaller one. We get

$$
\begin{equation*}
\beta_{0}^{\text {cone }, \nu}<\beta_{0}^{\nu}<\beta_{0}^{\mathrm{ss}, \nu} \tag{37}
\end{equation*}
$$

where $\beta_{0}^{\text {cone, } \nu}$ is the lowest pole of a cone with a vertex touching the sample and enveloping the spheroid; $\beta_{0}^{\mathrm{ss}, \nu}$ is the lowest pole of a spheroid of shorter length $L=z_{\text {tip }}$. It can be shown ${ }^{37-39}$ that $\beta_{0}^{\text {cone }, \perp} \simeq(1 / \pi) \ln \left(z_{\text {tip }} / a\right)$. As for the smaller spheroid, the point-dipole formula should apply by order of magnitude, $\beta_{0}^{\text {ss }, \perp} \sim 6 \ln \left(z_{\text {tip }} / a\right)$, cf. Eqs. (9a) and (33a). Since the functional form of these bounds coincides with Eq. (36)
up to numerical coefficients, we argue that $\beta_{0}^{\perp}\left(z_{\text {tip }}\right)$ should obey the same equation as well. The graph shown in Fig. 4(a) is consistent with this prediction. However, due to numerical limitations, $L / z_{\text {tip }}$ and $z_{\text {tip }} / a$ could not be very large in our simulation and we could obtain only a crude estimate $1<c<3$ of the coefficient c. The poles $\beta_{k}^{\|}$of the in-plane polarizability, which are plotted in Fig. 4(c) as a function of α, also show crossovers among three regimes (short, long, and intermediate distances) and can be understood in a similar way.

The behavior of the residues R_{k}^{ν} is more difficult to analyze. At large distances $z_{\text {tip }} \gg L$, the residues of the spheroid approach those of the sphere [Eq. (10)]. At small distances, where the poles behave as $\ln \beta_{k}^{\nu} \sim(2 k+3) \alpha$, the polarizability is determined by a large number $\sim 1 / \alpha$ of terms in the pole-residue series. The sum rule (4) implies that the sum of these dominant residues must be of the order of χ_{0}^{ν} for each shape. Indeed, the residues of the sphere, which have the form $R_{k}^{\perp} \propto k a^{3} \alpha^{2}$ and $R_{k}^{\|} \propto(k+1)(k+2) a^{3} \alpha^{3},{ }^{29}$ obey this requirement. The residues of the spheroid are always larger than those of the sphere, consistent with the higher χ_{0}^{ν}. The intermediate-distance behavior of R_{k} defies an obvious characterization. It is intriguing that at small distances only the residues are affected by the aspect ratio of the probe, while at large distances only the poles are altered.

Information about the probe-sample coupling complementary to the properties of the poles and residues can be obtained by examining the potential distribution of the polariton modes in real space. The examples for the \perp modes are
depicted in Fig. 1(b). The potential is strongly peaked near the tip of the spheroid, demonstrating the localized nature of near-field coupling. Note that the number of times the potential changes sign along x is equal to k.

IV. MOMENTUM-DEPENDENCE OF THE PROBE-SAMPLE COUPLING

A simple physical picture of the s-SNOM that served as an important insight in the early days of the field and still remains popular today is the notion that the probe couples predominantly to momenta $q \sim 1 / a$. Accordingly, the s-SNOM signal is collected from a very small region of size $\sim a$ directly underneath the tip. Modern applications of s-SNOM to two-dimensional and layered systems require going beyond this oversimplified picture because the q-dependence of the reflectivity $r_{\mathrm{P}}(\omega, q)$ of such systems can be very sharp due to presence of dispersive collective modes (Sec. VII). Recall that for a momentum-independent reflectivity β [Eq. (2)], the poles and residues of the polariton eigenmodes are determined solely by the permittivity and geometry of the probe. Unfortunately, for a q-dependent reflectivity, such a clean separation of the probe and sample properties in the eigenproblem is not possible. While one can still define the eigenmodes by suitably modifying Eq. (3), the corresponding poles and residues will be, in general, complicated functionals of $r_{\mathrm{P}}(\omega, q)$. However, if the q-dependence of the reflectivity is weak, it can be treated as a perturbation, and the sample-independent resonant modes are retained. As we show in this section, in this perturbative case, one can precisely define the probe-sample coupling as a function of q and the "dominant" momentum as a function of $z_{\text {tip }}$.

Consider a small q-dependent correction to the reflectivity

$$
\begin{equation*}
r_{\mathrm{P}}(q)=\beta+\delta r_{\mathrm{P}}(q) \tag{38}
\end{equation*}
$$

The k th pole β_{k}^{ν} of the probe-sample eigenmodes is a functional of r_{P}. The key question is how this pole is affected by the nonlocal correction to r_{p}. The answer can be written in terms of $-G_{k}^{\nu}\left(q, z_{\text {tip }}\right)$, the first variational derivative of $\beta_{k}^{\nu}\left[r_{\mathrm{P}}(q)\right]$ with respect to r_{P}

$$
\begin{equation*}
\delta \beta_{k}^{\nu}\left(z_{\text {tip }}\right)=-\int_{0}^{\infty} G_{k}^{\nu}\left(q, z_{\text {tip }}\right) \delta r_{\mathrm{P}}(q) d q \tag{39}
\end{equation*}
$$

This is the desired relation to the leading order in δr_{p}. A few general properties of function G_{k}^{ν} at $q<1 / z_{\text {tip }}$ can be established. First, this function decays exponentially at large q

$$
\begin{equation*}
G_{k}^{\nu}\left(q, z_{\text {tip }}\right) \sim e^{-2 q z_{\text {tip }}} \tag{40}
\end{equation*}
$$

This is so because the probe-sample interaction is mediated by multiple reflections of evanescent waves (Sec. I) and the shortest distance such waves have to travel is $2 z_{\text {tip }}$. Next, it is easy to see that G_{k}^{ν} is normalized

$$
\begin{equation*}
\int_{0}^{\infty} G_{k}^{\nu}\left(q, z_{\text {tip }}\right) d q=1 \tag{41}
\end{equation*}
$$

Using a variation principle, one can also show that for a perfectly conducting probe $G_{k}^{\nu}\left(q, z_{\text {tip }}\right)$ is nonnegative. Therefore,
functions $G_{k}^{\nu}\left(q, z_{\text {tip }}\right)$ can be considered weight functions for the perturbation $\delta r_{\mathrm{P}}(q)$. To put it another way, this set of functions quantifies the momentum dependence of the probesample coupling. Below we show that the properties of these functions paint a much more nuanced physical picture than the naive idea that the coupling is maximized at a single momentum $q \sim 1 / a$. However, if one insists on characterizing the entire distribution of relevant momenta by a single number, the logical candidates are the average momenta

$$
\begin{equation*}
\bar{q}_{k}^{\nu}=\int_{0}^{\infty} G_{k}^{\nu}\left(q, z_{\text {tip }}\right) q d q \tag{42}
\end{equation*}
$$

The idea is that unless $G_{k}^{\nu}\left(q, z_{\text {tip }}\right)$ has a complicated structure or a slow decay, \bar{q}_{k}^{ν} should play the role of a characteristic momentum that determines k th polariton pole β_{k}^{ν}. Accordingly, we may expect that $1 / \bar{q}_{k}^{\nu}$ should give an improved estimate of the spatial resolution of the probe in the context of near-field imaging by s-SNOM. Interestingly, \bar{q}_{k}^{ν} can be found by differentiating $\beta_{k}^{\nu}\left(z_{\text {tip }}\right)$

$$
\begin{equation*}
\bar{q}_{k}^{\nu}\left(z_{\text {tip }}\right)=\frac{1}{2} \frac{\partial}{\partial z_{\text {tip }}} \log \beta_{k}^{\nu} \tag{43}
\end{equation*}
$$

To obtain this formula, consider first a sample with a q-independent reflectivity β and let the probe-sample separation be $z_{\text {tip }}=z+d z$. This system is equivalent to another one: the probe separated by $z_{\text {tip }}=z$ from a fictitious two-component medium composed of a vacuum layer of thickness $d z$ plus the original sample. The surface reflectivity of such a twocomponent medium is q-dependent, $r_{\mathrm{P}}(q)=\beta e^{-2 q d z}$, so that it has the form (38) with $\delta r_{\mathrm{P}}(q)=-2 q \beta d z$. Evidently, such a $\delta r_{\mathrm{P}}(q)$ shifts the resonant pole from $\beta=\beta_{k}^{\nu}(z)$ to $\beta=\beta_{k}^{\nu}(z+\delta z)$, i.e., causes a differential change $\delta \beta_{k}^{\nu}$ $=\left(\partial \beta_{k}^{\nu} / \partial z\right) d z$. Substituting these relations into Eq. (39), we get Eq. (43). Note that as β_{k}^{ν} rises more steeply with $z_{\text {tip }}$ for larger k, \bar{q}_{k}^{ν} increases with k.

An equivalent description of the effect of a q-dependent perturbation is that it induces a correction to the surface reflectivity. The effective reflectivity $\beta^{\text {eff }}$ is different for each k and ν

$$
\begin{equation*}
\beta_{k}^{\nu, \mathrm{eff}} \equiv \beta-\delta \beta_{k}^{\nu}=\int_{0}^{\infty} G_{k}^{\nu}\left(q, z_{\mathrm{tip}}\right) r_{\mathrm{P}}(q) d q \tag{44}
\end{equation*}
$$

The corresponding polarizability χ^{ν} is given by

$$
\begin{equation*}
\chi^{\nu}=\sum_{k=0}^{\infty} \frac{R_{k}^{\nu}}{\beta_{k}^{\nu}-\beta_{k}^{\nu, \text { eff }}} \tag{45}
\end{equation*}
$$

In the following, we focus on function $G_{0}^{\nu}\left(q, z_{\text {tip }}\right)$ because $k=0$ is the dominant resonance at all but very small $z_{\text {tip }}$. Actually, the large-distance limit of this function has the universal form

$$
\begin{equation*}
G_{0}^{\nu}\left(q, z_{\text {tip }}\right) \simeq 4 z_{\text {tip }}^{3} q^{2} e^{-2 q z_{\text {tip }}}, \quad z_{\text {tip }} \gg L \tag{46}
\end{equation*}
$$

same for both ν. Equation (46) follows from Eqs. (11) and (39) and is consistent with the surmised large- q behavior (40). As one can see, Eq. (46) gives $G_{0}^{\nu}\left(q, z_{\text {tip }}\right)$ that is
normalized, nonnegative, and has a single maximum at $q=1 / z_{\text {tip }}$. The average momentum is $\bar{q}_{0}^{\nu} \simeq 3 /\left(2 z_{\text {tip }}\right)$.

In the intermediate-distance regime, functions $G_{k}^{\nu}\left(q, z_{\text {tip }}\right)$ are not expected to be universal. The specific example we treat in detail is again the conducting spheroidal probe. Combining Eq. (43) with the results of Secs. II and III, for the strongly elongated spheroid, we obtain the following:

$$
\frac{1}{\bar{q}_{0}^{\perp}\left(z_{\text {tip }}\right)} \sim \begin{cases}\left(a z_{\text {tip }}\right)^{1 / 2}, & z_{\text {tip }} \ll a \tag{47}\\ 2 z_{\text {tip }} \log \left(\frac{z_{\text {tip }}}{a}\right), & a \ll z_{\text {tip }} \ll \tilde{L} \\ \frac{2 z_{\text {tip }}}{3}, & z_{\text {tip }} \gg L\end{cases}
$$

Since the left-hand side has the physical meaning of the spatial resolution of the probe, we expect it to monotonically decrease as $z_{\text {tip }}$ decreases. Therefore, the length scale \tilde{L} appearing on the second line of Eq. (47) should be of the order of $L / 3 \log (L / a)$. The presence of a large logarithmic factor $\log \left(z_{\text {tip }} / a\right)$ in the intermediate-distance regime $a \ll$ $z_{\text {tip }} \ll \tilde{L}$ indicates that function $G_{0}^{\perp}\left(q, z_{\text {tip }}\right)$ has a considerable weight at q parametrically smaller than $1 / z_{\text {tip }}$. In other words, a strongly elongated spheroidal probe senses electric fields beyond its immediate vicinity $\rho<z_{\text {tip }}$. (A similar point was made previously in Ref. 28.) As L / a decreases, \tilde{L} comes close to a, and this intermediate regime disappears. For example, the sphere acts essentially as a local probe.

The calculation of $G_{k}^{\nu}\left(q, z_{\text {tip }}\right)$ for the spheroid can be done as follows. Applying the first-order perturbation theory to the linear system (26), one finds

$$
\begin{equation*}
G_{k}^{\nu}\left(q, z_{\text {tip }}\right)=\frac{\mathbf{u}_{k}^{\dagger} \mathbf{H}^{\prime} \mathbf{u}_{k}}{\mathbf{u}_{k}^{\dagger} \overline{\mathbf{H}} \mathbf{u}_{k}} \tag{48}
\end{equation*}
$$

where \mathbf{H}^{\prime} is the matrix with elements

$$
\begin{equation*}
H_{l l^{\prime}}^{\prime}=\frac{2 \pi}{q} I_{l+\frac{1}{2}}(q F) I_{l^{\prime}+\frac{1}{2}}(q F) e^{-2 q z_{\mathrm{p}}} \tag{49}
\end{equation*}
$$

Once the eigenvectors \mathbf{u}_{k} are found, e.g., as described in Sec. III, function $G_{k}^{\nu}\left(q, z_{\text {tip }}\right)$ can be readily computed.

Our numerical investigation of $G_{k}^{\nu}\left(q, z_{\text {tip }}\right)$ was limited mainly to $k=0$ and $\nu=\perp$. We observed that the eigenvector components approximately followed the geometric series $\left(\mathbf{u}_{0}\right)_{j} \sim t^{j}$. The quotient t is somewhat larger than unity for small $z_{\text {tip }}$. As $z_{\text {tip }}$ increases, t becomes less than unity, so that the first component $\left(\mathbf{u}_{0}\right)_{0}$ dominates. Neglecting all other components and expressing the modified Bessel function $I_{3 / 2}(z)$ in terms of elementary functions, we obtain the analytical approximation from Eqs. (48) and (49)

$$
\begin{equation*}
G_{0}^{\nu}\left(q, z_{\mathrm{tip}}\right)=\frac{c_{0}}{q^{4}}(q F \cosh q F-\sinh q F)^{2} e^{-2 q z_{\mathrm{p}}} \tag{50}
\end{equation*}
$$

where c_{0} is a normalization constant. At $z_{\text {tip }} \gg L$, we can focus on the range of momenta less than $1 / L$ because at larger q this function is already exponentially small. For such q, the bracketed expression on the right-hand side can be replaced by $(F q)^{6} / 9$ and $z_{\mathrm{p}}=z_{\text {tip }}+L$ by $z_{\text {tip }}$, which yields the asymptotic form (46).

To examine small and intermediate distances, we used the direct numerical evaluation of \mathbf{u}_{0} and $G_{0}^{\nu}\left(q, z_{\text {tip }}\right)$. As in Sec. III, we considered two aspect ratios: $L / a=25$ and $L / a=1$. Only $\nu=\perp$ part was studied. The results for $L / a=25$ are shown using the false color scale in Fig. 5(a). It can be seen that as $z_{\text {tip }}$ decreases, both $\bar{q}_{0}^{\perp}\left(z_{\text {tip }}\right)$ and the position of the maximum of $G_{0}^{\perp}\left(q, z_{\text {tip }}\right)$ as a function of q shift toward larger values. This implies that the probe becomes more sensitive to finer spatial features of the sample, as discussed above. The line plot of $G_{0}^{\perp}\left(q, z_{\text {tip }}\right)$ for several $z_{\text {tip }}$ presented in Fig. 5(b) depicts the same trend. The average momentum \bar{q}_{0}^{\perp} and the position of the $G_{0}^{\perp}(q)$ maximum are of the same order of magnitude except at very short distances where \bar{q}_{0}^{\perp} increases more rapidly as $z_{\text {tip }}$ decreases. Note that Eq. (47) predicts that \bar{q}_{0}^{\perp} diverges at $z_{\text {tip }}=0$. From Fig. 5(b), we also see that for the same $z_{\text {tip }}$ the maximum of $G_{0}^{\perp}\left(q, z_{\text {tip }}\right)$ is found at q smaller by a factor of $3-10$ for the spheroid compared to the sphere. This confirms that the spheroid is much more sensitive to small in-plane momenta than the sphere, i.e., the response of a strongly elongated spheroid is affected by a relatively wide range of length scales.

FIG. 5. (a) The weight function $G_{0}^{\perp}\left(q, z_{\text {tip }}\right)$ for the spheroid with $L=25 a$ and $\epsilon_{\text {tip }}=\infty$. The dashed line shows $\bar{q}_{0}^{\perp}\left(z_{\text {tip }}\right)$. (b) $G_{0}^{\perp}\left(q, z_{\text {tip }}\right)$ for several $z_{\text {tip }}$, with circles indicating \bar{q}_{0}^{\perp}. The solid lines are for the spheroid and the dashed lines are for the sphere. The spheroid is more sensitive to small q compared with the sphere, while both shapes are more sensitive to large q as $z_{\text {tip }}$ decreases. (c) The first three $G_{k}^{\perp}(q)$ for $z_{\text {tip }}=a$, with solid circles indicating \bar{q}_{k}^{\perp}. The number of nodes in $G_{k}^{\perp}(q)$ is equal to k, while \bar{q}_{k}^{\perp} increases with k. The logarithmic scaling of the horizontal axes is used to show the small- q structure more clearly.

For $k>0, G_{k}^{\perp}\left(q, z_{\text {tip }}\right)$ has nodes as a function q at fixed $z_{\text {tip }}$. The number of nodes is equal to k (see Fig. 5(c)). Apparently, at such q, near-field coupling between oscillatory charge distributions on the probe and the sample exactly vanishes. Therefore, small perturbations at such discrete q do not affect the k th resonant mode. Finally, although \bar{q}_{k}^{\perp} increase with k for the reasons explained above, the maxima of G_{k}^{\perp} show the opposite trend, which is presently not understood.

V. FROM NEAR-FIELD POLARIZABILITIES TO FAR-FIELD OBSERVABLES

In order to apply our theory to simulation of s-SNOM experiments, we need to include a few more ingredients in our calculation. The first one is the so-called far-field factor (FFF) $F^{\nu}(\omega)$. This factor accounts for the fact that the probe is illuminated not only by the incident wave but also by its reflection from the sample. In experiment, P-polarized incident field is usually used, to take advantage of the high transverse polarizability of the probe. Assuming the sample surface is flat, uniform, and its linear dimensions are much longer than the radian sphere diameter c / ω, the reflection of the incident wave is described by the coefficient $r_{\mathrm{P}}\left(q_{s}, \omega\right)$, where

$$
\begin{equation*}
q_{s}=\frac{\omega}{c} \sin \theta \tag{51}
\end{equation*}
$$

is the in-plane photon momentum and θ is the angle of incidence. Hence, the ratio of ν-component of the electric field at the surface to that of the incident wave is $1 \pm r_{\mathrm{P}}\left(q_{s}, \omega\right)$ for $\nu=\perp$ and $\|$, respectively. The FFF also takes into account that the field scattered by the probe reaches the detector in two waves: directly and after reflection from the sample surface. Usually, the backscattered field is measured. It has the in-plane momentum $-q_{s}$ and therefore the same reflection coefficient $r_{\mathrm{P}}\left(-q_{s}, \omega\right)=r_{\mathrm{P}}\left(q_{s}, \omega\right)$ as the incident wave. The total FFFs for this setup are given by

$$
\begin{align*}
& F^{\perp}(\omega)=\left[1+r_{\mathrm{P}}\left(q_{s}, \omega\right)\right]^{2} \sin ^{2} \theta \tag{52a}\\
& F^{\|}(\omega)=\left[1-r_{\mathrm{P}}\left(q_{s}, \omega\right)\right]^{2} \cos ^{2} \theta \tag{52b}
\end{align*}
$$

The trigonometric factors on the right-hand side take care of conversion between the total electric field $E_{\text {ext }}$ of the waves and their $\perp, \|$ components. Note that our assumption of the plane-wave illumination is not entirely realistic. In experiment, a focused Gaussian beam is typically used, in which case the FFFs are effectively averaged out over a range of angles θ. Numerical apertures ~ 0.4 are common. We must also stress that Eqs. (52a) and (52b) should be modified if the system studied by s-SNOM is nonuniform on scales shorter than c / ω. Typical examples include a small sample residing on some substrate ${ }^{28}$ or measurements done close to a boundary of two different materials.

Another point we have to discuss is signal demodulation. In the experiment, the probe is made to oscillate mechanically, which causes periodic variation of the probesample distance

$$
\begin{equation*}
z_{\text {tip }}(\varphi)=z_{0}+\Delta z(1-\cos \varphi), \varphi \equiv \Omega t \tag{53}
\end{equation*}
$$

The oscillation amplitude is typically $\Delta z=20-90 \mathrm{~nm}$, comparable with the radius of curvature $a \sim 30 \mathrm{~nm}$ of the probe. The minimal approach distance $z_{0} \geq 0$ can be equal to zero if the probe taps the sample. The tapping frequency Ω is many orders of magnitude smaller than the laser frequency ω, and so the motion of the tip does not affect the electromagnetic response. Effectively, the experiment consists of measuring the scattered signal for many static configurations with different $z_{\text {tip }}$. The nth Fourier harmonic of the backscattered field is referred to as the demodulated signal s_{n}. (Here, we define s_{n} as a complex number but in experimental literature it is common to discuss the amplitude and the phase of s_{n} separately.) The primary purpose of demodulation is to suppress the far-field background signal created by reflections from the body of the tip, the cantilever, etc. This background is large but depends on $z_{\text {tip }}$ very weakly (linearly) and thus contributes predominantly to the $n=1$ harmonic. Unfortunately, demodulation strongly diminishes the signal amplitude, making it more susceptible to experimental noise. In practice, $n=2$ or 3 usually gives the best approximation of the true near-field signal. ${ }^{2,3,40}$

The demodulated signal is related to the polarizabilities $\chi^{\nu}\left(\omega, z_{\text {tip }}\right)$ we have been discussing in Sections I through IV by

$$
\begin{equation*}
s_{n}^{\nu}(\omega)=\mathrm{const} \times \chi_{n}^{\nu}(\omega) F^{\nu}(\omega) \tag{54}
\end{equation*}
$$

where $\chi_{n}^{\nu}(\omega)$ is the nth Fourier harmonic of χ^{ν}

$$
\begin{equation*}
\chi_{n}^{\nu}(\omega)=\int_{0}^{\pi} \frac{d \varphi}{\pi} \chi^{\nu}\left(\omega, z_{\mathrm{tip}}(\varphi)\right) \cos n \varphi \tag{55}
\end{equation*}
$$

One more element of the experimental protocol is normalization. What is typically reported is $s_{n}^{\nu}(\omega)$ normalized against a certain reference material, e.g., Si or Au

$$
\begin{equation*}
\bar{s}_{n}^{\nu}(\omega)=s_{n}^{\nu}(\omega) / s_{n}^{\nu, \text { ref }}(\omega) \tag{56}
\end{equation*}
$$

The normalization eliminates a number of physically uninteresting or poorly known factors, such as the constant in Eq. (54) that are related to the optical setup of the experiment. The FFFs may also be canceled if both the studied and the reference objects in the experiment are positioned nearby, so that the data for the two are taken at points no farther apart than the diameter c / ω of the radian sphere.

The last point we wish to draw attention to is that the absolute value of the minimum probe-sample distance z_{0} [Eq. (53)] cannot be determined very accurately. Therefore, experimentalists have to measure the so-called approach curve, which is the s-SNOM response as a function of z_{0} at a fixed frequency. They then identify the point $z_{0}=0$ as a point where a qualitative change in behavior in s_{2} or s_{3} appears. The logic behind this procedure is that once the probe makes the mechanical contact with the sample, its oscillations become reduced in amplitude, marking an unambiguous change. A potential flaw of this argument is that sharp changes in s_{n} 's may be generated by a rapid variation of electromagnetic coupling between the probe sample at
short separation even before making mechanical contact. We will discuss this issue in more detail in Sec. VI.

VI. CASE OF LOCAL REFLECTIVITY: ALUMINUM OXIDE

In this and Sections VII-IX, we discuss the implications of our theory for near-field response of real materials. We choose bulk $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$, also known as sapphire or corundum, as our first example of highly resonant material with a momentum-independent reflectivity β [Fig. 2(a)]. Another material with these properties, silicon carbide, has been a subject of a recent s-SNOM study co-authored by two of the present authors. ${ }^{19}$ Modeling results based on the BEM showing good agreement with the data were also reported in that work. Realistic probe shapes and retardation effects have been taken into account in order to achieve that. The latter was necessary since the probe length $2 L \sim 20 \mu \mathrm{~m}$ in the experiments was in fact larger than the diameter of the radian sphere $c / \omega \sim 11 \mu \mathrm{~m}$. Here, we do not aim for a perfect agreement with a particular experiment but instead wish to illustrate how the general theory of multiple eigenmodes formulated in Secs. I through III can generate novel features in far-field observables. We study mostly probes of an idealized spheroidal shape but examine some other shapes as well. We stay within the quasistatic approximation but we will comment on retardation effects in Sec. VIII.

We use the following momentum-independent model for the reflection coefficient of the uniaxial $\mathrm{Al}_{2} \mathrm{O}_{3}$ crystal

$$
\begin{equation*}
\beta(\omega)=\frac{\epsilon_{\mathrm{eff}}-1}{\epsilon_{\mathrm{eff}}+1}, \quad \epsilon_{\mathrm{eff}}(\omega)=\sqrt{\epsilon_{o} \epsilon_{e}} \tag{57}
\end{equation*}
$$

where ϵ_{ρ} for $\rho=o$ (ordinary) and e (extraordinary) axes is given by

$$
\begin{equation*}
\epsilon_{\rho}(\omega)=\epsilon_{\infty, \rho} \prod_{j} \frac{\omega_{j \mathrm{LO}, \rho}^{2}-\omega^{2}-i \gamma_{j \mathrm{LO}, \rho} \omega}{\omega_{j \mathrm{TO}, \rho}^{2}-\omega^{2}-i \gamma_{j \mathrm{TO}, \rho} \omega} \tag{58}
\end{equation*}
$$

The optical constants of $\mathrm{Al}_{2} \mathrm{O}_{3}$ reported in the literature ${ }^{41,42}$ have slight variations, presumably because of different crystal purity and processing. In our calculations, we adopt the results of Ref. 42 at room temperature, reproduced in Ref. 29. (For simplicity, the weak oscillator at $\omega_{\mathrm{TO}, o}=634 \mathrm{~cm}^{-1}$ is neglected.) Due to smallness of the optical phonon linewidths γ_{ρ} in this material, the near-field reflectivity of $\mathrm{Al}_{2} \mathrm{O}_{3}$ can be as high as $\beta \sim 10$.

We start by studying the behavior of the probe polarizabilities χ^{ν} as a function of frequency ω. In the mid-infrared range, the reflection coefficient β of $\mathrm{Al}_{2} \mathrm{O}_{3}$ has a single peak centered at the surface-phonon frequency $\omega_{\mathrm{SP}}=818 \mathrm{~cm}^{-1}$, depicted in Fig. 2(a). As ω approaches $\omega_{\text {SP }}$ from below, $\operatorname{Re} \beta(\omega)$ steeply rises. Equation (3) implies that whenever $\operatorname{Re} \beta$ is equal to a pole $\beta_{k}^{\nu}, \operatorname{Im} \chi^{\nu}$ has a local maximum as long as the damping $\operatorname{Im} \beta(\omega)$ is not too large. The positions of three such underdamped resonances are indicated schematically in Fig. 2(a). Thus, a single surface mode $\omega_{\text {SP }}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$ may produce multiple modes of the coupled probe-sample system. These localized eigenmodes (resonances) have been discussed at length in Secs. I-III. For example, they are
depicted in Fig. 1(b) for the case of a spheroidal probe. Note that all the resonances are red-shifted from the frequency $\omega_{\text {SP }}$. Since $\operatorname{Im} \beta$ increases as ω approaches ω_{SP}, higher-order resonances are progressively more broad.

The scenario above is described in terms of constant β_{k}^{ν}. However, the poles are functions of $z_{\text {tip }}$, and so the frequency of each resonance shifts with $z_{\text {tip }}$. This is clearly seen in a false color plot of $\operatorname{Im} \chi^{\perp}\left(\omega, z_{\text {tip }}\right)$ [Fig. 6(a)], where each mode creates a bright curve. All the curves are red-shifted from $\omega_{\text {SP }}$ but converge to it at large $z_{\text {tip }}$. The smallest $z_{\text {tip }}=0.02 a$ in Fig. 6(a) is limited by the accuracy of our numerical calculation. Based on our analytical results we expect that at smaller $z_{\text {tip }}$ the resonance curves are shaped as parabolas that approach $\omega_{\mathrm{TO}}=576 \mathrm{~cm}^{-1}$ where $\operatorname{Re} \beta=1$ (cf. Eqs. (5), (57), and (58)). A horizontal line cut through Fig. 6(a) taken at $z_{\text {tip }}=0.6 \mathrm{~nm}$ is plotted in Fig. 6(b) along with the absolute value of χ^{\perp}. The strongest peak in this plot corresponds to the $k=0$ mode. The multiple weaker peaks at higher frequencies are produced by $k>0$ modes.

Next, we consider the effects of demodulation on the sSNOM signal, which can be understood as follows. As the probe oscillates, it spends most time at the minimum and maximum distances from the surface. One therefore expects peaks in χ_{n}^{ν} at frequencies near those of $\chi^{\nu}\left(z_{0}, \omega\right)$ and $\chi^{\nu}\left(z_{0}+2 \Delta z, \omega\right)$. This gives two frequencies per each resonant mode. Actually, the number of observable peaks is smaller. Indeed, from Figs. 6(a) and 6(d), one can see that all the resonance curves modes should merge together at $z=z_{0}+2 \Delta z$ for typical $\Delta z \sim 50 \mathrm{~nm}$. Hence, all the modes should produce a single common peak in the demodulated signal from such z. Furthermore, while the peaks of $\chi^{\nu}\left(z_{0}, \omega\right)$ are distinct, only a few strongest of them can survive the smearing effect of the demodulation. These expectations are supported by Fig. 6(c), where we plot the normalized quantities $\bar{\chi}_{3}\left(\omega, z_{0}\right) \equiv \chi_{3} / \chi_{3}^{\text {ref }}$ and \bar{s}_{3} for $\nu=\perp$, assuming tapping amplitude $\Delta z=50 \mathrm{~nm}$, $z_{0}=0.6 \mathrm{~nm}$, and Si as the reference material. In Fig. 6(c), we see only three peaks. The peak at $650 \mathrm{~cm}^{-1}$ in $\left|\bar{s}_{3}\right|$ is produced by the dominant $k=0$ mode. It has the same frequency as the $k=0$ peak in Fig. 6(b). The second peak near $725 \mathrm{~cm}^{-1}$ in $\left|\bar{s}_{3}\right|$ (which looks more like a shoulder in $\bar{\chi}_{3}$) is produced by the $k=1$ mode at the $z_{\text {tip }}=z_{0}$ point. The remaining third peak at $787 \mathrm{~cm}^{-1}$ is produced collectively by all the modes. A similar correspondence between the resonance curves of the polarizability function and the peaks in the demodulated signal is found in the $\nu=\|$ component (cf. Figs. 6(d)-6(f)). However, the lower $k=1$ peak is now very weak and is considerably blurred by the demodulation (Fig. 6(f)). Should we have considered a model with smaller dissipation, this and other high-order peaks would have been more clearly distinguishable in $\left|\bar{s}_{3}\right|$. Note that although the normalized and demodulated signal strength is comparable for the two ν components, the polarizability for $\nu=\|$ is orders of magnitude smaller so its contribution can be safely ignored.

The discussion above pertain to horizontal cuts of $\chi^{\nu}\left(z_{\text {tip }}, \omega\right)$. Taking a fixed-frequency (vertical) cut through Fig. 6(a) and performing the demodulation for a range of minimum distances z_{0}, one obtains the $\nu=\perp$ approach curve for the scattering signal. An intriguing result of this analysis is the possibility of a nonmonotonic dependence of

FIG. 6. Response of a perfectly conducting spheroidal probe with $L=25 a$ and bulk $\mathrm{Al}_{2} \mathrm{O}_{3}$ sample. (a) The false color plot of $\operatorname{Im} \chi^{\perp}\left(\omega, z_{\text {tip }}\right) / a^{3}$. The bright curves correspond to the resonant modes, with $k=0$ mode having the lowest frequency. (b) The polarizability χ^{\perp} (absolute value and imaginary part) at $z_{\text {tip }}=0.02 a=0.6 \mathrm{~nm}$, the smallest distance in panel (a). (c) The absolute value of the demodulated polarizability $\left|\bar{\chi}_{3}\right|$ and scattering signal $\left|\bar{s}_{3}\right|$ for the tapping amplitude $\Delta z=50 \mathrm{~nm}$ and $z_{0}=0.6 \mathrm{~nm}$. The origin of the three peaks is discussed in the text. (d)-(f) The counterparts of panels (a)-(c) for the parallel component, $\nu=\|$. The plots again reveal multiple resonances. However, the overall magnitude of the polarizability is greatly reduced, $\chi^{\|} \sim 10^{-2} \chi^{\perp}$, and the resonances are more strongly bunched near the surface phonon frequency $\omega_{\mathrm{SP}}=818 \mathrm{~cm}^{-1}$.
the approach curve on z_{0}. The nonmonotonicity is due to the crossing of the resonance curves of χ^{\perp} by the vertical line cut. Such crossings are found between $\omega_{\text {TO }}$ where $\operatorname{Re} \beta=1$ and $\omega_{\text {SP }}$ where $\operatorname{Re} \beta$ reaches its maximum. Near the lowfrequency end of this interval, the $k=0$ mode should be again dominant. It is expected to produce a peak in the approach curve, which would follow the same trajectory as the $k=0$ curve in Fig. 6(a), moving to larger z_{0} as ω increases. Higher order modes should appear at frequencies closer to $\omega_{\text {SP }}$ and produce weaker peaks at smaller z_{0}. The amalgamation of these peaks give rise to the nonmonotonicity of the approach curve.

We show in Fig. 7(a) the s_{3} approach curves for $\nu=\perp$ for three frequencies. All the curves are normalized to their value at their left ends, $z_{0}=0.6 \mathrm{~nm}$. The approach curve for $\omega=600 \mathrm{~cm}^{-1}$ decays monotonically with increasing z_{0} because the cut at such ω does not cross any of the resonances. In the approach curve for $700 \mathrm{~cm}^{-1}$, a strong peak is seen at around 2 nm due to the crossing of the $k=0$ resonance. The last approach curve, for $800 \mathrm{~cm}^{-1}$ contains a series of oscillations at small z_{0} and a broad hump at large z_{0}, due to the multiple resonance crossings. The approach curves for $\nu=\|$ plotted in Fig. 7(b) exhibit the same general trends as those for $\nu=\perp$.

FIG. 7. Approach curves of $\left|s_{3}^{\nu}\right|$ for bulk $\mathrm{Al}_{2} \mathrm{O}_{3}$, normalized to the value at $z_{0}=0.6 \mathrm{~nm}$, for several characteristic frequencies. The lowest frequencies in both (a) and (b) are such that no resonance curves are crossed during the probe tapping motion. The approach curves are monotonic. For the middle pair of frequencies, one crossing (of the $k=0$ resonance) does occur. At such crossing, each approach curve has a peak. The last pair corresponds to the frequencies where $\left|\bar{s}_{3}^{\nu}\right|$ is close to the maximum value in the spectral range studied. The approach curves have several peaks because of multiple resonance crossings.

FIG. 8. Comparison of spectra of the quantity $\left|\bar{s}_{3}^{\frac{1}{3}}\right|$ using two different experimental protocols, at two different minimum approach distance z_{0}. The value at each frequency is taken either from the maximum of the $\left|s_{3}^{\perp}\right|$ approach curve (solid) or from a fixed z_{0} (dashed).

The striking multi-peak spectra and anomalous nonmonotonic approach curves we described above stem from the large r_{P} of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and are not found in less resonant materials (see Sec. VIII and Ref. 19). This rich structure is also quite sensitive to the choice of z_{0}. If this parameter is too large, the peaks in the spectrum of the scattering signal merge together at $\omega=\omega_{\text {SP }}$. If z_{0} is too small, the resonance curves become very flat at $\omega<\omega_{\mathrm{SP}}$, so the corresponding peaks are smeared by demodulation and dwarfed by the ω_{SP} peak. Hence, there exists an optimal value of z_{0} that allows one to resolve multiple peaks most clearly. For our $\mathrm{Al}_{2} \mathrm{O}_{3}$ model, this value is actually not too far from $z_{0}=0.6 \mathrm{~nm}$ used in Fig. 6. For example, the s_{3} spectrum for a smaller $z_{0}=0.06 \mathrm{~nm}$ is shown in Fig. 8 (dashed lines), where the $k=0$ peak is much less pronounced while more higher order peaks become distinguishable and form small steps. For even smaller z_{0}, the steps are further smoothed, eventually leaving only one peak near $\omega_{\text {SP }}$.

In addition to the value of z_{0}, many other experimental parameters and procedures can significantly alter the resultant spectrum. For instance, the experimental determination of z_{0} based solely on the s-SNOM approach curve can be inaccurate due to its possible nonmonotonicity, as discussed in Section V. It is generally incorrect to ascribe $z_{0}=0$ to the probe position at which the near-field signal has the highest amplitude. Such a protocol effectively yields a frequency-dependent z_{0}.

The difference from the spectra taken for a truly constant z_{0} can be drastic, as illustrated in Fig. 8. Conversely, the strong sensitivity of the near-field signal to the value of probe-sample distance may perhaps be used for a more accurate measurement of z_{0} (although this may require knowing the curvature radius a and perhaps other details of the probe shape).

The tapping amplitude Δz is another parameter that affects the spectrum. When Δz is small, the demodulation at nth order is roughly equivalent to taking the nth order derivative of $\chi^{\nu}\left(z_{\text {tip }}\right)$. Therefore, a material with a sharply varying approach curve yields a stronger demodulated signal than the material with a smoothly varying one. In our case, the signal of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is normalized against Si , whose polarizability decays monotonically with $z_{\text {tip }}$ [Fig. 9(b)]. As Δz decreases, the polarizability of $\mathrm{Al}_{2} \mathrm{O}_{3}$ become increasingly oscillatory, while that of Si remains smooth. This results in the increased contrast of the demodulated signal for the two materials for smaller Δz [Fig. 9(a)].

Other than these controllable parameters, the scattering signal is also dependent on the dielectric function of the probe itself. The calculation in the preceding discussion is done for a perfectly conducting probe, $\epsilon_{\text {tip }}=\infty$. In practice, near-field probes often have a Si core and a layer of metallic coating whose thickness $\sim 20 \mathrm{~nm}$ can be smaller than the skin depth, i.e., the electric field penetration length of the metal. In this case, it may be more appropriate to set $\epsilon_{\text {tip }}=$ $\epsilon_{\mathrm{Si}} \approx 11.7$ in Eq. (21). Repeating the calculations, we find that while qualitative features in the signal are retained, there are major quantitative differences (Fig. 10).

The discussion above shows that the rich structure of the s -SNOM signal found for the case of $\mathrm{Al}_{2} \mathrm{O}_{3}$ sample is susceptible to many experimental parameters. (Retardation effects, discussed later in Sec. VIII, introduce further significant dependence on the probe geometry.) This presents a serious challenge to realistic modeling of s-SNOM experiments. On the other hand, these strong dependences arise only for highly crystalline material with low dissipation. For other, less resonant materials, the modeling can be quite robust, as discussed in Sec. VIII.

VII. NONLOCAL REFLECTION FUNCTION

The example material of Section VI is a bulk crystal with a local (momentum independent) reflectivity function.

FIG. 9. (a) Spectra of $\left|\bar{s}_{3}^{\frac{1}{3}}\right|$ for $z_{0}=$ 0.6 nm and five different tapping amplitudes. The magnitude of $\bar{s} \frac{1}{3}$ increases rapidly with decreasing Δz. (b) The χ^{\perp} approach curves for $\mathrm{Al}_{2} \mathrm{O}_{3}$, SiO_{2}, and Si , taken at frequencies corresponding to the largest peak in $\left|s_{3}^{\perp}\right|$ ($790 \mathrm{~cm}^{-1}$ for $\mathrm{Al}_{2} \mathrm{O}_{3}, 1120 \mathrm{~cm}^{-1}$ for SiO_{2}, and an arbitrary ω for the frequency-independent case of Si). For $\mathrm{Al}_{2} \mathrm{O}_{3}$ sample, $\left|\chi^{\perp}\right|$ shows multiple oscillations; for SiO_{2} sample, it has a single maximum at small $z_{\text {tip }}$; for Si , the approach curve decays monotonically with $z_{\text {tip }}$. As Δz decreases, the approach curves become increasingly different.

FIG. 10. (a) χ^{\perp} and (b) $\left|\bar{\chi} \frac{\perp}{3}\right|$ and $\left|\bar{s} \frac{\perp}{3}\right|$ spectra of $\mathrm{Al}_{2} \mathrm{O}_{3}$ for the case of a Si probe. All other parameters are the same as in Figs. 6(b) and 6(c). The spectra retain the same structure as for a metallic probe $\left(\epsilon_{\text {tip }}=\infty\right)$.

However, in many other systems studied through s-SNOM, including thin films, graphene, and multi-layered systems reflection is inherently nonlocal. Thus, it is imperative to study how the q-dependence of the reflectivity affects the probe-sample interaction. As mentioned in Sec. IV, a general description of such interaction is challenging because the series representation of the polarizability

$$
\begin{equation*}
\chi=\sum_{k} \frac{\mathcal{R}_{k}}{\lambda_{k}} \tag{59}
\end{equation*}
$$

has generalized eigenvalues λ_{k} and residues \mathcal{R}_{k} that are now complicated functionals of r_{P} [λ_{k}^{-1} is the k-th eigenvalue of the matrix $\left(\Lambda^{m}\right)^{-1 / 2} \mathbf{H}\left(\Lambda^{m}\right)^{-1 / 2}$, cf. Eq. (20)]. Still, we can attempt to analyze these expressions using the simple perturbation theory developed in Sec. IV, in which λ_{k} are computed from the poles of the q-independent theory, with
corrections obtained by integrating the weighting functions over the momentum. As shown below, this scheme produces qualitative agreement with the calculated s-SNOM response for graphene on bulk $\mathrm{Al}_{2} \mathrm{O}_{3}$.

The $\mathrm{Al}_{2} \mathrm{O}_{3} /$ graphene system has two collective modes (the upper and the lower one) that emerge from hybridization of the surface phonon of $\mathrm{Al}_{2} \mathrm{O}_{3}$, originally at $\omega_{\text {SP }} \approx$ $750 \mathrm{~cm}^{-1}$ with the plasmon of graphene, $\omega(q) \propto \sqrt{\mu v_{F} q}$. (Coupling of substrate phonons to graphene plasmons has been probed by s-SNOM experiments with graphene/ SiO_{2} systems. ${ }^{5,16}$ This and related work is reviewed in Ref. 43.) The modes share the optical weight and exhibit a levelrepulsion that causes both to be dispersive. Both features depend on the chemical potential μ of graphene. Below we focus on the upper mixed mode and study its s-SNOM response for a range of μ, and compare the results with the perturbation theory method. To proceed, we need the

FIG. 11. (a) Collective mode dispersion of graphene $/ \mathrm{Al}_{2} \mathrm{O}_{3}$ system. The mode repulsion between the graphene plasmon and the $\mathrm{Al}_{2} \mathrm{O}_{3}$ surface phonons are evident. The false color stands for $\operatorname{Im} r_{\mathrm{P}}(q, \omega)$, which is a measure of power dissipation. ${ }^{20}$ This quantity is additionally raised to power of 0.35 to reduce the contrast. The vertical dashed line marks $q=1 / a$. The faint curve just below $\omega=500 \mathrm{~cm}^{-1}$ is a weak surface phonon ${ }^{42}$ that we do not discuss. The chemical potential of graphene is $\mu=1200 \mathrm{~cm}^{-1}$. (b) The solid curves are constant momentum $\bar{q}=$ $1 / a$ line cuts through maps like (a) for several μ. The particular case of (a) is shown by the red curve (second solid curve from the right). The dashed curve is the same quantity computed for bulk $\mathrm{Al}_{2} \mathrm{O}_{3}$ without graphene. (c) $\operatorname{Im} \chi^{\perp}(\omega)$ and (d) $\bar{s}_{3}^{\perp}(\omega)$ computed using the q-dependent $r_{\mathrm{P}}(q, \omega)$ at $z_{\text {tip }}=0.02 a$ and $z_{0}=0.02 a$, respectively. Graphene chemical potentials μ for (b)-(d) are indicated in the legend of panel (c).
formula for the reflectivity of the composite system. This formula is well-known (see, e.g., Ref. 5)

$$
\begin{equation*}
r_{\mathrm{P}}(q, \omega)=\frac{\frac{\epsilon_{1}}{k_{1}^{z}}-\frac{\epsilon_{0}}{k_{0}^{z}}+\frac{4 \pi \sigma}{\omega}}{\frac{\epsilon_{1}}{k_{1}^{z}}+\frac{\epsilon_{0}}{k_{0}^{z}}+\frac{4 \pi \sigma}{\omega}} \tag{60}
\end{equation*}
$$

Here, $\epsilon_{1}=\epsilon_{\text {eff }}$ [Eq. (57)] is the permittivity of the lower half-space $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right), \epsilon_{0}=1$ is that of the upper half-space (vacuum), $k_{j}^{z}=\sqrt{\epsilon_{j} \frac{\omega^{2}}{c^{2}}-q^{2}}$ is the z-component of the wave vector in medium $j=0,1$, and $\sigma=\sigma\left(q, \omega+i \tau^{-1}\right)$ is the conductivity of graphene, which we calculate within the random phase approximation ${ }^{44,45}$ with a finite relaxation time $\tau^{-1}=25 \mathrm{~cm}^{-1}$. For $q \gg \omega / c$, one finds $k_{j}^{z} \simeq i q$ and Eq. (60) reduces to

$$
\begin{equation*}
r_{\mathrm{P}}(q, \omega)=\frac{\epsilon_{1}-1+4 \pi q \frac{i \sigma}{\omega}}{\epsilon_{1}+1+4 \pi q \frac{i \sigma}{\omega}} \tag{61}
\end{equation*}
$$

which can be compared to Eq. (57). A convenient way to visualize the dispersion of the collective modes is to plot the imaginary part of $r_{\mathrm{P}}(q, \omega)$, which represents the power dissipation in the system, ${ }^{20}$ as a false-color map. An example for $\mu=$ $1200 \mathrm{~cm}^{-1}$ is shown in Fig. 11(a). In the low-q regime $\left(\hbar v_{F} q \ll \hbar \omega \ll \mu\right),{ }^{44,45}$ the lower bright curve is mainly the plasmon with dispersion $\omega \propto \sqrt{\mu v_{F} q}$, while the upper bright curve represents the dispersionless $\mathrm{Al}_{2} \mathrm{O}_{3}$ surface phonon. (The additional bright curve around $\omega=500 \mathrm{~cm}^{-1}$ is a weaker $\mathrm{Al}_{2} \mathrm{O}_{3}$ surface phonon, which we do not discuss.) An increase in μ leads to a steeper dispersion of the plasmon, which causes both hybrid modes to go up in frequency. Decreasing μ has the opposite effect. Additionally, if μ drops below $\hbar \omega_{\mathrm{SP}} / 2 \approx 380 \mathrm{~cm}^{-1}$, the upper mode falls into the interband transition region of graphene, which results in strong damping of the surface phonon. As we will see below, this causes the $\mu=300 \mathrm{~cm}^{-1}$ curve to look qualitatively different from the rest in Fig. 11(b). Let us now discuss how the collective modes manifest themselves in the s-SNOM response.

In the simplistic picture of the s -SNOM response, the probe-sample interaction is dominated by a single momentum $\bar{q}=1 / a$. If this assumption were accurate, we could set $r_{\mathrm{P}}(\bar{q}, \omega)$ as $\beta(\omega)$ and calculate the response using the set of poles and residues established previously. We would then see peaks in the response generated by the upper hybrid mode. However, this crude approximation leads to higher peak frequencies than the calculation using the full $r_{\mathrm{P}}(q, \omega)$, as seen in Figs. 11(b), 11(c), and 11(d). Indeed, we have shown in Sec. IV that when the q-dependence in reflection is treated as a perturbation, each mode has its own range of sensitive momenta due to the inherent length scales in its potential distribution. The distributions change with an additional length scale-the tip-sample distance $z_{\text {tip }}$, so that the momentum weighting functions are dependent on $z_{\text {tip }}$ as well, $G_{k}=G_{k}\left(q, z_{\text {tip }}\right)$. For each mode, these functions provide a means to average over momentum and find an effective q-independent sample
reflection $\beta_{k}^{\text {eff }}(\omega)$, cf. Eq. (44), so that we can again apply the established pole-residue decomposition. Strictly speaking, the perturbative method cannot be applied here as the mixed mode may be strongly q-dependent. Even so, we find a very reasonable agreement with the computed signal in the range of graphene chemical potentials $\mu=600-1800 \mathrm{~cm}^{-1}$ that we study. We first consider peak frequencies in $\operatorname{Im} \chi^{\perp}$, which can be predicted by invoking the resonance condition $\operatorname{Re} \beta_{k}^{\text {eff }}=\beta_{k}$. For the lowest mode $k=0$ and $z_{\text {tip }}=0.02 a$, there is a systematic overestimate of the peak position by $20-30 \mathrm{~cm}^{-1}$ for $\mu=600-1800 \mathrm{~cm}^{-1}$. The discrepancy is larger for higher μ at which the q-dependence of the upper hybrid mode is stronger. This discrepancy is due in part to the well-known general tendency of the first-order perturbation theories to overestimate the lowest eigenvalues. Next, for the $k=1$ mode, the resonance condition is satisfied only for $\mu=600 \mathrm{~cm}^{-1}$ at $\omega=797 \mathrm{~cm}^{-1}$ and $\mu=1200 \mathrm{~cm}^{-1}$ at $\omega=823 \mathrm{~cm}^{-1}$, which agree well with the smaller peaks in $\operatorname{Im} \chi^{\perp}$. At these frequencies, $\operatorname{Im} \beta_{1}^{\text {eff }}$ are larger than the $k=0$ case and the peaks have smaller magnitudes. For $\mu=1800 \mathrm{~cm}^{-1}$, the resonance condition is not met and the very small peak at $\omega=827 \mathrm{~cm}^{-1}$ in $\operatorname{Im} \chi^{\perp}$ corresponds to where $\operatorname{Re} \beta_{1}^{\text {eff }}$ is largest and thus closest to β_{1}. Finally, for $k>1, \beta_{k}$ is larger than $\operatorname{Re} \beta_{k}^{\text {eff }}$ for all frequencies and no peaks in $\operatorname{Im} \chi^{\perp}$ are found. Seeing qualitative agreement in the polarizability, we proceed to analyzing the demodulated signal.

As inferred in Sec. VI, the demodulated signal is strongest near the peaks in $\chi^{\perp}\left(z_{0}, \omega\right)$ and $\chi^{\perp}\left(z_{0}+2 \Delta z, \omega\right)$, where each peak is attributed to a resonant mode. For the dominant $k=0$ mode, we find a set of corresponding peaks in $s_{3}^{\perp}\left(z_{0}, \omega\right)$ at the same frequencies as those in $\chi^{\perp}\left(z_{0}, \omega\right)$, as shown in Figs. 11(c) and 11(d). For the other set of peaks in the s_{3} spectra, we must consider how the situation is changed at $z_{0}+2 \Delta z$. At such distances, $z_{\text {tip }}$ itself becomes the primary length scale and the sensitivity function G_{k} is shifted toward smaller momentum, where the upper mode has a flatter dispersion and its frequency is close to $\omega_{\text {SP }}$ of the bulk $\mathrm{Al}_{2} \mathrm{O}_{3}$ crystal. Therefore, this set of peaks should all appear near $\omega_{\text {SP }}$, which is indeed the case. Repeating this procedure for the $k=1$ mode, we find that the peaks it contributes are inseparable from the set of higher frequency peaks produced by the $k=0$ mode as both have frequencies very close to $\omega_{\text {SP }}$. Its contributions, however, alter the heights of these peaks. For instance, the $k=1$ peak is strongest in $\chi^{\perp}\left(z_{0}, \omega\right)$ for $\mu=600 \mathrm{~cm}^{-1}$ (among the four we used), so the high frequency peak in s_{3}^{\perp} for this chemical potential has the largest relative magnitude with respect to the low frequency peak. Thus, we conclude the demodulated s-SNOM signal can be qualitatively explained by the perturbative method, albeit with inaccuracy in the lower peak frequency. However, as we argued in Sec. VI, the lower frequency peak in the demodulated signal is mainly an artifact of the finite z_{0} we are forced to use. If z_{0} were truly zero, only the peak near $\omega_{\text {SP }}$ would survive.

VIII. MODEL-DEPENDENT EFFECTS

The spheroid model differs from real s-SNOM probes in two important ways: (i) the real probe resembles an inverted

FIG. 12. (a) The s-SNOM signal s_{3}^{\perp} computed for $\mathrm{Al}_{2} \mathrm{O}_{3}$ samples. The inset shows the probe shapes used (spheroidal, with $L=25 a$, and a pear-shaped). The two types of probes produce qualitatively similar but quantitatively different results. (b) Spheroids of longer length have drastically increased signal strength. The inset depicts the probe shape and the values of L / a used. Note that this quasistatic calculation neglects radiative damping and antenna resonances (see Sec. VIII). If included, such effects are expected to greatly reduce s_{3}^{\perp}. In all cases, $\Delta z=50 \mathrm{~nm}$ and $a=30 \mathrm{~nm}$. The value of s_{3} is taken either from the maximum of the approach curves at each frequency (solid lines) or at the closest approach distance $z_{0}=0.6 \mathrm{~nm}$ (dashed lines).
pyramid and (ii) at infrared wavelengths, the length $\sim 10 \mu \mathrm{~m}$ of the probe exceeds several times the diameter c / ω of the radian sphere. In the previous literature, it was assumed that these differences can all be neglected as the probe-sample interaction is focused around the apex of the probe [Fig. 1(b)], while contribution from the rest of the probe is canceled out during the process of demodulation and normalization. Hence, the exact shape of the probe is unimportant and the only relevant physical quantity is the apex radius of curvature a. Further, since the characteristic length scale a is well within the radian sphere, a quasistatic description should suffice. This simplistic argument is backed by the previous agreement between the spheroid model and experiment. ${ }^{16,18,28}$ However, we have shown that different probe shapes exhibit universal behavior only when $z_{\text {tip }} / a$ is of the order of a few percent (cf. Fig. 4(a)). This range is much smaller than typical tapping amplitudes, so the majority of the s-SNOM response lies outside the universality regime and should indeed be probe shape dependent. Additionally,
recent experiment and modeling have shown that a quasistatic formalism with ad hoc probe shapes is insufficient for highly resonant materials such as on silicon carbide. ${ }^{19}$

In this section, we re-examine these issues by examining two materials, the highly resonant $\mathrm{Al}_{2} \mathrm{O}_{3}$ and the dissipative SiO_{2}, and study the probe shape dependence of their response as well as electrodynamic corrections. We find that for dissipative materials shape dependence is weak and retardation effects are of less importance, so the spheroid model describes the s-SNOM experiment reasonably well. This explains the success of our model in reproducing the response of various materials in experiment. On the other hand, we find the response of resonant materials to be highly dependent on the probe shape and less well described within the quasistatic approximation. For such materials, a full electrodynamic treatment with the exact probe shape may be required. Common numerical methods suitable for electrodynamic treatment of light scattering by a spheroid near a surface include T-matrix method ${ }^{46,47}$ and BEM. ${ }^{19}$ For the case

FIG. 13. (a) The reflection coefficient of $\mathrm{SiO}_{2}{ }^{49}$ has a larger imaginary part than $\mathrm{Al}_{2} \mathrm{O}_{3}$ due to its inherent dissipation, leading to a weaker shape dependence in the s-SNOM signal. (b) The signal of the pear-shaped probe is very close to that produced by the spheroid. (c) Increasing the probe length leads to a much smaller increase in the signal strength. The overall shape of the spectrum is also preserved. All geometric parameters are the same as in Fig. 12.
of a sphere near a surface, the calculation of necessary matrix elements can be done efficiently using recursion technique similar to what we use here. ${ }^{48}$

We consider the probe shape dependence and the retardation effects separately. To study the former, we simulated the s-SNOM signal of $\mathrm{Al}_{2} \mathrm{O}_{3}$ samples obtained with spheroidal probes of different length. We also calculated (using BEM) the results for pear-shaped probes that may better mimic the inverted pyramids. As shown in Fig. 12(a), the signal for a pear-shaped probe is qualitatively similar to that for the spheroid of the same length, but there are quantitative differences. For spheroids, we find that the signal strongly increases and the peak frequencies steadily decrease as the length of the probe increases at a fixed apex radius, as shown in Fig. 12(b). These features can be explained by the scale invariance of the problem. It implies that an increase in probe length is equivalent to a simultaneous decrease in tapping amplitude and the apex radius. The decrease in radius produces changes in both the poles and residues. The former explains the shift in peak frequencies. The latter is mostly canceled out by normalization. In turn, the decrease in tapping amplitude leads to a larger contrast between the sample and the reference as discussed in Sec. VI [see Fig. 9(b)], so the signal strength is dramatically increased.

The strong probe-shape dependence found above seem to suggest that theoretical modeling of the s-SNOM experiments must always be done using the actual shape to be reliable. In fact, such a sensitivity to the probe shape pertains only to the highly-resonant, i.e., large β materials. In $\mathrm{Al}_{2} \mathrm{O}_{3}$, this parameter reaches the maximum value of $|\beta| \approx 12$ (Fig. 2(a)). For comparison, in Figs. 13(b) and 13(c), we show that the pearshaped probe and the spheroid produced almost identical signals for amorphous SiO_{2}, a material with $|\beta| \leq 1.5$. (For experimental studies of this material see, e.g., Refs. 6 and 28.) In this case, a factor of 16 increase in the probe length leads to only a doubled signal strength, compared to a nearly tenfold increase for $\mathrm{Al}_{2} \mathrm{O}_{3}$ seen in Fig. 12(b).

The results above are obtained within the quasistatic approximation. In reality, a probe half-length of $200 a$ already exceeds the diameter c / ω of the radian sphere and one has to consider retardation effects. Naively, contributions from such effects should be eliminated by demodulation, as they pertain to a length scale much larger than the tapping amplitude. However, we show that one contribution - the radiative damp-ing-survives demodulation. The radiative damping has an effect similar to a finite $\operatorname{Im} \beta$, i.e., the dissipation in the sample. Hence, for dissipative materials, one can neglect radiative damping and still find reasonable agreement with experiment, while doing so for highly resonant materials may lead to qualitatively wrong results. Let us illustrate these statements using the simplest model for the probe-the point dipole. The electrodynamic interaction between the dipole and the sample with the dielectric constant ϵ is given ${ }^{20}$ by a modified version of Eq. (12)

$$
\begin{equation*}
g^{\nu}=c^{\nu} \int_{0}^{\infty} \frac{i q^{3}}{k_{0}^{z}(q)} \frac{\epsilon k_{0}^{z}(q)-k_{1}^{z}(q)}{\epsilon k_{0}^{z}(q)+k_{1}^{z}(q)} e^{-2 q z \text { tip }} d q \tag{62}
\end{equation*}
$$

where the second fraction in the integrand is the full form of the reflectivity $r_{\mathrm{P}}(q, \omega)$. [It is obtained from Eq. (60) by setting σ to zero.]

Suppose ω and $z_{\text {tip }}$ are fixed, then the above integral defines g^{ν} as a function of ϵ, which is generally a complex number. Alternatively, g^{ν} is a function of $\beta=(\epsilon-1)$ $/(\epsilon+1)$. The integration domain Eq. (62) includes momenta q both inside and outside the light-cone. The radiative damping effect arises from the integration over former, i.e., the momenta $q<k_{0}^{z}$. This part of the integral yields a negative imaginary contribution to g^{ν}, which shifts the pole of χ^{ν} [Eq. (11)] to the lower complex half-plane of β. The real parts of the poles also change but this is less conceptually important (see below). Consider now the remaining part of the integral, over momenta $q>k_{0}^{z}$. It is easy to see that if $\epsilon=-q^{2} /\left(q^{2}-\omega^{2} / c^{2}\right)$, then

$$
\begin{equation*}
\epsilon k_{0}^{z}(q)+k_{1}^{z}(q)=0 \tag{63}
\end{equation*}
$$

so that there is a pole on the integration path. As a result, functions g^{ν} and χ^{ν} have branch cuts at $\epsilon \in(-\infty,-1]$ in the complex ϵ plane or equivalently at $\beta \in[1, \infty)$ in the complex β plane. These additional features are shown schematically in Fig. 2(c). The physical origin of both the poles and the branch cut is quite clear. The discrete poles has been discussed at length in this article. They correspond to the polariton modes localized near the tip (Fig. 1(b)). In turn, the branch cut corresponds to the continuum of delocalized surface polaritons that exist without the probe. Indeed, Eq. (63) is the well-known equation for the spectrum of such excitations. ${ }^{50}$

Of the two features, the branch cut is not expected to affect the signal as the small-momentum contribution is greatly diminished by demodulation. Demodulation should also make less important the change in the real parts of the poles, because these real parts vary greatly with $z_{\text {tip }}$ on account of the tapping motion of the probe. However, the shift of the discrete poles away from the real axis is a qualitative change and its effects remain after demodulation. Our next objective is therefore to find this shift for the case of the spheroidal probe.

A free standing spheroid has an effective polarizability given by

$$
\begin{equation*}
\chi_{0, \mathrm{eff}}=\frac{\chi_{0}}{1-i \frac{2}{3}\left(\frac{\omega}{c}\right)^{3} \chi_{0}} \tag{64}
\end{equation*}
$$

to the lowest order in ω / c when radiative correction is considered. ${ }^{51,52}$ Modifying Λ accordingly [specifically Λ_{1}^{m}, cf. Eq. (29)], it is easily shown that this formula applies to our geometry as well. Namely, the s-SNOM polarizability corrected for the radiative damping is given by

$$
\begin{equation*}
\chi_{\mathrm{rad}}^{\nu}=\frac{\chi^{\nu}}{1-i \frac{2}{3}\left(\frac{\omega}{c}\right)^{3} \chi^{\nu}}, \quad \chi^{\nu}=\sum_{k=0}^{\infty} \frac{R_{k}^{\nu}}{\beta_{k}^{\nu}-\beta} . \tag{65}
\end{equation*}
$$

Viewed in the complex β plane, this correction is equivalent to the shift of the poles β_{k} into the lower half-plane by
$-i(2 / 3)(\omega / c)^{3} R_{k}$ (to the leading order in ω / c). Therefore, both the radiative damping and the intrinsic dissipation in the sample play a similar role: they increase the distance from the poles to the curve traced by the surface reflectivity β of the sample as ω varies [Fig. 2(c)]. For a dissipative material, the curve begins far from the poles, and so further increase in the distance produces little change. Conversely, for highly resonant materials the $\beta(\omega)$ curve passes close to the real axis, and so radiative damping may obscure or eliminate the fine features of the signals, such as multiple resonant peaks discussed in Sec. VI. It is worth noting, however, that while it may be important for s-SNOM in infrared or visible domains, the radiative damping should be rather weak in the (experimentally more challenging) terahertz range, where typical s-SNOM probes would fit well inside the radian sphere.

Finally, a class of retardation effects we have not addressed here are antenna resonances arising when the length of the probe exceeds several times the diameter of the radian sphere. They give rise to additional peaks in the sSNOM signal as a function of ω. For most materials, such resonances are removed once the s-SNOM signal is normalized to a reference sample; however, for strongly resonant materials such as SiC and presumably also $\mathrm{Al}_{2} \mathrm{O}_{3}$ we studied here, the cancellation is not complete. ${ }^{19}$

IX. DISCUSSION AND CONCLUSION

Further progress in the s-SNOM and related areas of near-field microscopy requires a quantitatively reliable procedure for determining the fundamental response function $r_{\mathrm{P}}(q, \omega)$ from the amplitude and phase of the s-SNOM scattering data, from which one can proceed to the next step of inferring the optical constants of the studied sample. Typically, materials with a higher absolute value of $r_{\mathrm{P}}(q, \omega)$ produce a higher amplitude s-SNOM signal. However, the peaks in the s-SNOM signal are often red-shifted with respect to those in $\left|r_{\mathrm{P}}(q, \omega)\right|$ or $\operatorname{Im} r_{\mathrm{P}}(q, \omega)$.

Given additional information about the system, these inverse problems can be tackled by fitting the experimental data to the solution of the direct problem with a trial form of $r_{\mathrm{P}}(q, \omega)$ as the input. ${ }^{19}$ Unfortunately, the direct problem is also difficult to solve. The three-dimensional nature of this problem and the presence of widely different length scales make realistic simulations ${ }^{53-55}$ of s-SNOM experiments very computationally intensive. This led to popularity of simple ad hoc approximations known as the point-dipole ${ }^{24-26}$ and the finite-dipole model, ${ }^{6,27,56,57}$ in which the actual charge distribution induced on the probe is approximated by a point-like image dipole or a combination thereof with additional point charges.

The point-dipole model ${ }^{2}$ postulates that Eqs. (9a)-(12) that are rigorous in the asymptotic long-distance limit $z_{\text {tip }} \gg$ L remain qualitatively correct at much shorter $z_{\text {tip }}$ if the input physical parameters are suitably renormalized. Thus, the bare polarizabilities χ_{0}^{ν} become the adjustable parameters of the model. It is customary to assume that the in-plane polarizability $\chi_{0}^{\|}$is negligible compared the out-of-plane one, which is taken to be

$$
\begin{equation*}
\chi_{0}^{\perp}=a^{3} \tag{66}
\end{equation*}
$$

where a is of the order of the curvature radius of the tip. Another adjustable parameter ${ }^{5,58} b \leqq 1$ specifies the position of the effective dipole inside the probe

$$
\begin{equation*}
z_{\mathrm{p}}=b a+z_{\text {tip }} \tag{67}
\end{equation*}
$$

Clearly, the point-dipole model accounts only for the sharp tip and ignores the body of the probe, as χ^{ν} for the pointdipole in Eq. (11) is much smaller than χ_{0}^{ν} for a tip with $L \gg a$. If the point-dipole model were literally correct, the radiating dipole of the probe in typical s-SNOM experiments would be so small that no measurable signal would be observed.

The finite-dipole model improves upon the point-dipole one by including the missing antenna-like enhancement approximately. It assumes that the electric field of a spheroidal probe of length $2 L$ is equivalent to that of several point charges of total zero charge that are positioned inside the spheroid near both of its ends. For small $z_{\text {tip }} / L$, this model ${ }^{56,59}$ yields the following functional form of the probe polarizability:

$$
\begin{equation*}
\chi^{\mathrm{fdp}}=\mathrm{const}+\frac{R_{0}^{\mathrm{fdp}}}{\beta_{0}^{\mathrm{ddp}}-\beta}, \quad \beta_{0}^{\mathrm{fdp}} \approx 1.4+O\left(\frac{z_{\mathrm{tip}}^{3}}{L^{3}}\right) \tag{68}
\end{equation*}
$$

where $R_{0}^{\mathrm{fdp}} \propto a L^{2}$. The finite-dipole model was shown to give a good qualitative agreement with s-SNOM data obtained for quartz, amorphous SiO_{2}, and SiC samples once parameters R_{0}^{fdp} and β_{0}^{fdp} are suitably adjusted. ${ }^{6}$ Thus, the best fit to the data was achieved choosing the length $2 L=600 \mathrm{~nm}$ of the probe, which is about one third of the diameter c / ω $\approx 1700 \mathrm{~nm}$ of the radian sphere. Interestingly, this is approximately the value of 2 L in the quasistatic calculation for which one obtains, in the case of SiO_{2} sample, the same result for s_{3} as one gets from the full electrodynamic calculation for a probe of a realistic (much longer) length. ${ }^{19}$

Agreement with the data notwithstanding, from the theory point of view, Eq. (68) is unsatisfactory on at least three counts. First, R_{0}^{fdp} does not follow the correct scaling $L^{3} / \ln L$ as a function of L, thus underestimating the probe polarizability. Second, the constant term in Eq. (68) violates the general requirement that $\chi \rightarrow 0$ as $\beta \rightarrow \infty$, corresponding to the case when the applied field is screened completely by the induced charges in the sample. Third, β_{0}^{fdp} goes to ~ 1.4 when $z_{\text {tip }}=0$. Instead, all smooth probe shapes must behave as a sphere at $z_{\text {tip }} \ll a$ and therefore yield $\beta_{0}=1$ at $z_{\text {tip }}=0$. The fact that finite-dipole model violates these general requirements suggest its limited usability. Figure 14 is an illustration of how widely different the predictions of the four discussed s-SNOM models can be for the case of $\mathrm{Al}_{2} \mathrm{O}_{3}$. Additional examples of similarly large differences for SiO_{2} and SiC samples can be found in previous works of the present authors and their collaborators. ${ }^{19,28}$ All these examples compel us to conclude that the prior success of the point- and finite-dipole models in fitting experimental data has to be due to insufficient range of the data, multitude of adjustable parameters, and also the demodulation and normalization

FIG. 14. The spectrum of the probe polarizability $\left|\chi^{\perp}\right|$ for $\mathrm{Al}_{2} \mathrm{O}_{3}$ sample according to four different models. The point- and the finite-dipole models each predict a single peak in $\left|\chi^{\perp}\right|$. The calculations for spherical and spheroidal probes reveal multiple peaks. The sphere and the point-dipole models produce $\chi^{\perp} / a^{3} \sim 1$. The $L=25 a$ spheroidal probe yields $\chi^{\perp} \sim 10^{3}-10^{4}$; the finite-dipole of the same L gives about an order of magnitude lower χ^{\perp}. These dramatic differences in both the form and the absolute magnitude of χ^{\perp} can however be significantly reduced in the usually reported $\bar{s} \frac{\perp}{3}$, the normalized demodulated signal.
procedures that mask the errors in both the functional form and the magnitude of the calculated signal.

Another way to explain the difference between the earlier $a d$ hoc models and our GSM is as follows. For the case of a sample with a local reflectivity β, the exact scattering problem of a dielectric probe near a surface reduces to a generalized eigenproblem, ${ }^{21}$ which has an infinite number of eigenmodes, as we discussed in Sec. I. In contrast, both the point- and the finite-dipole models attempt to approximate the infinite number of eigenmodes by a single one.

Since the real-space potential distribution of the eigenmodes [Fig. 1(b)] depends on the shape and size of the probe and probe-sample distance but not on β, we can describe interaction of the probe with an arbitrary sample efficiently using the precalculated basis of such eigenmodes. This allows one to use our GSM approach to model s-SNOM response for a wide range of materials. However, calculations for realistic probe shapes are not always practical. In search of a broadly applicable yet simple model, we have chosen the prolate spheroid to be our probe shape, as it captures the essential features of the actual probes-a sharp apex and a strongly elongated shaft. We quantified the eigenmodes of the probe-sample system in the form of poles and residues of the polarizability functions $\chi^{\nu},{ }^{29}$ allowing an expedient, in fact, instantaneous calculation of the s-SNOM response. The point-dipole, finite-dipole, and other ad hoc models no longer have the advantage of computational speed and should now be considered obsolete.

Recent work ${ }^{19}$ has shown that in the strong-coupling regime of the probe-sample interaction a fully electrodynamic treatment using the BEM and realistic probe shape is necessary in order to reproduce the measurements. This regime is realized experimentally ${ }^{6,19}$ when using samples of SiC , a material for which $|\beta|$ can be as high as 15 . The same
considerations apply for $\mathrm{Al}_{2} \mathrm{O}_{3}$ for which $|\beta|$ can reach 12 (see Fig. 2(a)). Our GSM theory gives analytical insight into near-field response of such materials. We have shown that due to simultaneous excitation of multiple eigenmodes, novel features of the s-SNOM signal such as multi-peaked spectra and nonmonotonic approach curves can appear. These features are however very sensitive to experimental parameters such as tapping amplitude, minimum approach distance, and even the data collection protocol. Retardation effects, especially radiative damping can also qualitatively alter the signal and must be considered. In order to observe the predicted anomalous approach curves and multi-peak spectra, it may be necessary to make efforts to minimize the radiative damping, which requires working with shorter probes or at lower frequencies. In contrast, in the weak- and moderate-coupling regimes, which are relevant for the vast majority of samples, the lowest-order eigenmode is dominant. Hence, the approach curves should be monotonic in $z_{\text {tip }}$, while the spectra should be mostly insensitive to experimental details and retardation effects. This is the regime where our spheroidal probe model can be used with the greatest confidence.

Our GSM theory also applies to a more complicated problem where the sample reflectivity is nonlocal, i.e., momentum-dependent. Here, the salient advantages of our method are two-fold. First, in the case of a weak nonlocality, our GSM provides a mapping of the nonlocal problem to a local one. Thereby, the sample-independent eigenmode decomposition is retained, providing an intuitive interpretation of the scattering signal. Second, our numerical algorithm (see the supplementary material) is much more efficient than the standard BEM because the number of necessary matrix element calculations scales linearly instead of quadratically with the matrix size. It will be worthwhile to compare the actual computational speed of our algorithm with that of a recently developed and significantly more efficient BEM that utilizes pre-calculated matrix elements. ${ }^{19}$

We hope that the improved physical understanding of near-field probe-sample coupling enabled by the generalized spectral method advanced in this work as well as the numerical procedures we developed for its implementation can be of use for modeling and analysis of future s-SNOM and other near-field experiments.

ACKNOWLEDGMENTS

The work at UCSD was supported by DOE under Grant Nos. DE-FG02-08ER46512 and DE-SC00122592 and by UCOP. A.H.C.N. acknowledges the National Research Foundation, Prime Minister Office, Singapore, under its Medium Sized Centre Programme and CRP award "Novel 2D materials with tailored properties: beyond graphene" (R-144-000-295-281). We thank A. S. McLeod and F. Keilmann for their valuable discussions and comments on the manuscript.
${ }^{1} \mathrm{H}$. Wheeler, "The radiansphere around a small antenna," Proc. IRE 47, 1325-1331 (1959).
${ }^{2}$ F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Philos. Trans. R. Soc. London, Ser. A 362, 787-805 (2004).
${ }^{3}$ J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, "Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids," Adv. Phys. 61, 745-842 (2012).
${ }^{4}$ S. Amarie, T. Ganz, and F. Keilmann, "Mid-infrared near-field spectroscopy," Opt. Express 17, 21794 (2009).
${ }^{5}$ Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, "Infrared nanoscopy of Dirac plasmons at the graphene- SiO_{2} interface," Nano Lett. 11, 4701-4705 (2011).
${ }^{6}$ S. Amarie and F. Keilmann, "Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy," Phys. Rev. B 83, 045404 (2011).
${ }^{7}$ F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, "Infraredspectroscopic nanoimaging with a thermal source," Nat. Mater. 10, 352-356 (2011).
${ }^{8} \mathrm{H}$. Ma and J. Levy, "GHz apertureless near-field scanning optical microscopy of ferroelectric nanodomain dynamics," Nano Lett. 6, 341-344 (2006). ${ }^{9}$ M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, "Mott transition in VO_{2} revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
${ }^{10}$ H. Zhan, V. Astley, M. Hvasta, J. A. Deibel, D. M. Mittleman, and Y.-S. Lim, "The metal-insulator transition in VO_{2} studied using terahertz apertureless near-field microscopy," Appl. Phys. Lett. 91, 162110 (2007).
${ }^{11}$ M. M. Qazilbash, M. Brehm, G. O. Andreev, A. Frenzel, P.-C. Ho, B.-G. Chae, B.-J. Kim, S. J. Yun, H.-T. Kim, A. V. Balatsky, O. G. Shpyrko, M. B. Maple, F. Keilmann, and D. N. Basov, "Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide," Phys. Rev. B 79, 075107 (2009).
${ }^{12}$ A. Frenzel, M. M. Qazilbash, M. Brehm, B.-G. Chae, B.-J. Kim, H.-T. Kim, A. V. Balatsky, F. Keilmann, and D. N. Basov, "Inhomogeneous electronic state near the insulator-to-metal transition in the correlated oxide VO_{2}," Phys. Rev. B 80, 115115 (2009).
${ }^{13}$ A. C. Jones, S. Berweger, J. Wei, D. Cobden, and M. B. Raschke, "Nanooptical investigations of the metal-insulator phase behavior of individual VO_{2} microcrystals," Nano Lett. 10, 1574-1581 (2010).
${ }^{14}$ K. Lai, M. Nakamura, W. Kundhikanjana, M. Kawasaki, Y. Tokura, M. A. Kelly, and Z.-X. Shen, "Mesoscopic percolating resistance network in a strained manganite thin film," Science 329, 190-193 (2010).
${ }^{15}$ M. P. Nikiforov, S. C. Kehr, T.-H. Park, P. Milde, U. Zerweck, C. Loppacher, L. M. Eng, M. J. Therien, N. Engheta, and D. Bonnell, "Probing polarization and dielectric function of molecules with higher order harmonics in scattering-near-field scanning optical microscopy," J. Appl. Phys. 106, 114307 (2009).
${ }^{16}$ Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, "Gate-tuning of graphene plasmons revealed by infrared nano-imaging," Nature 487, 82-85 (2012).
${ }^{17}$ J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, "Optical nano-imaging of gate-tunable graphene plasmons," Nature 487, 77-81 (2012).
${ }^{18}$ S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, "Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride," Science 343, 1125-1129 (2014).
${ }^{19}$ A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth, A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M. Fogler, and D. N. Basov, "Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants," Phys. Rev. B 90, 085136 (2014).
${ }^{20}$ G. Ford and W. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
${ }^{21}$ M. Agranovich, B. Katsenelenbaum, A. Sivov, and N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory (WileyVCH, Berlin, 1999).
${ }^{22}$ D. J. Bergman, "The dielectric constant of a composite material: A problem in classical physics," Phys. Rep. 43, 377-407 (1978).
${ }^{23}$ D. J. Bergman, "Dielectric constant of a two-component granular composite: A practical scheme for calculating the pole spectrum," Phys. Rev. B 19, 2359-2368 (1979).
${ }^{24}$ R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
${ }^{25}$ T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nano Lett. 4, 1669-1672 (2004).
${ }^{26}$ J. Aizpurua, T. Taubner, F. J. G. de Abajo, M. Brehm, and R. Hillenbrand, "Substrate-enhanced infrared near-field spectroscopy," Opt. Express 16, 1529-1545 (2008).
${ }^{27}$ N. Ocelić, Quantitative Near-Field Phonon-Polariton Spectroscopy, edited by G. Abstreiter, M.-C. Amann, M. Stutzmann, and P. Vogl, Selected Topics of Semiconductor Physics and Technology, Vol. 89 (Walter Schottky Instituts der Technischen Universität München, 2007).
${ }^{28}$ L. M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, "Near-field spectroscopy of silicon dioxide thin films," Phys. Rev. B 85, 075419 (2012).
${ }^{29}$ See supplementary material at http://dx.doi.org/10.1063/1.4941343 for technical details of the derivations and the source code of our computer program.
${ }^{30}$ R. W. Rendell and D. J. Scalapino, "Surface plasmons confined by microstructures on tunnel junctions," Phys. Rev. B 24, 3276-3294 (1981).
${ }^{31}$ P. K. Aravind and H. Metiu, "Use of a perfectly conducting sphere to excite the plasmon of a flat surface. 1. Calculation of the local field with applications to surface-enhanced spectroscopy," J. Phys. Chem. 86, 5076-5084 (1982).
${ }^{32}$ P. K. Aravind and H. Metiu, "The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure: Applications to surface enhanced spectroscopy," Surf. Sci. 124, 506-528 (1983).
${ }^{33} \mathrm{P}$. Bobbert and J. Vlieger, "The polarizability of a spheroidal particle on a substrate," Physica A 147, 115-141 (1987).
${ }^{34}$ C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2004).
${ }^{35}$ MATLAB Release 2012b, The MathWorks, Inc., Natick, Massachusetts.
${ }^{36}$ P. M. Morse and H. Feshbach, Methods of Theoretical Physics (Feshbach Publishing, Minneapolis, 1981).
${ }^{37}$ A. Passian, A. Wig, F. Meriaudeau, M. Buncick, T. Thundat, and T. L. Ferrell, "Electrostatic force density for a scanned probe above a charged surface," J. Appl. Phys. 90, 1011 (2001).
${ }^{38}$ A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, "Curvature effects in surface plasmon dispersion and coupling," Phys. Rev. B 71, 115425 (2005).
${ }^{39}$ M. M. Fogler, "Electrostatic polarizability of a conical metallic particle in a contact with a dielectric half-space," (unpublished).
${ }^{40}$ F. Keilmann and R. Hillenbrand, "Near-field nanoscopy by elastic light scattering from a tip," in Nano-Optics and Near-Field Optical Microscopy, edited by A. Zayats and D. Richards (Artech House, Norwood, 2009), pp. 235-266.
${ }^{41}$ A. K. Harman, S. Ninomiya, and S. Adachi, "Optical constants of sapphire $\left(\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ single crystals," J. Appl. Phys. 76, 8032-8036 (1994).
${ }^{42}$ S. Zeidler, Th. Posch, and H. Mutschke, "Optical constants of refractory oxides at high temperatures," Astron. Astrophys. 553, A81 (2013).
${ }^{43}$ D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, "Colloquium: Graphene spectroscopy," Rev. Mod. Phys. 86, 959-994 (2014).
${ }^{44}$ B. Wunsch, T. Stauber, F. Sols, and F. Guinea, "Dynamical polarization of graphene at finite doping," New J. Phys. 8, 318 (2006).
${ }^{45}$ E. H. Hwang and S. Das Sarma, "Dielectric function, screening, and plasmons in two-dimensional graphene," Phys. Rev. B 75, 205418 (2007).
${ }^{46}$ T. Wriedt and A. Doicu, "Light scattering from a particle on or near a surface," Opt. Commun. 152, 376-384 (1998).
${ }^{47}$ A. Doicu, Y. Eremin, and T. Wriedt, "Convergence of the T-matrix method for light scattering from a particle on or near a surface," Opt. Commun. 159, 266-277 (1999).
${ }^{48}$ P. Bobbert and J. Vlieger, "Light scattering by a sphere on a substrate," Physica A 137, 209-242 (1986).
${ }^{49}$ A. Kučírková and K. Navrátil, "Interpretation of infrared transmittance spectra of SiO_{2} thin films," Appl. Spectrosc. 48, 113-120 (1994).
${ }^{50}$ G. Ford and W. Weber, "Electromagnetic effects on a molecule at a metal surface: I. Effects of nonlocality and finite molecular size," Surf. Sci. 109, 451-481 (1981).
${ }^{51}$ A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation damping in surfaceenhanced Raman scattering," Phys. Rev. Lett. 48, 957-960 (1982).
${ }^{52}$ A. Moroz, "Depolarization field of spheroidal particles," J. Opt. Soc. Am. B 26, 517-527 (2009).
${ }^{53}$ J. A. Porto, P. Johansson, S. P. Apell, and T. López-Ríos, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B 67, 085409 (2003).
${ }^{54}$ R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probes," Nanotechnology 17, 475 (2006).
${ }^{55}$ R. Esteban, R. Vogelgesang, and K. Kern, "Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast," Opt. Express 17, 2518-2529 (2009).
${ }^{56}$ S. Amarie and F. Keilmann, "Erratum: Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy [Phys. Rev. B 83, 045404 (2011)]," Phys. Rev. B 84, 199904(E) (2011).
${ }^{57}$ B. Hauer, A. P. Engelhardt, and T. Taubner, "Quasi-analytical model for scattering infrared near-field microscopy on layered systems," Opt. Express 20, 13173-13188 (2012).
${ }^{58}$ J. Renger, S. Grafström, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 075410 (2005).
${ }^{59}$ A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550-8565 (2007).

Supplemental Material for "Generalized method of eigenoscillations for near-field optical microscopy"

B.-Y. Jiang, ${ }^{1}$ L. M. Zhang, ${ }^{1}$ A. H. Castro Neto, ${ }^{2,3}$ D. N. Basov, ${ }^{1}$ and M. M. Fogler ${ }^{1}$
${ }^{1)}$ Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
${ }^{2)}$ Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215
${ }^{3)}$ Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117542, Singapore

(Dated: 30 December 2015)

I. THE ELECTROSTATIC PROBLEM OF A SPHEROIDAL PROBE

The electric field created by a spheroidal object is most conveniently described in the prolate spheroidal coordinates (ξ, η, ϕ) where the origin of the coordinate system is located at the center of the probe, as shown in Fig. 3. The relationships to the cylindrical polar coordinates (ρ, ϕ, z) are

$$
\begin{equation*}
z=F \xi \eta, \quad \rho=F \sqrt{\xi^{2}-1} \sqrt{1-\eta^{2}} \tag{S1}
\end{equation*}
$$

In the spheroidal coordinate each spatial position is specified by $\xi \in[1, \infty), \eta \in[-1,1]$, and ϕ is the usual azimuthal angle. Contours of constant ξ are a series of concentric spheroids centered at the origin, with the major axis along the z direction and common foci at $z= \pm F$. For each such spheroid, ξ is equal to the ratio of its major semi-axis and focal length. We consider the case when the surface of the probe coincides with one of the spheroidal surfaces $\xi=$ $\xi_{0}=L / F$, where L is the half-length or major semiaxis of the probe. Related quantities such as the minor semi-radius W of the probe or the radius of curvature a at the apex are given by $W=\sqrt{L^{2}-F^{2}}$ and $a=W^{2} / L$.

It is well known that Laplace's equation $\nabla^{2} \Phi=0$ has separable solutions in the prolate spheroidal coordinates. In particular, we are interested in solutions outside a spheroidal probe that decay at large ξ. Their most general form is written in terms of a linear combination of spheroidal harmonics as fol-
lows:

$$
\begin{align*}
& \Phi_{\mathrm{sphd}}(\xi, \eta, \phi)= \\
& \qquad \sum_{l=0}^{\infty} \sum_{m=-l}^{l} B_{l}^{m} \mathrm{P}_{l}^{m}(\eta) e^{i m \phi} \frac{P_{l}^{m}\left(\xi_{<}\right) Q_{l}^{m}\left(\xi_{>}\right)}{P_{l}^{m}\left(\xi_{0}\right)} \tag{S2}
\end{align*}
$$

where B_{l}^{m} are coefficients to be determined from boundary condition, $\mathrm{P}_{l}^{m}(\zeta)$ is the associated Legendre polynomial defined on the interval $[-1,1]$ and $P_{l}^{m}(\zeta)$ and $Q_{l}^{m}(\zeta)$ are the associated Legendre function of the first kind and second kind (See, e.g. Ref. (1) with

$$
\begin{equation*}
\xi_{<} \equiv \min \left(\xi, \xi_{0}\right), \quad \xi_{>} \equiv \max \left(\xi, \xi_{0}\right) \tag{S3}
\end{equation*}
$$

With the above definition of $\xi_{>,<}$, Eq. (S2p covers both inside and outside the surface of the probe at ξ_{0}.

For the geometry considered in this paper [Fig. 1(a)], the total potential Φ can be written as

$$
\begin{equation*}
\Phi=\Phi_{0}+\Phi_{\text {plane }}+\Phi_{\text {sphd }} \tag{S4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{0}(\boldsymbol{r})=-\boldsymbol{E}_{0} \boldsymbol{r} \tag{S5}
\end{equation*}
$$

is the potential of the external uniform field, and $\Phi_{\text {plane }}$ is the potential due to charges in the sample, which can be decomposed into evanescent plane wave as

$$
\begin{equation*}
\Phi_{\text {plane }}(\boldsymbol{r})=\int B(\boldsymbol{q}) e^{-q z} e^{i \boldsymbol{q} \rho} \frac{d^{2} q}{4 \pi^{2}} \tag{S6}
\end{equation*}
$$

where the position vector $\boldsymbol{r}=\boldsymbol{\rho}+z \hat{\boldsymbol{z}}$ is broken up into its cylindrical polar coordinate components. We determine $B(\boldsymbol{q})$, as well as B_{l}^{m} from boundary conditions.

To do that we quote two well-known mathematical results: the decompositions of evanescent plane waves in terms of spheroidal harmonics and vice versa. The first reads

$$
\begin{equation*}
e^{i \boldsymbol{q} \boldsymbol{\rho}-q z}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{2 l+1}{2}(-)^{l} i^{m} \frac{(l-m)!}{(l+m)!} \sqrt{\frac{2 \pi}{q F}} I_{l+\frac{1}{2}}(q F) P_{l}^{m}(\xi) \mathrm{P}_{l}^{m}(\eta) e^{i m\left(\phi-\phi_{q}\right)}, \tag{S7}
\end{equation*}
$$

with ϕ and ϕ_{q} being the azimuthal angles of $\boldsymbol{\rho}$ and \boldsymbol{q}, respectively. The reverse is:

$$
\begin{equation*}
Q_{l}^{m}(\xi) \mathrm{P}_{l}^{m}(\eta)=(-)^{l} i^{m} \frac{(l+m)!}{(l-m)!} \int \frac{\pi F}{q} \sqrt{\frac{2 \pi}{q F}} I_{l+\frac{1}{2}}(q F) e^{i \boldsymbol{q} \boldsymbol{\rho}+q z} e^{-i m\left(\phi-\phi_{q}\right)} \frac{\mathrm{d}^{2} q}{4 \pi^{2}} \tag{S8}
\end{equation*}
$$

where $I_{\nu}(z)$ is the modified Bessel function of the first kind ${ }^{[2]}$ These two relations follow easily from addition theorems of general Legendre functions such as those in Ref. 1 and 3 .

Near the sample surface $z=-z_{\mathrm{p}}$, the boundary condition is
$\tilde{\Phi}=B(\boldsymbol{q}) e^{-q z_{\mathrm{p}}}+\tilde{\Phi}_{\mathrm{sphd}}\left(\boldsymbol{q}, z_{\mathrm{p}}\right) \propto e^{q z_{\mathrm{p}}}-r_{\mathrm{P}}(q) e^{-q z_{\mathrm{p}}}$,
where we use the notation

$$
\begin{equation*}
\tilde{f}(\boldsymbol{q}, z)=\int f(\boldsymbol{r}) e^{-i \boldsymbol{q} \boldsymbol{\rho}} d^{2} \rho \tag{S10}
\end{equation*}
$$

for a partial Fourier transformation. Eq. (S9) implies:

$$
\begin{equation*}
B(\boldsymbol{q})=-r_{\mathrm{P}} e^{-q z_{\mathrm{p}}} \tilde{\Phi}_{\mathrm{sphd}}\left(\boldsymbol{q}, z_{\mathrm{p}}\right) \tag{S11}
\end{equation*}
$$

The other boundary condition for a uniform spheroidal probe with dielectric constant $\epsilon_{\text {tip }}$ is:

$$
\begin{equation*}
\left.\frac{\partial \Phi}{\partial \xi}\right|_{\xi \rightarrow \xi_{0}^{+}}=\left.\epsilon_{\operatorname{tip}} \frac{\partial \Phi}{\partial \xi}\right|_{\xi \rightarrow \xi_{0}^{-}} \tag{S12}
\end{equation*}
$$

Boundary conditions in Eqs. (S11) and (S12) with the decompositions in Eqs. (S7) and (S8) allow one to compute the unknown coefficients $\overline{B_{l}^{m}}$. The result can be summarized by first defining an infinite matrix:

$$
\begin{equation*}
H_{l l^{\prime}} \equiv 2 \pi \int_{0}^{\infty} r_{\mathrm{P}}(q) I_{l^{\prime}+\frac{1}{2}}(q F) I_{l+\frac{1}{2}}(q F) e^{-2 q z_{\mathrm{p}}} \frac{d q}{q} \tag{S13}
\end{equation*}
$$

whose elements are integrals of $r_{\mathrm{P}}(q)$. Then for each integer m a quantity related to B_{l}^{m}, a column vector defined by:

$$
\begin{equation*}
A^{m}{ }_{l} \equiv(-)^{l+m} \frac{(l+m)!}{(l-m)!} \frac{B_{l}^{m}}{F} \tag{S14}
\end{equation*}
$$

is the solution to the linear system of equations

$$
\begin{equation*}
\sum_{l^{\prime}=1}^{\infty}\left(\Lambda^{m}-H\right)_{l l^{\prime}} A_{l^{\prime}}^{m}=b_{l}^{m} \tag{S15}
\end{equation*}
$$

The elements of the diagonal matrix $\Lambda^{m}{ }_{l l^{\prime}}=\Lambda_{l}^{m} \delta_{l l^{\prime}}$ are defined by

$$
\begin{equation*}
\Lambda_{l}^{m}=\frac{(-1)^{m}}{2 l+1} \frac{4}{\epsilon_{\mathrm{tip}}-1}\left[\epsilon_{\mathrm{tip}} \frac{Q_{l}^{m}\left(\xi_{0}\right)}{P_{l}^{m}\left(\xi_{0}\right)}-\frac{\frac{d}{d \xi_{0}} Q_{l}^{m}\left(\xi_{0}\right)}{\frac{d}{d \xi_{0}} P_{l}^{m}\left(\xi_{0}\right)}\right] \tag{S16}
\end{equation*}
$$

and the numbers on the right-hand side of the equations are given by

$$
\begin{equation*}
b^{m}{ }_{l}=\frac{4}{3} \frac{(1+m)!}{(1-m)!} C^{m} \delta_{l 1}, \tag{S17}
\end{equation*}
$$

where $C^{0}=-E_{z}$ and $C^{ \pm 1}=\left(E_{x} \mp i E_{y}\right) / 2$. Thus, the form of matrix $\boldsymbol{\Lambda}$ is determined completely by the geometry of the probe (in terms of ξ_{0}) and its dielectric constant $\epsilon_{\text {tip }}$, while \mathbf{H} describes the interaction between the sample reflection function r_{P} and the momentum selectivity of the modes. The column vector \mathbf{b} describes the uniform external field.

The coefficients B_{l}^{m} can be obtained directly from Eq. (S14) after one solves for $A^{m}{ }_{l}$ from Eq. (S15). But for the purpose of determining the induced probe dipole moment, only $|m| \leq 1$ cases are important. By examining the asymptotic behavior of the electrostatic potential $\Phi(\boldsymbol{r})$, one obtains the total dipole moment of the spheroid probe. Its Cartesian components are related to the components of $A^{m}{ }_{l}$ by

$$
\begin{align*}
& p_{\mathrm{sp}, 0}=p_{\mathrm{sp}, z}=-\frac{F^{3}}{3} A^{0}{ }_{1}, \\
& p_{\mathrm{sp}, 1}=\frac{p_{\mathrm{sp}, x}-i p_{\mathrm{sp}, y}}{2}=\frac{F^{3}}{3} A^{1}{ }_{1} . \tag{S18}
\end{align*}
$$

If the probe is made of an ideal conductor, $\epsilon_{\text {tip }} \rightarrow$ ∞, then Eq. S16 simplifies to

$$
\begin{equation*}
\Lambda_{l}^{m}=(-1)^{m} \frac{4}{2 l+1} \frac{Q_{l}^{m}\left(\xi_{0}\right)}{P_{l}^{m}\left(\xi_{0}\right)} \tag{S19}
\end{equation*}
$$

which are all positive numbers. If the dielectric function of the probe is real and negative, then Λ_{l}^{m} can be negative, too. It can also be zero, which corresponds
to a plasmon (or phonon) polariton resonance of the probe. The resonances occur at discrete $\epsilon_{\text {tip }}$ values

$$
\begin{equation*}
\epsilon_{\text {tip }, l}^{m}=\frac{\frac{d}{d \xi_{0}} \ln Q_{l}^{m}\left(\xi_{0}\right)}{\frac{d}{d \xi_{0}} \ln P_{l}^{m}\left(\xi_{0}\right)}, \quad l=1,2, \ldots \tag{S20}
\end{equation*}
$$

see, e.g., Refs. 4 and 5 (where, in fact, a more general case of anisotropic $\epsilon_{\text {tip }}$ is treated). For each m, the sequence $\epsilon_{\text {tip }, l}^{m}$ asymptotically approaches -1 as $l \rightarrow \infty$. The smallest, i.e., the most negative value in each sequence is the starting one. It can be alternatively written as

$$
\begin{equation*}
\epsilon_{\mathrm{tip}, 1}^{m}=1-\frac{1}{L^{\nu}}, \tag{S21}
\end{equation*}
$$

where $\nu=\perp$ for $m=0, \nu=\|$ for $m=1$, and L^{ν} are the depolarization factors of the spheroid ${ }^{6}$

$$
\begin{align*}
L^{\perp} & =\left(\xi_{0}^{2}-1\right)\left[\frac{1}{2} \xi_{0} \ln \left(\frac{\xi_{0}+1}{\xi_{0}-1}\right)-1\right] \tag{S22}\\
L^{\|} & =\frac{1-L^{\perp}}{2} \tag{S23}
\end{align*}
$$

For prolate spheroids, these depolarization factors obey the inequalities $0<L^{\perp}<L^{\|}<\frac{1}{2}$, and so $\epsilon_{\text {tip }, 1}^{0}<\epsilon_{\text {tip }, 1}^{1}$. For example, if $L=25 a$, which we use in our calculations below, then $\xi_{0}=\sqrt{25 / 24}$, $\epsilon_{\mathrm{tip}, 1}^{0}=-16.9$, and $\epsilon_{\mathrm{tip}, 1}^{1}=-1.11$. If the probe is made out of platinum or iridium, which are common materials for AFM tips, its dielectric function can indeed be negative. It is in principle possible to achieve plasmonic resonances in such probes somewhere in the near-infrared or visible spectral range. On the other hand, at mid-infrared frequencies, for which we do calculations in this paper, the dielectric functions of such metals are in the range of hundreds or thousands. Such probes are very far from any of the plasmonic resonances and the approximation of the ideal conductor, Eq. $\mathbf{S 1 9}$, can be safely used.

II. RATIONAL FITS OF POLES AND RESIDUES

The polarizability χ^{ν} of the probe has the form

$$
\begin{equation*}
\chi^{\nu}(\beta)=\sum_{k=0}^{\infty} \frac{R_{k}^{\nu}}{\beta_{k}^{\nu}-\beta}, \quad \nu=\perp \text { or } \| \tag{S24}
\end{equation*}
$$

for a sample that has momentum independent reflection, $r_{\mathrm{P}}(q)=\beta$. The poles β_{k}^{ν} and residues R_{k}^{ν} depend only on the geometry of the probe and not on the sample, so a single set of poles and residues
can be used for any β. Following the method described in Sec. I. we calculated and fitted the first nine poles and residues of a spheroidal probe with $L=25 a$ for $\nu=\perp$. Coefficients of the fit are cataloged in Table. [] where the poles are given by

$$
\begin{equation*}
\log \beta_{k}=\sum_{i=0}^{5} a_{i} \alpha^{i} / \sum_{i=0}^{4} b_{i} \alpha^{i} \tag{S25}
\end{equation*}
$$

and the residues are given by

$$
\begin{equation*}
R_{k} a^{-3} \mathcal{Z}^{-1}=\sum_{i=0}^{5} c_{i} \mathcal{Z}^{i} / \sum_{i=0}^{3} d_{i} \mathcal{Z}^{i} \tag{S26}
\end{equation*}
$$

with $\mathcal{Z} \equiv z_{\text {tip }} / a$, valid in the range $0.003<\mathcal{Z}<10$. The fits for the residues apply only to the first eight poles, $k=0$ through 7 . The remaining residue R_{8} is constrained to obey the sum rule,

$$
\begin{equation*}
\sum_{k=0}^{8} \frac{R_{k}}{\beta_{k}}=\chi_{0} \tag{S27}
\end{equation*}
$$

III. THE SPHERICAL PROBE LIMIT

The spheroidal probe model presented in Appendix Π is quite general and can be a good model for tips of any aspect ratio L / a. Here we explore a particular limit of $F \rightarrow 0$ and $\xi \rightarrow \infty$ while keeping the product $F \xi \rightarrow a$ constant. This corresponds to the problem of a spherical probe of radius a. The derivation in Appendix \square simplifies to that in Sec. 4.1 of Ref. 7, and by using the following asymptotic forms of various special functions:

$$
\begin{align*}
\sqrt{\frac{2 \pi}{q F}} I_{l+\frac{1}{2}}(q F) & \simeq \frac{2^{2 l+1} l!}{(2 l+1)!}\left(\frac{q F}{2}\right)^{l} \tag{S28a}\\
Q_{l}^{m}(\xi) & \simeq(-)^{m} \frac{2^{l} l!(l+m)!}{(2 l+1)!} \xi^{-l-1} \tag{S28b}\\
P_{l}^{m}(\xi) & \simeq \frac{(2 l)!}{2^{l} l!(l-m)!} \xi^{l} \tag{S28c}
\end{align*}
$$

one can show that the decompositions Eqs. (S7) and (S8) reduce to Eq. (4.9) and (4.10) of Ref. 7. The characteristic equation Eq. (S15) for $B^{m}{ }_{l}$ reduces to:

$$
\begin{array}{r}
\sum_{l^{\prime}=1}^{\infty}\left\{\frac{\delta_{l l^{\prime}}}{\alpha_{l} a^{2 l+1}}-\frac{\left(l+l^{\prime}\right)!}{(l+m)!\left(l^{\prime}-m\right)!} \mathcal{F}_{l+l^{\prime}}\right\} \bar{B}^{m}{l^{\prime}}^{\prime} \\
=\frac{\delta_{l 1}}{(l-m)!} C^{m} \tag{S29}
\end{array}
$$

TABLE I. Coefficients of the nine-pole rational fits for $L=25 a$.

k	a_{5}	a_{4}	a_{3}	a_{2}	a_{1}	a_{0}	b_{4}	b_{3}	b_{2}	b_{1}	b_{0}
0	3	-36.399	234.56	-762.76	1783.1	-0.015667	1	-10.345	83.048	-417.42	1522.2
1	5	-25.733	111.01	-93.002	290.11	0	1	-3.4964	27.841	11.949	87.231
2	7	-33.029	157.55	-118.29	1391.3	0	1	-0.9961	-2.6274	149.14	253.32
3	9	-36.251	173.3	-40.018	1879.9	0	1	-0.12625	-8.2396	185.03	246.31
4	11	-47.517	221.75	-85.286	2292.3	-0.00017314	1	-0.3866	-8.4205	180.3	237.17
5	13	-45.678	233.45	42.551	3435.5	-0.000094847	1	1.0728	-20.329	253.41	291.59
6	15	-46.254	254.23	223.28	2547	0	1	-0.75722	7.941	175.21	185.07
7	17	-27.808	235.93	770.95	1961.3	0	1	-1.8957	34.251	163.71	122.51
8	19	-65.583	251.72	-308.28	402.67	0.000032595	1	1.6624	4.104	-1.1364	23.24

k	c_{5}	c_{4}	c_{3}	c_{2}	c_{1}	c_{0}	d_{3}	d_{2}	d_{1}	d_{0}
0	3.9999	303.23	5141.1	4811.1	282.17	1.4941	1	0.77084	0.023552	0.000027594
1	12.001	916.75	17089	33226	2371.9	12.255	1	1.4472	0.11961	0.0003052
2	24.001	1844.7	35207	90005	36.881	11.908	1	1.9006	0.012624	0.00025669
3	40	3166.2	65393	288144	224067	4417.7	1	4.1622	2.6905	0.09134
4	60.028	4584.9	87200	196974	5632.8	28.67	1	1.5802	0.066244	0.00048749
5	84.685	6304.9	122561	226585	4364.5	4.237	1	1.2714	0.044389	0.000077993
6	116.26	8216.9	166927	316568	98948	843.4	1	1.4088	0.44188	0.0087351
7	146.83	10354	214160	350367	77249	334.56	1	1.1606	0.28331	0.0034808

where

$$
\begin{equation*}
\bar{B}^{m}{ }_{l}=(-)^{l+m}(l+m)!\frac{2^{l} l!}{(2 l+1)!} F^{l+1} B^{m}{ }_{l} \tag{S30}
\end{equation*}
$$

is similarly related to the induced charge distribution of the probe,

$$
\begin{equation*}
\alpha_{l}=\frac{l\left(\epsilon_{\mathrm{tip}}-1\right)}{l\left(\epsilon_{\mathrm{tip}}+1\right)+1} \tag{S31}
\end{equation*}
$$

is the multipole polarizability of the probe, and

$$
\begin{equation*}
\mathcal{F}_{l}=\frac{1}{l!} \int_{0}^{\infty} r_{\mathrm{P}}(q) q^{l} e^{-2 q d_{0}} d q \tag{S32}
\end{equation*}
$$

is the integral that characterizes the interaction between the spherical probe and the sample with $d_{0}=$ $a+z_{\mathrm{tip}}$. Eq. (S29), the characteristic equation for a spherical probe, is derived in Ref. 7 as Eq. (4.20). The solution to Eq. $\overline{\mathrm{S} 29}$ h has some of the same properties as the spheroid case: $\bar{B}^{m}{ }_{l}=0$ for all l and $|m|>1 ; \bar{B}_{l}^{0}$ is related to the charge distribution due to the z component of the electric field and $\bar{B}_{l}^{ \pm 1}$ are related to the charge distribution due to the $x-y$ component of the electric field.

For the case of q independent $r_{\mathrm{P}}(q, \omega)=\beta(\omega)$, in which the integrals \mathcal{F}_{l} reduces to:

$$
\begin{equation*}
\mathcal{F}_{l}=\frac{\beta}{\left(2 d_{0}\right)^{l+1}}, \tag{S33}
\end{equation*}
$$

there is an exact solution to the spherical characteristic equation. Let

$$
\begin{equation*}
\alpha=\operatorname{arccosh} \frac{d_{0}}{a}=\operatorname{arccosh}\left(1+\frac{z_{\mathrm{tip}}}{a}\right) \tag{S34}
\end{equation*}
$$

be a dimensionless parameter that characterizes the sphere-to-sample distance relative to its size, and let

$$
\begin{equation*}
\sigma_{k}(\beta ; \alpha)=\sum_{m=0}^{\infty} \frac{(2 m+1)^{k}}{e^{(2 m+1) \alpha}-\beta} \tag{S35}
\end{equation*}
$$

Using the following quantities:

$$
\begin{align*}
& p_{0}=\chi_{0} E_{z}, \quad \chi_{0}=a^{3}, \tag{S36a}\\
& q_{0}=\frac{p_{0}}{a}\left(\cosh \alpha-\sinh \alpha \frac{\sigma_{1}}{\sigma_{0}}\right), \tag{S36b}\\
& p_{n}=p_{0} \beta^{n}\left(\frac{\sinh \alpha}{\sinh (n+1) \alpha}\right)^{3}, \tag{S36c}\\
& q_{n}=\frac{\beta^{n} \sinh \alpha}{\sinh (n+1) \alpha}\left[q_{0}-\frac{p_{0}}{a} \frac{\sinh n \alpha}{\sinh (n+1) \alpha}\right] \tag{S36d}
\end{align*}
$$

it can be shown that for a metallic sphere

$$
\begin{equation*}
\bar{B}_{l}^{0}=(-)^{l} \sum_{n=0}^{\infty} q_{n}\left(d_{0}-d_{n}\right)^{l}-p_{n} l\left(d_{0}-d_{n}\right)^{l-1} \tag{S37}
\end{equation*}
$$

FIG. S1. The method-of-images solution of the problem of a metallic sphere above a dielectric half-space with the external field normal to the interface. The method involves an infinite series of dipoles p_{n} and point charges q_{n} located inside the sphere at distances d_{n} above the interface. The total charge inside the sphere is zero.
where

$$
\begin{equation*}
d_{0}-d_{n}=a \frac{\sinh n \alpha}{\sinh (n+1) \alpha} \tag{S38}
\end{equation*}
$$

The physical meaning of Eq. S37 becomes clear when one treats the problem with method of images (Fig. S1). Suppose that an external electric field E_{z} would have induced a bare dipole moment p_{0} in the sphere. This would induce an image dipole in the dielectric half-space, which would in turn induce an image dipole and an image charge in the sphere. The position and strength of each successive image dipole and charge can be solved by recursion. Setting the sample surface to $z=0$, the position of the center of the sphere is at $z=d_{0}$. At each position $z=d_{n}$ given by Eq. S38 there is a point dipole p_{n} and a point charge q_{n}. Charge q_{0} is determined by the neutrality condition $\sum_{n} q_{n}=0$, which yields Eq. (S36b). Summing up all the contributions to the total dipole moment from both the dipoles and the point charges inside the sphere, we get:

$$
\begin{align*}
\frac{\chi^{\mathrm{sph}, \perp}}{\chi_{0}} & \equiv \frac{p_{z}^{\text {total }}}{p_{0}}=\frac{1}{p_{0}} \sum_{n=0}^{\infty}\left[p_{n}+q_{n}\left(d_{n}-d_{0}\right)\right] \\
& =2 \sinh ^{3} \alpha\left(\sigma_{2}-\frac{\sigma_{1}^{2}}{\sigma_{0}}\right) \tag{S39}
\end{align*}
$$

with σ_{k} given by Eq. (S35).
The above analysis resulting in Eq. S39 is for the case where the electric field is perpendicular to the sample. For the case where the electric field is parallel to the sample, the analysis is simpler in that the positions of the image dipoles and their strength are the same, but no image point charges are present. Therefore, in this polarization:

$$
\begin{equation*}
\frac{\chi^{\mathrm{sph}, \|}}{\chi_{0}} \equiv \frac{p_{x y}^{\mathrm{total}}}{p_{0}}=\sinh ^{3} \alpha\left(\sigma_{2}-\sigma_{0}\right) \tag{S40}
\end{equation*}
$$

Both Eq. S39) and S40 conforms to our earlier assertion that χ has the form of Eq. S24):

$$
\begin{equation*}
\chi^{\mathrm{sph}, \|}=\sum_{k=0}^{\infty} \frac{R_{k}^{\mathrm{sph}, \|}}{\beta_{k}^{\mathrm{sph}, \|}-\beta}, \quad \chi^{\mathrm{sph}, \perp}=\sum_{k=0}^{\infty} \frac{R_{k}^{\mathrm{sph}, \perp}}{\beta_{k}^{\mathrm{sph}, \perp}-\beta} \tag{S41}
\end{equation*}
$$

For horizontal electric fields, $\chi^{\text {sph, } \|}$ is singular whenever σ_{2} or σ_{0} is, so that

$$
\begin{equation*}
\beta_{k}^{\mathrm{sph}, \|}=e^{(2 k+3) \alpha} \tag{S42}
\end{equation*}
$$

The corresponding residues are:

$$
\begin{equation*}
R_{k}^{\mathrm{sph}, \|}=4(k+1)(k+2) \chi_{0} \sinh ^{3} \alpha \tag{S43}
\end{equation*}
$$

For electric fields perpendicular to the sample, the parenthesis in Eq. S39 vanishes at each $\beta_{k}^{\text {sph, } \|}$, so they are not poles of $\chi^{\mathrm{sph}, \perp}$. Instead, $\beta_{k}^{\mathrm{sph}, \perp}$ occur at the zeros of σ_{0} which has no simple analytic form. The poles of the two polarizations, however, interleave:

$$
\begin{equation*}
\beta_{k}^{\mathrm{sph}, \|}<\beta_{k}^{\mathrm{sph}, \perp} \lesssim \beta_{k+1}^{\mathrm{sph}, \|} \tag{S44}
\end{equation*}
$$

IV. BOUNDARY ELEMENT METHOD FOR AXISYMMETRIC PROBES

The spheroidal probe belongs to a large class of probes that has axial symmetry: its cross section is a circle with radius $w(z)$ varying as a function of height. Here we briefly describe the method used to calculate the polarizability χ of such probes. Dividing the interval $z \in[-L, L]$ that the probe occupies into n segments, the j-th segment can be approximated as a ring with radius $w_{j} \equiv w\left(z_{j}\right)$ and charge Q_{j}. In the presence of an external field, the charges on rings Q_{j} satisfies the equation:

$$
\begin{equation*}
\sum_{j=1}^{n}\left(L_{i j}+H_{i j}\right) Q_{j}=-\varphi_{i} \tag{S45}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{i j}=\int J_{0}\left(q w_{i}\right) J_{0}\left(q w_{j}\right) e^{-q\left|z_{i}-z_{j}\right|} \mathrm{d} q \tag{S46}
\end{equation*}
$$

is the quasistatic interaction between the i th and the j th rings,
$H_{i j}=\int r_{\alpha}(q) J_{0}\left(q w_{i}\right) J_{0}\left(q w_{j}\right) e^{-q\left(z_{i}+z_{j}+2 z_{\text {tip }}+2 L\right)} \mathrm{d} q$
is the interaction between the i th ring and the image of the j th ring, and $\varphi_{i}=\phi_{\text {ext }}\left(z_{i}\right)$ is the external potential at the i-th ring. Defining

$$
\begin{equation*}
\mathcal{K}\left(w, w^{\prime} ; z\right)=\frac{2}{\pi} \frac{K\left[\frac{4 w w^{\prime}}{\left(w+w^{\prime}\right)^{2}+z^{2}}\right]}{\sqrt{\left(w+w^{\prime}\right)^{2}+z^{2}}} \tag{S48}
\end{equation*}
$$

in terms of the complete elliptical integral of the first kind $K(z)$, we can write

$$
\begin{equation*}
L_{i j}=\mathcal{K}\left(w_{i}, w_{j}, z_{i}-z_{j}\right) \tag{S49}
\end{equation*}
$$

while in the case of a q-independent $r_{\alpha}(q, \omega)=\beta(\omega)$, $H_{i j}$ can be simplified as
$H_{i j}=\beta \bar{H}_{i j}, \quad \bar{H}_{i j}=\mathcal{K}\left(w_{i}, w_{j}, z_{i}+z_{j}+2 z_{\mathrm{tip}}+2 L\right)$,
so that Eq. S45 takes on the same form as the equation for the spheroid derived in the text,

$$
\begin{equation*}
\left(\boldsymbol{\Lambda}^{m}-\beta \overline{\mathbf{H}}\right) \mathbf{A}^{m}=\mathbf{b}^{m} \tag{S51}
\end{equation*}
$$

Indeed, Eq. S51 can be viewed as a special case of Eq. S45 expressed in a different basis, and for q-independent $\beta(\omega)$ the polarizability of the probe always has the form of Eq. (S24). Eq. (S45) can be easily implemented in a computer. However, for general $r_{\alpha}(q, \omega)$ the evaluation of each element of $H_{i j}$ as a numerical integral can be slow, making this method computationally demanding when one needs a large matrix size to achieve good accuracy. Nevertheless, it serves well as a benchmark test for comparison with other models. In particular, our spheroidal model yields almost indistinguishable results and is an order of magnitude faster, due to the recursive relation between matrix elements described in Sec. V

V. NUMERICAL IMPLEMENTATION FOR THE SPHEROID MODEL

The integral

$$
\begin{equation*}
H_{n, l} \equiv 2 \pi \int_{0}^{\infty} r_{\alpha}(q) I_{n+\frac{1}{2}}(q F) I_{l+\frac{1}{2}}(q F) e^{-2 q z_{\mathrm{p}}} \frac{d q}{q} \tag{S52}
\end{equation*}
$$

FIG. S2. Illustration of the algorithm for the recurrence relation of $H_{n, l}$.
has no simple analytic form even in the simplest case where the reflection coefficient $r_{\alpha}(q, \omega)$ does not depend on momentum q. Further, the summation

$$
\begin{equation*}
\sum_{l=1}^{\infty}\left(\Lambda^{m}-H\right)_{n l} A_{l}^{m}=b_{n}^{m} \tag{S53}
\end{equation*}
$$

runs through all $l \geq 1$ and one does not expect a closed form solution to the equation. In practice Eq. (S53) can be solved numerically by truncating the dimension of l at some large $N_{\text {max }}$ and evaluating each of the $N_{\text {max }}^{2}$ elements.

Fortunately, not all $N_{\text {max }}^{2}$ elements of $H_{n, l}$ needs to be evaluated explicitly by integration. First, since $H_{n, l}$ is symmetric one only needs to independently determine the upper triangular elements. Secondly, the four neighboring elements of element $H_{n, l}$ are related to one another via the relation:

$$
\begin{equation*}
\frac{H_{n+1, l}-H_{n-1, l}}{2 n+1}=\frac{H_{n, l+1}-H_{n, l-1}}{2 l+1} \tag{S54}
\end{equation*}
$$

This relation allows one to compute the remaining one of the four neighbors knowing any three. In

TABLE II. Parameters of the optical constant of α $\mathrm{Al}_{2} \mathrm{O}_{3}$. The frequency unit is $1 \mathrm{~cm}^{-1}$.

ρ	ϵ_{∞}	j	$\omega_{j \mathrm{LO}}$	$\gamma_{j \mathrm{LO}}$	$\omega_{j \mathrm{TO}}$	$\gamma_{j \text { TO }}$
o	3.05	1	908	22.4	569	7.86
		2	482	2.96	439	3.23
		3	387	5.18	384	6.03
e	2.9	1	885	21.6	582	4.17
		2	481	3.21	482	3.42
		3	511	1.42	400	4.68

fact, by repeated use of this relation all "interior" elements can be determined recursively from the values of the boundary terms as illustrated in Fig. S2, A similar construction was employed previously in Ref. 8. Further, as also shown in Fig. 52 the upper triangular elements separate into two classes depending on whether the sum $n+l$ is odd or even. Therefore, only $3\left(N_{\max }-1\right)$ terms need to be evaluated through integration, consisting of those of the main diagonal $H_{n, n}$, and the next upper diagonal $H_{n, n+1}$, and the last column $H_{n, N_{\max }}$.

VI. OPTICAL CONSTANT OF ALUMINUM OXIDE

The optical constant of $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ used in our calculations is given by

$$
\begin{equation*}
\epsilon_{\rho}(\omega)=\epsilon_{\infty, \rho} \prod_{j} \frac{\omega_{j \mathrm{LO}, \rho}^{2}-\omega^{2}-i \gamma_{j \mathrm{LO}, \rho} \omega}{\omega_{j \mathrm{TO}, \rho}^{2}-\omega^{2}-i \gamma_{j \mathrm{TO}, \rho} \omega} \tag{S55}
\end{equation*}
$$

where the parameters are cataloged in Table. II. They are adapted from Ref. 9 for temperature $T=$ 300 K .

[^0]
Computer code for "Generalized method of eigenoscillations for near-field optical microscopy"

B.-Y. Jiang, ${ }^{1}$ L. M. Zhang, ${ }^{1}$ A. H. Castro Neto, ${ }^{2,3}$ D. N. Basov, ${ }^{1}$ and M. M. Fogler ${ }^{1}$
${ }^{1)}$ Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
${ }^{2)}$ Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215
${ }^{3)}$ Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117542, Singapore

(Dated: 13 September 2015)

I. MATLAB CODE FOR THE SPHEROID MODEL

A. Introduction

In this article we describe in detail the Matlab code used to compute the s-SNOM signal of a spheroidal probe over a sample occupying a half-space. We choose the case of a momentum independent reflection coefficient $\beta(\omega)$ to demonstrate the calculation of poles and residues for a given probe shape. With simple alterations the code can be used on samples with nonlocal reflection.

The outline of the code is as follows. First, the matrix equation

$$
\begin{equation*}
\sum_{l^{\prime}=1}^{N}\left(\Lambda^{m}-H\right)_{l l^{\prime}} A^{m}{ }_{l^{\prime}}=b^{m}{ }_{l} \tag{C1}
\end{equation*}
$$

is solved numerically to obtain the poles and residues for a range of tip-sample separation $z_{\text {tip }}$. Then, for given $\beta(\omega)$ the polarizability $\chi\left(\omega, z_{\text {tip }}\right)$ of the probe can be found through

$$
\begin{equation*}
\chi^{\nu}(\beta)=\sum_{k=0}^{N-1} \frac{R_{k}^{\nu}}{\beta_{k}^{\nu}-\beta}, \quad \nu=\perp \text { or } \| . \tag{C2}
\end{equation*}
$$

Next, $\chi\left(z_{\text {tip }}\right)$ is demodulated at each frequency ω to obtain the third harmonic $\chi_{3}\left(z_{0}, \omega\right)$ for a range of minimum approach distances z_{0}. The third harmonic is then multiplied by the far-field factor $\mathrm{FFF}=\left(1+r_{\mathrm{P}, \mathrm{FF}}\right)^{2}$ to obtain the scattering signal $s_{3}=\chi_{3} \cdot \mathrm{FFF}$, and compared to a reference material $\bar{s}_{3}=s_{3}^{\text {samp }} / s_{3}^{\text {ref }}$. We choose bulk $\mathrm{Al}_{2} \mathrm{O}_{3}$ as the sample and Si as the reference.

B. Defining the parameters

The code is written inside a function so that auxiliary functions can be defined in the same file.

0003 function Spheroid

First we set up the geometry of the problem, the input frequencies and the sample parameters. The geometry of the spheroid is defined by two parameters:
$0005 \mathrm{a}=1$; $\quad \%$ radius of curvature of the apex of the spheroid
$0006 \mathrm{~L}=25 * \mathrm{a}$; \quad \% long semi-axis of the spheroid

We use the radius of curvature a or a as the unit length. As long as β is momentumindependent the problem is scale invariant, so that a can be any number if all other lengths are adjusted accordingly. The value of the long semi-axis L is not strictly determined, but its physical value must be much smaller than the wavelength while maintaining an elongated shape.

The separation between the apex of the spheroid and the surface of the sample is $z_{\text {tip }}$, or ztip. We specify the minimum and maximum possible separation, and discretize the space in between such that the grid is more dense at small ztip. This is to account for the non-monotonicity of the approach curves at small ztip for highly resonant materials. The minimum distance cannot be 0 due to numerical difficulties at very small ztip.

```
0 0 0 8 ~ z m i n ~ = ~ 0 . 0 2 * a ; ~ \% ~ c o r r e s p o n d s ~ t o ~ 0 . 6 n m ~ f o r ~ a = 3 0 n m
0 0 0 9 ~ z m a x ~ = ~ 6 * a ; ~ \% ~ c o r r e s p o n d s ~ t o ~ 1 8 0 n m ~
0010 Nz = 200; % number of grid points for tip sample separation
0011 Nz1 = ceil((Nz-1)/2); % half of the points lie between ztip=0.02-0.5a
0012 ztip = [linspace((zmin)^(1/3),(0.5-0.5/Nz1)^(1/3),Nz1).^3,...
0 0 1 3
linspace(0.5, zmax, Nz-Nz1)];
```

The oscillation amplitude of the tip Δz or Dz is used for demodulation. Its value can change the resulting spectrum drastically for highly-resonant materials. Note that we must have $z \max \geq 2 \mathrm{Dz}$ so that the whole range of oscillation is covered.

```
0015 Dz = 5/3*a; % corresponds to 50 nm
```

We use cm^{-1} as the unit for ω or w , the frequency grid for the resulting s-SNOM specrum. For example $\mathrm{w}=1000 \mathrm{~cm}^{-1}$ corresponds to a wavelength of $\lambda=10 \mu \mathrm{~m}$.

```
0017 wmax = 900; % maximum frequency
0 0 1 8 ~ w m i n ~ = ~ 5 5 0 ; ~ \% ~ m i n i m u m ~ f r e q u e n c y ~
0 0 1 9 ~ d w ~ = ~ 1 ; ~ \% ~ d i f f e r e n c e ~ b e t w e e n ~ f r e q u e n c y ~ g r i d ~ p o i n t s ~
```

```
0020 Nw = (wmax-wmin)/dw+1; % number of frequency grid points
0 0 2 1 ~ w ~ = ~ ( w m i n : d w : w m a x ) ;
```

ϵ or eps_samp and eps_ref are the dielectric functions of the sample and the reference. $\epsilon_{\mathrm{Al}_{2} \mathrm{O}_{3}}$ is defined in a separate function eps_Al203, while ϵ_{Si} is taken to be frequency independent with a small imaginary part. The reflection coefficient $\beta(\omega)$ is given by $\beta=(\epsilon-1) /(\epsilon+1)$.

```
0023 eps_samp = eps_Al203(w); % Al203
0024 eps_ref = 11.7+0.1*1i; % Si
0025 beta_samp = (eps_samp-1)./(eps_samp+1);
0026 beta_ref = (eps_ref-1)./(eps_ref+1);
```


C. Computing $\chi\left(z_{\text {tip }}, \omega\right)$

Next we compute $\chi^{\text {samp }}(\omega)$ and $\chi^{\text {ref }}(\omega)$ from β_{k} and R_{k}, which are calculated for every $z_{\text {tip }}$ using the function PolesResidues defined later in the code. The poles and residues are independent of sample material and need to be calculated only once for each $z_{\text {tip }}$. This is reflected in the fact that PolesResidues takes only geometrical arguments.

The infinite-dimensional eigenproblem is truncated into N dimensions. For a highly resonant material like $\mathrm{Al}_{2} \mathrm{O}_{3}$ a large N is needed for convergence. Note that increasing N drastically increases computation time.

Progress is reported every 10 seconds with a timer.

```
0 0 2 8 ~ t \_ s t a r t ~ = ~ c l o c k ; ~ \% ~ r e c o r d ~ t i m e ~ a t ~ t h e ~ s t a r t ~ o f ~ c o m p u t a t i o n
0029 t_last = t_start; % record time at the finish of previous iteration
0 0 3 0 \text { report_int = 10; \% report progress if >10 seconds has passed}
0 0 3 1 ~ f p r i n t f ( 1 , ' \ t \% s : ~ S p h e r o i d ~ P o l a r i z a b i l i t y ~ s t a r t e d \ n ' , d a t e s t r ( c l o c k ) ) ;
0032
0033
0034 N=200; % dimension of eigenproblem
0035
```

```
0036 betak = zeros(N,Nz); % array storing poles
0037 Rk = zeros(N,Nz); % array storing residues
0038 chi_samp = zeros(Nz,Nw); % array storing tip polarization with sample
0 0 3 9 \text { chi_ref = zeros(Nz,1); \% array storing tip polarization with reference}
0 0 4 0 ~ \% ~ S i ~ i s ~ f r e q u e n c y ~ i n d e p e n d e n t , ~ s o ~ N w = 1 ~ f o r ~ S i
0041
0 0 4 2 ~ f o r ~ h ~ = ~ 1 ~ : ~ N z ~ \% ~ f o r ~ l o o p ~ o v e r ~ a l l ~ z t i p
0043 [betak_ Rk_] = PolesResidues(ztip(h), a, L, N);
0 0 4 4 ~ \% ~ c a l c u l a t i n g ~ p o l e s ~ a n d ~ r e s i d u e s ~
0045 betak(:,h) = betak_;
0046 Rk(:,h) = Rk_;
0047
0048 for k = 1 : N % for loop over all poles and residues
0049 chi_samp(h,:) = chi_samp(h,:)+Rk(k,h)./(betak(k,h)-beta_samp);
0 0 5 0
0051
0052 end
0053
0054 t_cur = clock; % report time used if >10s elapsed since last report
0055 d_time = etime(t_cur, t_last);
0056 if(d_time > report_int)
0057
    d_time2 = etime(t_cur, t_start); % report time elapsed since start
    t_last = t_cur; % reset the time of last report
    fprintf(1, '%.1fs:%.Of / %.Of\n', d_time2, h, Nz);
0060 end
0061 end
```


D. Demodulating for $\chi_{3}\left(z_{0}, \omega\right)$

Now we find the third harmonic χ_{3} from χ through demodulation. The function Demodulation takes the computed χ, chi_samp and chi_ref, the oscillation amplitude Δz or Dz , and the harmonic order $\mathrm{Nh}=3$ as arguments and returns χ_{3} for each material. χ_{3} is a function of z_{0}, the minimum separation between the tip apex and the sample during probe oscillation. We use part of the $z_{\text {tip }}$ grid for z_{0}, with the constraint $\max \left(z_{0}\right)=\max \left(z_{\text {tip }}\right)-2 \Delta z$ to prevent going beyond the available range in $z_{\text {tip }}$ of χ.

```
0 0 6 3 ~ t \_ p = e t i m e ( c l o c k , t \_ s t a r t ) ; \% ~ r e p o r t ~ t o t a l ~ c o m p u t i n g ~ t i m e ~ f o r ~ t i p ~ p o l a r i z a t i o n ~
0064 fprintf(1,'\n\tPolarization calculation complete in %.1f s',t_p);
0065
0 0 6 6 ~ t \_ s t a r t 2 ~ = ~ c l o c k ; ~ \% ~ r e c o r d ~ s t a r t ~ t i m e ~ f o r ~ d e m o d u l a t i o n ~
0067
0 0 6 8 ~ N h ~ = ~ 3 ; ~ \% ~ h a r m o n i c ~ o r d e r ~
```

0069
0070 chi3_samp $=$ Demodulation(chi_samp, Dz,Nh,ztip);
0071 chi3_ref = Demodulation(chi_ref,Dz,Nh,ztip);
0072
0073 t_d=etime(clock,t_start2); \% report total computing time for demodulation 0074 fprintf(1, $\backslash \mathrm{n} \backslash \mathrm{t}$ Demodulation complete in \%.1f $\mathrm{s} \backslash \mathrm{n} \backslash \mathrm{n}$ ', t_d);

E. Determining $s_{3}(\omega)$

To find $s_{3}\left(z_{0}, \omega\right)$, we multiply χ_{3} by the far-field factor $(\operatorname{FFF}), \operatorname{FFF}(\omega)=\left(1+r_{\mathrm{P}, \mathrm{FF}}\right)^{2}$ where

$$
\begin{equation*}
r_{\mathrm{P}, \mathrm{FF}}=\frac{\epsilon_{1} \cos \theta-\epsilon_{0} \sqrt{\epsilon_{1} / \epsilon_{0}-\sin ^{2} \theta}}{\epsilon_{1} \cos \theta+\epsilon_{0} \sqrt{\epsilon_{1} / \epsilon_{0}-\sin ^{2} \theta}} \tag{C3}
\end{equation*}
$$

with an incident angle $\theta=\pi / 4 . \epsilon_{0}(\omega)$ is the dielectric function of the upper half-space (air, $\epsilon_{0}=1$) while $\epsilon_{1}(\omega)$ is that of the lower half-space (sample).

0076 rPFF_samp $=\left(2^{\wedge}-0.5 * e p s _\right.$samp-(eps_samp-0.5).^0.5)./ ...

```
0078 FFF_samp = (1+rPFF_samp). ^2;
```

0079
0080 rPFF_ref $=\left(2^{\wedge}-0.5 * e p s _r e f-\left(e p s _r e f-0.5\right) .^{\wedge} 0.5\right) . / \ldots$

```
0082 FFF_ref = (1+rPFF_ref). `2;
```

0083

```
0084 s3_samp = chi3_samp.*(ones(NO,1)*FFF_samp); % NO is the size of zO
```

0085 s3_ref $=$ chi3_ref.*(ones(N0,1)*FFF_ref);

Due to the non-monotonicity of the s_{3} approach curves for highly resonant materials, there are ambiguities in how the s_{3} spectrum should be taken. Here we use two different protocols. For the first protocol $s_{3}(\omega)$ is taken at a fixed z_{0} for all frequencies; For the second we take the maximum of each approach curve as the data point. For the first protocol we choose $z_{0}=0.02 a=0.6 \mathrm{~nm}$.

```
0087 s3_samp_fixed = s3_samp(1,:);
0 0 8 8 ~ s 3 \_ r e f ~ f i x e d ~ = ~ s 3 \_ r e f ( 1 , : ) ;
0 0 8 9 ~ s 3 \_ f i x e d ~ = ~ s 3 \_ s a m p \_ f i x e d . / s 3 \_ r e f \_ f i x e d ; ~ \% ~ s 3 ~ s p e c t r u m ~ u s i n g ~ p r o t o c o l ~ 1 ~
0 0 9 0
0091 s3_samp_max = max(s3_samp);
0092 s3_ref_max = max(s3_ref);
0 0 9 3 ~ s 3 \_ m a x ~ = ~ s 3 \& s a m p \_ m a x . / s 3 \_ r e f ~ m a x ; ~ \% ~ s 3 ~ s p e c t r u m ~ u s i n g ~ p r o t o c o l ~ 2 ~
```

The final result is the relative s_{3} spectrum $\bar{s}_{3}(\omega)=s_{3}^{\text {samp }} / s_{3}^{\text {ref }}$.

F. Results

We plot the $\left|\bar{s}_{3}\right|$ spectra from the two protocols, as well as $\beta_{k}\left(z_{\mathrm{tip}}\right)$ and $R_{k}\left(z_{\mathrm{tip}}\right)$.

```
G. |}\mp@subsup{\overline{s}}{3}{}|\mathrm{ spectra
0 0 9 5 ~ f i g u r e ( 1 ) ; ~ c l f ;
```

```
0096
0097 set(gcf,'position',[300 300 700 500])
0098 axes('Position', [0.2 0.2 0.75 0.70]);
0099
0 1 0 0 ~ h o l d ~ o n
0101
0 1 0 2 ~ h p ~ = ~ p l o t ( w , ~ a b s ( s 3 - f i x e d ) ) ; ~ \% ~ p r o t o c o l ~ 1 ~
0 1 0 3 ~ s e t ( h p , ~ ' L i n e w i d t h ' , ~ 2 , ~ ' C o l o r ' , ~ ' b ' ) ;
0 1 0 4
0 1 0 5 ~ h p ~ = ~ p l o t ( w , ~ a b s ( s 3 m m a x ) ) ; ~ \% ~ p r o t o c o l ~ 2 ~
0 1 0 6 ~ s e t ( h p , ~ ' L i n e w i d t h ' , ~ 2 , ~ ' C o l o r ' , ~ ' r ' ) ;
0107
0 1 0 8 ~ h o l d ~ o f f
0109
0 1 1 0 \text { axis square}
0 1 1 1
0112 hleg = legend('fixed $z_0$','maximum');
0113 set(hleg,'interpreter','Latex','Fontsize',18,'location','southeast');
0 1 1 4
0115 ylabel('$|\bar{s}^{\perp}_3|$','Interpreter','Latex','Fontsize',18);
0116 xlabel('$\omega\,\mathrm{(cm^{-1})}$','Interpreter','LaTeX','Fontsize',18);
0 1 1 7
0118 set(gca,'Fontsize',18,'box','on','xminortick','on','yminortick','on',...
0119 'TickLength', [0.03 0.05],'xlim',[550 900]);
H. }\mp@subsup{\beta}{k}{}(\alpha),\alpha=\mp@subsup{\operatorname{cosh}}{}{-1}(\mp@subsup{z}{\mathrm{ tip }}{}/a+1
0121 figure(2); clf;
0 1 2 2
0123 set(gcf,'position',[300 300 700 500])
```


0124 axes('Position', [0.2 0.20 .75 0.70]);
0125
$0126 \mathrm{hp}=\operatorname{plot}(\operatorname{acosh}(z t i p / a+1), \operatorname{betak}(1: 4,:))$; $\%$ plotting the first 4 poles
0127 set(hp, 'Linewidth', 2);
0128
0129 axis square
0130

0132 set(hleg,'interpreter','latex','Fontsize',18,'location','northwest');
0133
0134 ylabel('\$ ${ }^{\text {beta_k\$', 'Interpreter', 'Latex', 'Fontsize', 18); }}$
0135 xlabel('\$ 2 alpha\$', 'Interpreter', 'LaTeX', 'Fontsize', 18);
0136
0137 set (gca, 'XTick', 0:0.5:3)
0138 set(gca, 'YTick', 10. ($0: 5$))
0139
0140 set (gca, 'Fontsize', 18, 'box', 'on', 'xminortick','on', 'yminortick', 'on', ...
0141 'TickLength', [0.03 0.05],'xlim', [acosh(0.02+1) acosh(6+1)],'yscale', 'log');
I. $\quad R_{k}\left(z_{\text {tip }}\right)$

```
0144 figure(3); clf;
```

0145
0146 set(gcf,'position', [300 300700 500])
0147 axes('Position', [0.2 0.2 0.75 0.70]);
0148
$0149 \mathrm{hp}=$ plot (ztip/a, $\operatorname{Rk}(1: 4,:))$; $\%$ plotting the first 4 residues
0150 set(hp, 'Linewidth', 2);
0151
0152 axis square
0153
$0154 \mathrm{hleg}=$ legend('\$k=0\$', '\$k=1\$', '\$k=2\$', '\$k=3\$');
0155 set(hleg,'interpreter','latex','Fontsize',18,'location','northwest');
0156
0157 ylabel('\$R_k\$', 'Interpreter', 'Latex', 'Fontsize', 18);
0158 xlabel('\$z_\mathrm\{tip\}\$','Interpreter','LaTeX','Fontsize', 18);
0159
$0160 \operatorname{set}($ gca, 'XTick', 10.^(-2:2))
0161 set (gca, 'YTick',10.^(1:6))
0162
0163 set(gca,'Fontsize',18,'box','on','xminortick','on','yminortick','on',...
0164 'TickLength',[0.03 0.05],'xlim',[0.02 6],'xscale','log','yscale','log');

The results of the computation is saved into a .mat file.

0166 save sphd_perp_L25_Dz5over3_N200_Al203_Si.mat ...
0167 w ztip betak Rk chi_samp chi_ref s3_samp s3_ref s3_fixed s3_max;

J. Auxiliary function: eps_Al2O3

This function calculates the dielectric constant of $\mathrm{Al}_{2} \mathrm{O}_{3}, \epsilon_{\mathrm{eff}}=\sqrt{\epsilon_{o} \epsilon_{e}}$, where o and e stand for the ordinary and extraordinary axis, respectively.

```
0169 function res = eps_Al203(w)
0170 res1 = 2.9.*(511.05^2-x.^2-1i*1.42*x)./(399.68^2-x.^2-1i*4.68*x) . . 
0171 .*(480.93^2-x.^2-1i*3.21*x)./(481.58^2-x.^2-1i*3.42*x)...
0172 .*(884.75^2-x.^2-1i*21.57*x)./(582^2-x.^2-1i*4.17*x);
```

0173
0174
0175
0176
0177

```
    res2 = 3.05.*(387.46^2-x.^2-1i*5.18*x)./(384.02^2-x.^2-1i*6.03*x) ...
    .*(481.96^2-x.^2-1i*2.96*x)./(439.22^2-x.^2-1i*3.23*x)...
    .*(908.23^2-x.^2-1i*22.37*x)./(569.35^2-x.^2-1i*7.86*x);
    res = sqrt(res1).*sqrt(res2);
    idx = find(imag(res) < 0); % taking the correct root of the square root
```

```
0178 res(idx) = -res(idx);
```

0179 end

K. Auxiliary function: PolesResidues

To find the poles and residues we need to solve the eigenproblem $\left(\Lambda-\beta_{k} H\right) u_{k}=0$. Below we construct Λ and H using formulas derived in the text, and compute the poles β_{k} and residues R_{k}.

```
0180 function [betak Rk] = PolesResidues(ztip, a, L, N)
```


L. Λ

We begin by constructing Λ. For field in the perpendicular direction, it is composed of Legendre functions $P_{n}(\xi)$ and $Q_{n}(\xi)$ defined on the range $\xi>1$,

$$
\begin{equation*}
\Lambda_{n n \prime}=\frac{4}{2 n+1} \frac{Q_{n}\left(\xi_{0}\right)}{P_{n}\left(\xi_{0}\right)} \delta_{n n \prime} \tag{C4}
\end{equation*}
$$

The argument ξ is the inverse eccentricity of the ellipse that forms the spheroid, $\xi=\xi_{0}=$ L / F, where F is the focal length of the spheroid.

```
0182 W = sqrt(a * L); % short semi-axis
0183 F = sqrt(L`2 - W^2); % focal length
0184 xi0 = L / F; % inverse eccentricity
```

To generate $P_{n}(\xi)$ for all n 's, we use forward recursion of the ratios $p_{n} \equiv P_{n} / P_{n+1}$, starting from $n=0$ and $p_{0}=1 / \xi_{0}$.

```
0186 p = zeros(1, N - 1); % array storing the ratios p
0187 p(1) = 2 / (3 * xi0 - 1 / xi0); % the n = 1 term
0 1 8 8
0189 for n = 2: N - 1
0190 p (n) = (n + 1) / ((2* n + 1) * xi0 - n * p(n - 1));
0 1 9 1 ~ \% ~ t h e ~ r e c u r s i o n ~ r e l a t i o n ~ f o r ~ p ~
0 1 9 2 ~ e n d
```

$Q_{n}(\xi)$ are generated by backward recursion of the ratios $q_{n} \equiv Q_{n+1} / Q_{n}$, starting from some large $n=\mathrm{N}+$ nmax where $q_{n} \sim q_{\infty}=1 /\left(\xi+\sqrt{\xi^{2}-1}\right)$ and use $Q_{1}=\frac{1}{2} \xi_{0} \log \frac{\xi_{0}+1}{\xi_{0}-1}-1$ when $n=1$ is reached.

```
0194 qinf = 1/(xi0 + sqrt(xi0^2 - 1)); % asympototic limit at large n
0195 nmax = -N / (0.01 + log(qinf)); % some large n > N
0196 tmp = qinf; % approximate q at large n by qinf
0197
0198 for n = N + nmax - 1: -1: N - 1
0199 tmp = (n + 1) / ((2 * n + 3) * xi0 - (n + 2) * tmp);
0200 % transient values of q from n = N+n_max to
0201 % n = N-1 using the recursion relation for q
0202 end
0203
0204 q = zeros(1, N-1); % array storing the ratios q
0205 q(N-1) = tmp;
0206
0207 for n = N - 2: -1: 1
0208
0209
    % useful values of q
0210 end
```

In terms of q_{n} and $p_{n}, \Lambda_{n}=\frac{4}{2 n+1} \frac{Q_{1}}{P_{1}} \prod_{k=1}^{n-1} q_{k} p_{k}$.

```
0212 Q1_P1 = 0.5 * log((xi0 + 1) / (xi0 - 1)) - 1 / xi0; % Q1/P1
```

0213 Lambda $=4$./ (3: 2: 2 * $\mathrm{N}+1$).*cumprod([Q1_P1, q .* p]);

M. H

Next we construct the matrix H. The elements of H are given by

$$
\begin{equation*}
H_{n n \prime} \equiv 2 \pi \int_{0}^{\infty} I_{n \prime+\frac{1}{2}}(q F) I_{n+\frac{1}{2}}(q F) e^{-2 q\left(z_{\text {tip }}+L\right)} \frac{d q}{q} \tag{C5}
\end{equation*}
$$

This integral is done using the function H_quad for given $\left(n, n^{\prime}\right)$.
The elements of H also have recursion relations among themselves,

$$
\begin{equation*}
\frac{H_{n+1, l}-H_{n-1, l}}{2 n+1}=\frac{H_{n, l+1}-H_{n, l-1}}{2 l+1} . \tag{C6}
\end{equation*}
$$

This allows quick computation of the fourth element knowing the other three. Therefore we only compute diagonal elements, next to diagonal elements, and the N-th column by integration, then find the rest by recursion.

```
0215 H = zeros(N, N); % array storing elements of H
0216
0217 for n = 1: N
0218 H(n, n) = H_quad(n, n); % diagonal elements
0 2 1 9 \text { end}
0220 for n = 1: N-1
0221 H(n, n + 1) = H_quad(n, n + 1); % next to diagonal elements
0222 end
0223 for n = 1: N-2
0224 H(n, N) = H_quad(n, N); % N-th column
0225 end
0226
0227 for g = N-2: -1: 2
0228 for l = 1: g-1
0229 n = g-l+1;
0230 n2 = N-l;
0231 H(n-1, n2) = H(n + 1, n2) - (2 * n + 1) / (2 * n2 + 1)...
0232
0233
0234 end
0235 end
```

The elements of Λ and H span across a large numerical range. To increase the accuracy of the eigenvalues and eigenvectors, we rescale the matrices such that the first matrix becomes
identity, $\left(\Lambda^{-1 / 2} \Lambda-\beta_{k} \Lambda^{-1 / 2} H\right)\left(\Lambda^{-1 / 2} v_{k}\right) \equiv\left(I-\beta_{k} H^{\prime}\right) v_{k}$, where $v_{k} \equiv \Lambda^{1 / 2} u_{k}$, using the fact that Λ is diagonal and positive definite.

```
0237 irtLambda = 1 ./ sqrt(Lambda); % square root of inverse Lambda
0238
0239 for n = 1: N
0240 for l = n: N

\section*{N. Solving the eigenproblem}

Now we compute the eigenvalues \(\beta_{k}\) and the eigenvectors \(v_{k}\). The residues are related to \(v_{k}\) by \(R_{k}=\frac{4}{9} \frac{F^{3}}{\Lambda_{1} M_{k k}}\left|v_{k, 1}\right|^{2}\), where \(M \equiv V^{\dagger} H^{\prime} V, V\) is composed of columns \(v_{k}\), and \(v_{k, 1}\) is the first element of the \(k\)-th column of \(V\).
```

0248 [V, betak] = eig(eye(N), H); % solve the eigenproblem
0249
0250 betak=diag(betak); % turn diagonal matrix into a column

```
0251
\(0252 \mathrm{M}=\left(\mathrm{V}^{\prime} * \mathrm{H} * \mathrm{~V}\right)\);
0253
\(0254 \mathrm{Rk}=4 / 9 * \mathrm{~F}^{\wedge} 3 / \operatorname{Lambda}(1) * \operatorname{abs}\left(\mathrm{~V}(1,:)^{\prime}\right) .{ }^{\wedge} 2 . / \operatorname{diag}(\mathrm{M})\);
0255
0256 [~, index] = sort(1./betak,'descend');
0257
    \% sort the k's so that smaller eigenvalue comes first
0258
```

0259 betak=betak(index);
0260 Rk=Rk(index);

```

\section*{O. H_quad}

This function computes the integral for the element of \(H\). We use the change of variable \(x=q F\).

0262 function H_nl = H_quad (n, l)
\(0263 \mathrm{nn}=\mathrm{n}+0.5\);
\(026411=1+0.5\);
0265
\(0266 \mathrm{zF}=\mathrm{xiO}+\mathrm{ztip} / \mathrm{F} ; \quad \%\) this is (ztip+L)/F
0267
0268 H_nl = quadgk(@(x)intH(x, nn, ll), 0, inf);
0269 \% the integrand is defined below
0270 function res \(=\operatorname{intH}(x, n n, 1 l)\)
\(0271 \mathrm{~B}=\) besseli(nn, \(\mathrm{x}, 1) . *\) besseli(ll, \(\mathrm{x}, 1)\);
0272 res \(=2 * \mathrm{pi} . * \exp (-2 *(\mathrm{zF}-1) * \mathrm{x}) . /(\mathrm{x}+\mathrm{eps}) . * \mathrm{~B}\);
0273 \% the additional exp(2x) comes from besseli
0274 end
0275 end
\% end of H_quad
0276 end
\% end of PolesResidues

\section*{P. Auxiliary function: Demodulation}

The \(n\)-th harmonic \(\left(\chi_{n}\right)\) of \(\chi\) is given by
\[
\begin{equation*}
\chi_{n}=\frac{1}{T} \int_{0}^{T} \chi\left(z_{\mathrm{tip}}(t), \omega\right) e^{i n \Omega t} d t, \quad T=\frac{2 \pi}{\Omega}, \tag{C7}
\end{equation*}
\]
where \(z_{\text {tip }}(t)=z_{0}+\Delta z(1-\cos \Omega t)\). Demodulation takes \(\chi\left(z_{\text {tip }}, \omega\right)\), approximate the \(\chi\) approach curve at each frequency by a smooth curve, and do the integral. We use a change
of variable \(x=\Omega t\), so the range of integration is \(x=0\) to \(2 \pi\). Noting that \(\chi(x, \omega)\) is an even function of \(x\), we integrate with \(\cos n x\) instead of \(e^{i n x}\) over the range \(x=0\) to \(\pi\). The output chiNh is the Nh-th order harmonic \(\chi_{n}\left(z_{0}, \omega\right)\).
```

0 2 7 8 function chiNh=Demodulation(chi,Dz,Nh,ztip)

```

0279
```

0280 Nchi = size(chi); % Nchi = (Nz, Nw)

```
\(0281 \mathrm{Nw}_{-}=\operatorname{Nchi}(2) ; \quad \% N w_{-}=N w\), size of frequency grid
0282
0283 NO \(=\) find (ztip +2 * Dz <= ztip(end), 1, 'last');
0284 \% find the largest ztip satisfying constraint
0285 z0 \(=\) ztip(1: NO); \(\quad \%\) use these valid ztip's as z0
0286
0287 chiNh \(=\) zeros(NO,Nw_); \% array storing the computed n-th harmonic
0288
0289 for i = 1 : Nw_
0290 chi_spline = spline(ztip, chi(:,i));
0291 \% approximate chi by a smooth curve using spline
0292 for \(j=1:\) NO
\(0293 \quad \operatorname{chiNh}(j, i)=q u a d g k(@ i n t C h i N h, 0, p i) / p i ;\)
0294
0295 end
0296 end
0297
0298 function res \(=\) intChiNh (x)

0299
0300
0301 end
0302 end \% end of Demodulation
0303 end \% end of Spheroid```


[^0]:    ${ }^{1}$ I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed., edited by A. Jeffrey and D. Zwillinger (Academic, San Diego, 2000).
    ${ }^{2}$ P. M. Morse and H. Feshbach, Methods Of Theoretical Physics (Feshbach Publishing, Minneapolis, 1981).
    ${ }^{3}$ E. W. Hobson, "The Addition Theorems for General Legendre Functions," Proc. London Math. Soc. s2-29, 355-381 (1929)
    ${ }^{4}$ J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, "Sub-diffractional volumeconfined polaritons in the natural hyperbolic material hexagonal boron nitride." Nat. Comm. 5, 5221 (2014)
    ${ }^{5}$ Z. Sun, A. Gutiérrez-Rubio, D. N. Basov, and M. M. Fogler, "Hamiltonian optics of hyperbolic polaritons in nanogranules," Nano Letters 15, 4455-4460 (2015)
    ${ }^{6}$ C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2004).
    ${ }^{7}$ G. Ford and W. Weber, "Electromagnetic interactions of molecules with metal surfaces," Physics Reports 113, 195 - 287 (1984)
    ${ }^{8}$ P. Bobbert and J. Vlieger, "The polarizability of a spheroidal particle on a substrate," Physica A 147, 115 - 141 (1987)
    ${ }^{9}$ Zeidler, S., Posch, Th., and Mutschke, H., "Optical constants of refractory oxides at high temperatures," Astron. Astrophys. 553, A81 (2013)

