
Pacific
Journal of
Mathematics

GENERALIZED SPLINES ON ARBITRARY GRAPHS

SIMCHA GILBERT, JULIANNA TYMOCZKO AND SHIRA VIEL

Volume 281 No. 2 April 2016



PACIFIC JOURNAL OF MATHEMATICS
Vol. 281, No. 2, 2016

dx.doi.org/10.2140/pjm.2016.281.333

GENERALIZED SPLINES ON ARBITRARY GRAPHS

SIMCHA GILBERT, JULIANNA TYMOCZKO AND SHIRA VIEL

Let G be a graph whose edges are labeled by ideals of a commutative ring.
We introduce a generalized spline, which is a vertex labeling of G by el-
ements of the ring so that the difference between the labels of any two
adjacent vertices lies in the corresponding edge ideal. Generalized splines
arise naturally in combinatorics (algebraic splines of Billera and others) and
in algebraic topology (certain equivariant cohomology rings, described by
Goresky, Kottwitz, and MacPherson, among others). The central question
of this paper asks when an arbitrary edge-labeled graph has nontrivial gen-
eralized splines. The answer is “always”, and we prove the stronger result
that the module of generalized splines contains a free submodule whose
rank is the number of vertices in G. We describe the module of generalized
splines when G is a tree, and give several ways to describe the ring of gener-
alized splines as an intersection of generalized splines for simpler subgraphs
of G. We also present a new tool which we call the GKM matrix, an analogue
of the incidence matrix of a graph, and end with open questions.

1. Introduction

The goal of this paper is to generalize and extend combinatorial constructions
that have become increasingly important in many areas of algebraic geometry and
topology, as well as to establish a firm combinatorial footing for these constructions.
Given a commutative ring R with identity, an arbitrary graph G= (V, E), and a func-
tion α : E→{ideals I ⊆ R}, we will define a ring of generalized splines. This paper

(1) proves foundational results about generalized splines;

(2) completely analyzes the ring of generalized splines for trees and shows families
of generalized splines for arbitrary cycles;
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Figure 1. Example of a generalized spline on K4.
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(a) Spline on subgraph (P4, α|P4). (b) Spline on subgraph (C4, α|C4).

Figure 2. Nonexamples of generalized splines on K4.

(3) produces an R-submodule within the ring of generalized splines that has
rank |V |, as long as R is an integral domain; and

(4) shows that the study of generalized splines for arbitrary graphs can be reduced
to the case of different subgraphs, especially cycles or trees.

Generalized splines as we define them are a subring of a product of copies of R:

Definition 1.1. The ring of generalized splines RG of the pair (G, α) is defined by

RG = { p ∈ R|V | : for each edge e = uv, the difference pu − pv ∈ α(e)}.

Figures 1 and 2 display examples and nonexamples of elements of RK4 in the
case when each ideal α(e) is generated by a single ring element (given inside 〈 · 〉).
The vertices are labeled with elements of RK4 and the collection of vertex labels in
Figure 1 is a generalized spline. Note that Figures 2(a) and 2(b) are not generalized
splines on K4 but are generalized splines on the subgraphs in bold. These examples
hold for any ring R and any choice of elements α1, α2, . . . , α6 ∈ R to generate the
ideals α(e).
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The name generalized spline comes from one of the important constructions that
we extend. Historically, engineers modeled complicated objects like ships or cars
by identifying important points of the vehicle and then attaching thin strips of wood
(called splines) at those points to approximate the entire hull.

Mathematically, a spline is a collection of polynomials on the faces of a polyhedral
complex that agree (modulo a power of a linear form) on the intersections of two
faces. We refer to this classical tradition as the analytic approach to splines; it
studies the vector space Cr

k (D), where D is a simplicial complex, r is the order of
smoothness to which the polynomials agree over faces, and k is the maximal degree
of a polynomial supported on a maximal face. Splines are used in approximation
theory and numerical analysis, with applications in data interpolation, to create
smooth curves in computer graphics, to find numerical solutions to partial differential
equations, and for other applications [Bartels 1984; Chui and Lai 1985; 1990].

In the analytic tradition, mathematicians seek individual splines satisfying par-
ticular properties as well as characterizations of the space of splines associated
to a given object — for instance, the dimension [Alfeld 1986; 1987; Alfeld and
Schumaker 1987; 1990; Chui and He 1989; Gmelig Meyling and Pfluger 1985;
Schumaker 1979; 1984a; 1984b] or basis [Alfeld et al. 1987a; 1987b; Morgan and
Scott 1975; Schumaker 1988] for a space of splines. Alfeld and Schumaker’s work
is both representative and epitomic: a seminal result of theirs proved a bound on the
dimension of Cr

k (D) when D is a planar simplicial complex and k ≥ 3r+1 [1987].
Billera [1988] pioneered the study of what some call algebraic splines, introduc-

ing methods from homological and commutative algebra to prove a conjecture of
Strang on the dimension of C1

k (D) when D is a generic planar simplicial complex.
In the abstract algebraic setting, mathematicians generalize the class of geometric
objects associated to splines (e.g., Schumaker [1984b], Billera and Rose [1991],
and McDonald and Schenck [2009] study piecewise polynomials on a polyhedral
complex rather than just a simplicial complex) and study algebraic invariants of
modules other than dimension or bases (e.g., the more fundamental question of
freeness [Haas 1991; Billera and Rose 1992; Yuzvinsky 1992; Dalbec and Schenck
2001; DiPasquale 2012], or more algebraically involved questions like computing
coefficients of the Hilbert polynomial [Billera and Rose 1991; Schenck and Stillman
1997; Schenck 1997; McDonald 2007; McDonald and Schenck 2009], identifying
the syzygy module of the span of the edge ideals [Schumaker 1979; Rose 1995;
2004], or analyzing algebraic varieties associated to the piecewise polynomials
[Wang 2000; Zhu and Wang 2005; 2011]). Billera and Rose [1991] introduced a
description of splines in terms of the dual graph of the polyhedral complex that is
equivalent to the piecewise-polynomial definition for so-called hereditary complexes.
Many others used Billera and Rose’s approach in later research [McDonald and
Schenck 2009; Rose 1995; 2004], and it is our starting point.
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In what we might call the topological approach to splines, geometers and topolo-
gists recently and independently rediscovered splines as equivariant cohomology
rings of toric and other algebraic varieties (though they rarely use the name “splines”)
[Brion 1996; Payne 2006; Bahri et al. 2009; Schenck 2012]. Goresky, Kottwitz, and
MacPherson developed a combinatorial construction of equivariant cohomology
called GKM theory [Goresky et al. 1998], which can be used for any algebraic
variety X with an appropriate torus action. Unknowingly, they described precisely
the dual-graph construction of splines: GKM theory builds a graph G X whose
vertices are the T -fixed points of X and whose edges are the one-dimensional orbits
of X . Each edge of this graph is associated to a principle ideal 〈αe〉 in a polynomial
ring, coming from the weight αe of the torus action on the one-dimensional torus
orbits in X . The GKM ring associated to the pair (G X , α) agrees with what we
call the ring of generalized splines for (G X , α). The main theorem of GKM theory
asserts that under appropriate conditions, this GKM ring is in fact isomorphic to
the equivariant cohomology ring H∗T (X;C). (Their work relies on earlier work of
many others, including a much more general result of Chang and Skjelbred [1974]
that points to one way to extend this work topologically to cases in which the ideals
〈αe〉 are no longer principal.) We omit details of the topological background here
because there are several excellent surveys [Knutson and Tao 2003; Tymoczko
2005; Holm 2008]. However, GKM theory is a powerful tool in Schubert calculus
[Goldin and Tolman 2009; Knutson and Tao 2003], symplectic geometry [Goldin
and Tolman 2009; Guillemin et al. 2006; Harada et al. 2005], representation theory
[Fiebig 2011], and other fields. (In some of these applications, the ring structure of
splines is more important than the module structure.)

We note that the most powerful results in each of these approaches are not
replicable using other approaches. For instance, Mourrain and Villamizar [2013]
recently used the algebraic approach to try to re-prove Alfeld and Schumaker’s
results, but could not attain their bound.

Our definition of generalized splines allows us to do several things that weren’t
possible from the algebraic or geometric perspectives:

• We give a lower bound for one of the central questions of classical splines.
Corollary 5.2 proves that every collection of generalized splines over an integral
domain has a free submodule of rank |V |, producing a lower bound for the dimension
of the ring of splines RG whenever RG is a free module over R. This significantly
generalizes work of Guillemin and Zara in the GKM context [2003, Theorem 2.1].

• We streamline earlier combinatorial constructions of splines. Our construction
isolates and highlights the algebraic structures used in previous work on splines. In
our language, algebraic splines assume that the ideals α(e) are principal and that
the generators for the ideals α(e) satisfy some coprimality conditions. A classical
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condition like “piecewise polynomials meet with order r smoothness at an edge e”
corresponds to using the edge ideal α(e)r+1 instead of α(e).

From the geometric point of view, we owe much to a series of papers by Guillemin
and Zara [2001; 2003] whose goal is to construct geometric properties of GKM
manifolds from a strictly combinatorial viewpoint. Yet their combinatorial model
imposes more restrictions than the classical definition of splines — conditions that
are natural (and necessary!) for any geometric application.

• We expand the family of objects on which splines are defined to arbitrary
graphs. Our work shows that graphs that have no reasonable geometric interpretation
nonetheless are central to the analysis of splines. Theorem 6.1 decomposes the ring
of splines for a graph G in terms of the splines for subgraphs of G; Corollary 6.2
specializes Theorem 6.1 to spanning trees, whose splines are completely described
in Theorem 4.1; and Theorem 6.3 decomposes the ring of splines for G in terms of
a particular collection of subcycles and subtrees of G. Cycles play a similarly key
role in Rose’s description of the syzygies of spline ideals [1995; 2004] (see also
[Schumaker 1979]). Yet neither trees nor cycles are geometrically meaningful from
a GKM perspective. (See [Handschy et al. 2014] and [Bowden et al. 2015] for a
deeper investigation of generalized splines on cycles.)

• We expand the family of rings on which splines are defined. This gives a conve-
nient language to describe simultaneously the GKM constructions for equivariant
cohomology and equivariant K -theory. Moreover, generalized splines over integers
have interesting connections to elementary number theory [Handschy et al. 2014].

• We provide the natural language for further generalizations of splines. Our
construction of generalized splines extends even more: label each vertex of the
graph G by a (possibly distinct) R-module Mv and label each edge by a module Me

together with homomorphisms Mv→ Me for each vertex v incident to the edge e.
Geometrically, this corresponds to Braden and MacPherson’s construction of equi-
variant intersection homology [2001], also used by Fiebig in representation-theoretic
contexts [2011]. We discuss this and other open questions in Section 7.

The rest of this paper is structured as follows. Section 2 establishes essential
results for generalized splines that were first shown in special cases like equivariant
cohomology and algebraic splines. We highlight Theorem 2.12 and Corollary 2.13,
which generalize and strengthen Rose’s result [1995] that for certain polyhedral
complexes, the syzygies B of the spline ideal are a direct summand of the splines
RG ∼= R ⊕ B. Corollary 2.13 uses this in Rose’s special case to show that the
syzygies of the ideal generated by the image of α are isomorphic as a module to
the collection of generalized splines whose restriction to a particular fixed point is
zero. This relates the algebraically natural question of finding syzygies of splines
to the question of finding a particular, geometrically natural kind of basis for the
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module of splines. Section 3 describes a tool analogous to the incidence matrix
of a graph that we call a GKM matrix. Section 4 completely characterizes the
generalized splines for trees in terms of a minimal set of free generators for the
ring of generalized splines.

One of our central questions is, when does an edge-labeled graph have nontrivial
generalized splines? The answer (essentially always, as in Theorem 5.1) is actually
more refined. Corollary 5.2 explicitly constructs a free R-submodule of the gener-
alized splines on G of rank |V |. When R is an integral domain and the generalized
splines form a free R-module (as is the case for GKM theory), we conclude that
the rank of the R-module of generalized splines is at least |V |.

Section 5 uses analogues of a shelling order (in combinatorics) or a “flow-up
basis” (in geometry) to identify R-submodules of the generalized splines. Section 6
characterizes generalized splines differently: in terms of the intersections of the
generalized splines formed by various subgraphs. This allows us to reframe the defi-
nition of generalized splines as an intersection of very simple graphs (Theorem 6.1)
and to reduce the number of intersections needed by using certain spanning trees
(Corollary 6.2). Finally, Theorem 6.3 analyzes the GKM matrix directly to de-
compose the ring of generalized splines on G as an intersection of the generalized
splines for particular subcycles of G.

2. Definitions and foundational results

In this section, we formalize a collection of definitions which were stated implicitly
in the introduction. We then give foundational results describing the structure of
the ring of generalized splines, including key methods to construct the ring and to
build new generalized splines from existing ones.

We begin with a quick overview of our notational conventions.

• G: a graph, defined as a set of vertices V and edges E . Assumed throughout
to be finite with no multiple edges between vertices.

• R: a commutative ring with identity 1.

• I: the set of ideals in R.

• α: an edge-labeling function on G that assigns a nonzero element of I to each
edge in E . See Definition 2.1.

• (G, α): an edge-labeled graph.

• α(ei, j )= α(viv j )= Iei, j : the image of the edge ei, j = viv j under the map α.

• αi, j : an arbitrary element of the ideal α(ei, j ). When α(ei, j ) is principal, αi, j
often denotes the generator.

• RG : the ring of generalized splines on (G, α). See Definition 2.3.



GENERALIZED SPLINES ON ARBITRARY GRAPHS 339

• p: a generalized spline; p = ( pv1, pv2, . . . , pv|V |) denotes an element of⊕
v∈V R. See Definition 2.3.

• pv: the coordinate of p corresponding to vertex v ∈ V . An element of R.

• MG : the (possibly extended) GKM matrix for the graph G. See Definition 3.1.

The first definition describes the combinatorial setup of our work: a graph whose
edges are labeled by ideals in a ring R. The ring R is always assumed to be a
commutative ring with identity, though in later sections we occasionally add more
conditions.

Definition 2.1. Let G = (V, E) be a graph and let R be a commutative ring with
identity. An edge-labeling function is a map α : E→{ideals I ⊆ R} from the set of
edges of G to the set of nonzero ideals in R. An edge-labeled graph is a pair (G, α)
of a graph G together with an edge-labeling function of E . We often refer to the
set of ideals in R as I.

We now precisely define the compatibility condition that we use on the edges.

Definition 2.2. Let G= (V, α) be an edge-labeled graph. An element p∈
⊕

v∈V R
satisfies the GKM condition at an edge e = uv if pu − pv ∈ α(e).

In GKM theory and in the theory of algebraic splines, the ring R is a polynomial
ring in n variables. The ideal α(e) is the principal ideal generated by a linear form
in GKM theory, and by a power of a linear form in the theory of algebraic splines.

We build the ring of generalized splines by imposing the GKM condition at every
edge in the graph.

Definition 2.3. Let (G, α) be an edge-labeled graph. The ring of generalized
splines is

RG,α =

{
p ∈

⊕
v∈V

R such that p satisfies the GKM condition at each edge e ∈ E
}
.

Each element of RG,α is called a generalized spline. When there is no risk of
confusion, we write RG .

We first confirm that in fact RG is a ring.

Proposition 2.4. RG is a ring with unit 1 defined by 1v = 1 for each vertex v ∈ V .

Proof. By definition RG is a subset of the product ring
⊕

v∈V R so we need only
confirm that the identity is in RG and that RG is closed under addition and multipli-
cation. The operations are componentwise addition and multiplication since RG is
in
⊕

v∈V R. The identity in
⊕

v∈V R is the generalized spline 1 defined by 1v = 1
for each vertex v ∈ V . This satisfies the GKM condition at each edge because for
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Figure 3. New generalized splines from old.

every edge e = uv we have 1u − 1v = 0 and 0 is in each ideal α(e). The set RG

is closed under addition because if p, q ∈ RG then for each edge e = uv we have

( p+ q)u − ( p+ q)v = ( pu + qu)− ( pv + qv)= ( pu − pv)+ (qu − qv),

which is in α(e) by the GKM condition. Similarly, the set RG is closed under
multiplication because if p, q ∈ RG then for each edge e = uv we have

( pq)u − ( pq)v = ( puqu)− ( pvqv)

= ( puqu − pvqu)+ ( pvqu − pvqv)

= qu( pu − pv)+ pv(qu − qv),

which is in α(e) by the GKM condition. �

The generalized splines RG also form an R-module: multiplication by r corre-
sponds to scaling each polynomial in the spline p or equivalently to multiplication
by r1. Figure 3(b) demonstrates the R-module structure of RP4 : multiplying p by
an arbitrary element r ∈ R produces the spline r p = (r pv1, r pv2, r pv3) ∈ RP4 .

One major question we study is whether there are nontrivial generalized splines.

Definition 2.5. A nontrivial generalized spline is an element p ∈ RG that is not in
the principal ideal R1.

In other words, we ask whether the R-module RG contains at least two linearly
independent elements. We answer this question completely (and more strongly) in
Theorem 5.1 and Corollary 5.6: yes, except in the trivial cases when G consists of
a single point or R is zero.

If some edge labels were zero then the ring of splines could be trivial for trivial
algebraic reasons: for instance, if all edge labels of G are zero then the only elements
of RG are trivial splines. This is why α(e) is always nonzero in Definition 2.1.
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Definition 2.6. Let (G, α) and (G ′, α′) be edge-labeled graphs with respect to R.
A homomorphism of edge-labeled graphs φ : (G, α)→ (G ′, α′) is a graph homo-
morphism φ1 : G→ G ′ together with a ring automorphism φ2 : R→ R so that for
each edge e ∈ EG we have φ2(α(e))= α′(φ1(e)):

(1)

EG
φ1
−−−→ EG ′yα yα′

I
φ2
−−−→ I

An isomorphism of edge-labeled graphs is a homomorphism of edge-labeled graphs
whose underlying graph homomorphism is in fact an isomorphism.

We stress that the map φ2 is a ring automorphism. This ensures that φ2 induces
a map on the set of ideals φ2 : I→ I and that the diagram in (1) is well defined.
The content of the definition is that the diagram commutes.

Many interesting homomorphisms of edge-labeled graphs arise when φ2 : R→ R
is the identity homomorphism. Indeed, when R is the integers, this is essentially
the only case. However, some rings R have very interesting automorphisms: for
instance, when R is a polynomial on n variables, the symmetric group on n letters
acts on R by permuting variables. This induces an important action in equivariant
cohomology, which is substantively different from a closely related action induced
by the identity ring automorphism [Tymoczko 2008]. Our first proposition confirms
that the ring of generalized splines is invariant under edge-labeled isomorphisms.
More precisely, when two graphs are edge-labeled isomorphic, any generalized
spline for one graph will be a generalized spline for the other.

Proposition 2.7. If φ : (G, α)→ (G ′, α′) is an isomorphism of edge-labeled graphs
then φ induces an isomorphism of the corresponding rings of generalized splines
φ∗ : RG ∼= RG ′ according to the rule that φ∗( p)φ1(u) = φ2( pu) for each u ∈ VG .

Proof. By definition of generalized splines,

p ∈ RG ⇐⇒ pu − pv ∈ α(e) for each edge e = uv in EG .

The map φ2 : R→ R is an automorphism of rings, so the GKM conditions imply

(2) p ∈ RG ⇐⇒ φ2( pu)−φ2( pv) ∈ φ2(α(e)) for each edge e = uv in EG .

The map φ1 is an isomorphism between the underlying graphs G and G ′, so e
is an edge in G if and only if φ1(e) is an edge in G ′. Incorporating the fact that
α′(φ1(e))= φ2(α(e)) for each edge e ∈ EG , this means (2) is equivalent to

(3) φ2( pu)−φ2( pv) ∈ α′(φ1(e)) for each edge e′ = φ1(u)φ1(v) in EG ′ .
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We have that (3) is equivalent to φ∗( p)∈ RG ′ , so we conclude that p is a generalized
spline in RG if and only if φ∗( p) is in RG ′ . �

The next proposition verifies that a generalized spline for the pair (G, α) is a
generalized spline for every subgraph of G.

Proposition 2.8. Let (G, α) be an edge-labeled graph and G ′ = (V ′, E ′) a sub-
graph of G. Let (G ′, α|E ′) be the edge-labeled graph whose function α|E ′ denotes
the restriction of α to the edge set of G ′. If p is a generalized spline for (G, α) then
p|V ′ ∈

⊕
v∈V ′ R is a generalized spline for (G ′, α|E ′).

Proof. Let G ′ ⊆ G as in the hypothesis, let p be a generalized spline for (G, α),
and consider the subcollection p|V ′ obtained by restricting p to the vertex set
V ′ ⊆ V of G ′. For any edge uv in G ′ the corresponding edge uv is in E since
E ′⊆ E . This implies that pu− pv ∈ α(uv) by the GKM condition for (G, α). Since
the edge-labeling function for G ′ is the restriction α|E ′ to the edges in E ′ ⊆ E ,
we conclude that the GKM condition is satisfied at every edge of G ′. It follows
that p|V ′ is a generalized spline for (G ′, α|E ′). �

Example 2.9. Consider the generalized spline on the bold P4 in Figure 2(a) with
edges labeled as in Figure 1. Removing a leaf and its incident edge from P4 gives
the subgraph P3 in Figure 3(a). The generalized spline for P4 still satisfies the
GKM condition at every vertex on the subgraph. Thus p|P3 is a generalized spline
for P3.

The next proposition shows that the special case when one of the edges is
associated to the unit ideal α(e) = R is equivalent to a kind of restriction as in
Proposition 2.8. In this case, the edge e can be erased without affecting the ring of
generalized splines.

Proposition 2.10. Suppose that the edge-labeled graph (G, α) has an edge e with
α(e) = R. Let G ′ = (VG, E − {e}) be the graph G with edge e erased, and let
α′ : E −{e} → I be the restriction α′ = α|E−{e}. Then

RG = RG ′ .

Proof. Proposition 2.8 says that every generalized spline of G is a generalized
spline of G ′, since G ′ is a subgraph of G with the same vertex set whose labeling
agrees on shared edges. Hence RG ⊆ RG ′ . To prove the converse, suppose p is a
generalized spline for (G ′, α′). The GKM condition guarantees that pu− pv ∈α(uv)
for every edge uv ∈ E −{e}. In addition, if u0, v0 are the endpoints of the edge e,
then pu0 − pv0 ∈ R is vacuously true. Since α(e)= R we conclude that the GKM
condition is satisfied for the edge e as well. So p ∈ RG and RG ′ = RG . �

We may build generalized splines from disjoint unions of graphs by taking the
direct sum of the respective generalized splines.
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Proposition 2.11. If G = G1 ∪G2 is the union of two disjoint graphs then the ring
of splines is RG = RG1 ⊕ RG2 .

Proof. Rearranging the GKM conditions gives

RG=

{
p∈

⊕
v∈V

R such that p satisfies the GKM condition at each edge e∈ E(G)
}

=

{
p∈

⊕
v∈V (G1)

R such that pv − pu ∈ α(uv) for all uv ∈ E(G1)
}

⊕

{
p∈

⊕
v∈V (G2)

R such that pv − pu ∈ α(uv) for all uv ∈ E(G2)
}

= RG1 ⊕ RG2

because the vertex sets of G1 and G2 are disjoint. �

Another approach to constructing generalized splines is to build them one vertex
at a time. The next result decomposes the R-module of generalized splines into
a direct sum of the trivial generalized splines and the generalized splines that are
zero at a particular vertex.

Theorem 2.12. Suppose that G is a connected graph with edge-labeling function
α : V→ I. Fix a vertex v ∈ V . Then every generalized spline p ∈ RG can be written
uniquely as p = r1+ pv where pv is a generalized spline satisfying pv

v = 0 and
r ∈ R satisfies r = pv . In other words, if M = 〈 p : pv = 0〉 then RG ∼= R1⊕M as
R-modules.

Proof. The trivial generalized spline 1 is in RG by Proposition 2.4. Let r ∈ R be the
element r = pv . Then define pv to be the generalized spline pv

= p− r1. (There
is a unique element in the ring RG that satisfies this equation.) By construction,

pv
v = pv − r1v = r − r = 0. �

The previous result could lead us to consider R-module bases of generalized
splines; see the open questions in Section 7. Instead, we combine it with a result
of Rose’s to relate the generalized splines that vanish at a particular vertex to the
syzygies of the module generated by the edge ideals. (Schumaker also implicitly
considered syzygies in an earlier work on splines [1979].)

Corollary 2.13. Suppose G is the dual graph of a hereditary polyhedral complex1
and that R is the polynomial ring R[x1, x2, . . . , xd ]. For each edge e in G, let `e

be an affine form generating the polynomials vanishing on the intersection of faces
in 1 corresponding to e. Define α to be the function α(e)= 〈`r+1

e 〉 for each edge e
and let

B =
{
(b1, . . . , b|E |) ∈ R|E | : for all cycles C in G,

the linear combination
∑
e∈C

be`
r+1
e = 0

}
.
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Then M ∼= B as R-modules.

Proof. Under these conditions, Rose proved that RG ∼= R⊕ B as R-modules [1995,
Theorem 2.2]. From the previous claim, we conclude M ∼= B as desired. �

We close this section by describing the relationship between the ring of general-
ized splines associated to an edge-labeling α and the ring of generalized splines
associated to the edge-labeling rα obtained by scaling.

Theorem 2.14. Suppose that (G, α) is a connected edge-labeled graph. Fix an
element r ∈ R and define the edge-labeling function rα : E→ I by rα(e)= r Ie for
each edge e ∈ E. Choose a vertex v0 ∈ V and define M = 〈 p : pv0 = 0〉. If R is an
integral domain then

RG,rα = R1⊕ r M.

Proof. Theorem 2.12 showed that RG,α = R1⊕M . The multiple r RG,α belongs
to RG,rα by definition, so r M ⊆ RG,rα. We also know the intersection r M ∩ R1
is zero since the only element of R1 whose restriction to v0 vanishes is the zero
spline. So RG,rα ⊇ R1⊕ r M .

We now prove the opposite containment. Suppose p′ ∈ RG,rα and suppose
p= p′− p′v0

1. (Note that p satisfies the GKM condition for (G, rα) at each edge.)
We will prove that p∈ r M . We split the argument into two pieces: showing that p is
divisible by r at each vertex, and then showing that p satisfies the GKM conditions
of r M .

To begin, we prove by induction that if vk is connected to v0 by a path of length k
then pvk ∈ r R is in the principal ideal generated by r . The unique path of length
zero is our base case, and the element pv0 = 0 ∈ r R by construction. Suppose
the claim is true for paths of length k − 1 and let vk be a vertex connected to v0

by a path of length k. Then vk is adjacent to a vertex vk−1 which is connected
to v0 by a path of length k− 1. We know pvk−1 ∈ r R by the inductive hypothesis,
and pvk − pvk−1 ∈ r Iek for the edge ek = vk−1vk by the GKM condition. The sum
r Iek + r R ⊆ r R since ideals are closed under addition, so pvk ∈ r R as desired. By
induction and because G is connected, we conclude that pv ∈ r R for all v ∈ V .

We just showed that each ring element p is divisible by r . For each vertex v,
let qv be the ring element with pv = rqv and collect the qv into the element q ∈ R|V |.
We ask whether q ∈ M . To answer this, we need to know whether for each edge
e = uv we have qu − qv ∈ Ie. We know that pu − pv ∈ r Ie by the GKM condition.
Let x = qu − qv ∈ R to isolate the underlying algebraic question: If r x ∈ r Ie then
is x ∈ Ie? The answer is yes when R is an integral domain: if r x ∈ r Ie then we can
find y ∈ Ie with r x = r y. Hence r(x − y)= 0, which implies x = y as long as R
is an integral domain. �
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3. The GKM matrix

The results in the previous section allow us to build new generalized splines from
existing ones. To construct generalized splines from scratch we need a systematic
method for recording and analyzing GKM conditions. We do this by representing
GKM conditions in matrix form. This section shows how to construct GKM matrices
and gives several examples.

Our definition of the GKM matrix assumes the graph G is directed. Remark 3.5
shows that changing the directions on the edges of G does not affect the solution
space of the matrix, so we generally omit orientations from our figures and our
discussion.

Definition 3.1. The GKM matrix of the directed, edge-labeled graph (G, α) is an
|E | × |V | matrix constructed so that the row corresponding to each directed edge
e = uv ∈ E has

• 1 in the column corresponding to u,

• −1 in the column corresponding to v, and

• 0 otherwise.

An extended GKM matrix of the pair (G, α) is an |E | × (|V | + 1) matrix whose
first |V | columns are the GKM matrix, and whose last entry in the row corresponding
to edge e is any element αe ∈ α(e). When there is no risk of confusion, we refer to
an extended GKM matrix as simply the GKM matrix.

For instance, if α(e)= 〈αe1
, . . . , αem

〉 is finitely generated, we could write the
last entry in the row corresponding to e as qe1αe1

+· · ·+qemαem
for arbitrary qei ∈ R.

In particular, if the ideal α(e) is principal and α(e)= 〈αe〉 then we typically write
the last column of the extended GKM matrix as the vector (qeαe)e∈E for arbitrary
coefficients qe ∈ R.

Remark 3.2. Using this language, we can reframe the syzygy module of spline
ideals that Rose defined and that we saw in Corollary 2.13. (See also [Schumaker
1979].) In our context, the syzygy module is essentially the collection of elements
qe ∈ α(e) from the edge ideals so that

∑
e∈C qe = 0 for each cycle C in G. In other

words, it describes a collection of elements qe ∈ α(e) for which the extended GKM
matrix represents a homogeneous system of equations. This condition appears
naturally as we analyze the ring RG further in Theorem 6.3.

Generally we consider qe to be a parameter that takes values in R, as in the
following proposition, which follows immediately from the construction of the
GKM matrix.
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Proposition 3.3. Let MG denote the GKM matrix of (G, α). Then the spline
p ∈ R|V | is a generalized spline for (G, α) if and only if there is an extended
GKM matrix [MG |v] for which p is a solution.

Proof. The matrix MG is constructed to record the GKM condition at every edge
ei, j ∈ E(G). Hence a spline p = ( pv1, . . . , pv|V |) ∈ R|V | is a generalized spline
for (G, α) if and only if MG p = v for some vector v = (αe)e∈E . This is equivalent
to saying the spline p is a solution to the system [MG |v] for some extended GKM
matrix, as claimed. �

We can now manipulate MG to obtain systems of equations that are equivalent
to the original GKM conditions on G. We state the following corollary simply to
stress this fundamental linear algebra property.

Corollary 3.4. If [M ′|v′] is obtained from [M |v] by a series of reversible row or
column operations, then the solution set in R|V | to [M ′|v′] is the same as that
of [M |v].

Reversible operations correspond to invertible matrices in GL|V |(R). For instance,
multiplying a row by x is not reversible for the ring R =C[x] since 1/x is not in R.
However, multiplying a row by x is reversible when R = C(x).

Remark 3.5. Changing the direction of a given edge in G amounts to multiplying
the corresponding row in MG by −1, a reversible operation. Hence while the
definition of the GKM matrix for the pair (G, α) requires a directed graph, the
actual direction chosen is irrelevant to the solution set given by Proposition 3.3.

Example 3.6. We start with the path P3 from Figure 3(a). Its extended GKM
matrix is

MP3 =

[
1 –1 0 q1α1
0 1 –1 q2α2

]
,

whose rows may be added to obtain the equivalent system[
1 0 –1 q2α2+ q1α1
0 1 –1 q2α2

]
.

If p = ( pv1, pv2, pv3) ∈ RP3 then the system has dependent variables pv1 and pv2

and independent variable pv3 . All solutions may be written in the form

pv1 = pv3 + q2α2+ q1α1,

pv2 = pv3 + q2α2,

where pv3 , q1, and q2 are freely chosen elements of R. Setting pv3 = 0, q1 = 1, and
q2 = 1 yields the generalized spline in Figure 3(a).

The following generalization will be a central part of our proof of Theorem 3.8.
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Example 3.7. Consider the path Pn on n vertices:

t t q q q t tPn =
v1 v2 vn−1 vn

α(e1,2) α(en−1,n)

The GKM matrix for this path is
1 –1 0 0 · · · 0 0 α1,2
0 1 –1 0 · · · 0 0 α2,3
0 0 1 –1 · · · 0 0 α3,4
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1 –1 αn−1,n

,

where αi,i+1 ∈ α(ei,i+1) are arbitrarily chosen. As before, we can row-reduce the
GKM matrix by setting row i to be the sum

∑n
k=i (row k) for each 1≤ i ≤ n. We

obtain an equivalent system of rank n−1 in which pvn is the only free variable in the
set { pvi : i = 1, . . . , n}. (This system is of maximal rank since an (n− 1)× (n+ 1)
system of equations can have at most one free variable among the pvi .) Figure 4
shows this equivalent system:

1 0 0 0 · · · 0 –1 αn−1,n + · · ·+α3,4+α2,3+α1,2
0 1 0 0 · · · 0 –1 αn−1,n + · · ·+α3,4+α2,3
0 0 1 0 · · · 0 –1 αn−1,n + · · ·+α3,4
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1 –1 αn−1,n


Figure 4. A system equivalent to the GKM matrix for Pn .

The linear combinations that occur in the last column of the matrix in Figure 4 can
be used to construct generalized splines for more complicated graphs as well. For
instance, the next result builds on this description of paths to describe a collection
of (usually) nontrivial generalized splines for the cycle Cn .

Theorem 3.8. Let Cn be a finite edge-labeled cycle given by vertices v1, v2, . . . , vn

in order. Define the vector p ∈ R|V | by

(4)



pv1

pv2

pv3
...

pvn−1

pvn


= pv1



1
1
1
...

1
1


+ α1,n



0 0 · · · 0 0
1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1





α1,2
α2,3
α3,4
...

αn−2,n−1
αn−1,n
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with arbitrary choices of pv1 ∈ R, αi,i+1 ∈ α(ei,i+1), and α1,n ∈ α(e1,n). Then p
is a generalized spline for Cn . The spline p is nontrivial exactly when α1,n and at
least one of the αi,i+1 are nonzero.

Proof. We check that p ∈ Rn satisfies the GKM condition at every edge of Cn . For
all i with 2≤ i ≤ n− 1 we have

pvi+1 − pvi

= ( pv1 +α1,n(α1,2+ · · ·+αi−1,i +αi,i+1))− ( pv1 +α1,n(α1,2+ · · ·+αi−1,i ))

= α1,nαi,i+1,

which is in α(ei,i+1) by assumption on αi,i+1. It remains to check that the GKM
condition is satisfied at edges e1,2 and e1,n . At edge e1,2 we have

pv2 − pv1 = ( pv1 +α1,nα1,2)− pv1 = α1,nα1,2,

which is in the ideal α(e1,2). At edge e1,n we have

pvn − pv1 = ( pv1 +α1,n(α1,2+ · · ·+αn−1,n))− pv1 = α1,n(α1,2+ · · ·+αn−1,n),

which is in the ideal α(e1,n). Hence p is a generalized spline for Cn . The spline p
is nontrivial if and only if the second term is nonzero, namely, when α1,n and at
least one of the αi,i+1 are nonzero. �

Theorem 3.8 actually does more: it identifies a collection of generalized splines
for Cn that are linearly independent for many choices of R. Indeed, we can write
the generalized splines from Theorem 3.8 in parametric form:

(5)



pv1

pv2

pv3

pv4
...

pvn


= pv1



1
1
1
1
...

1


+ α1,nα1,2



0
1
1
1
...

1


+ α1,nα2,3



0
0
1
1
...

1


+ · · · + α1,nαn−1,n



0
0
0
0
...

1


with coefficients pv1 ∈ R and αi,i+1 ∈ α(ei,i+1) = Ii,i+1 for all 1 ≤ i ≤ n − 1.
The vectors [1, 1, 1, . . . , 1]T , [0, 1, 1, . . . , 1]T , . . . , [0, 0, 0, . . . , 1]T are linearly
independent in Rn but are not necessarily elements of RCn . If R is an integral
domain then for any fixed choices of αi, j ∈α(ei, j )= Ii, j the vectors [1, 1, 1, . . . , 1]T ,
α1,nα1,2[0, 1, 1, . . . , 1]T , . . . , α1,nαn−1,n[0, 0, 0, . . . , 1]T are both linearly indepen-
dent and in RCn .

We will use these kinds of splines — which arise naturally when considering the
GKM matrix — repeatedly in subsequent sections of the paper.
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t
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v1 v2

v4 v3
pv1 − pv2 ∈ α(e1,2)= 〈α1,2〉

pv1 − pv3 ∈ α(e1,3)= 〈α1,3〉

pv1 − pv4 ∈ α(e1,4)= 〈α1,4〉

pv2 − pv3 ∈ α(e2,3)= 〈α2,3〉

pv2 − pv4 ∈ α(e2,4)= 〈α2,4〉

pv3 − pv4 ∈ α(e3,4)= 〈α3,4〉

Figure 5. GKM conditions for K4 whose ideals are all principal.

MK4 =



1 0 0 –1 q1,4α1,4
0 1 0 –1 q2,3α2,3
0 0 1 –1 q3,4α3,4
0 0 0 0 q1,2α1,2− q1,4α1,4+ q2,4α2,4
0 0 0 0 q1,3α1,3− q1,4α1,4+ q3,4α3,4
0 0 0 0 q2,3α2,3− q2,4α2,4+ q3,4α3,4


Figure 6. A system equivalent to the extended GKM matrix for
K4 when all ideals are principal.

Example 3.9. We return to the case of the complete graph K4 whose ideals α(e) are
all principal. By Definition 2.3, the tuple p = ( pv1, pv2, pv3, pv4) is a generalized
spline for K4 if and only if it satisfies the GKM conditions in Figure 5.

The difference pvi− pv j is in the ideal α(ei, j )=〈αi, j 〉 if and only if the difference
pvi − pv j = qi, jαi, j for some qi, j ∈ R, so we represent these GKM conditions by
the following matrix equation (the coefficient matrix is the GKM matrix):

1 –1 0 0
1 0 –1 0
1 0 0 –1
0 1 –1 0
0 1 0 –1
0 0 1 –1




pv1

pv2

pv3

pv4

= [q1,2, q1,3, q1,4, q2,3, q2,4, q3,4
]


α1,2
α1,3
α1,4
α2,3
α2,4
α3,4


.

After several invertible row operations in which we add various rows to other rows,
we obtain an equivalent system of equations such as that given in Figure 6.

4. Generalized splines for trees

We will now use the GKM matrix to describe all generalized splines for trees. We
start by describing the generalized splines for paths, using the same argument as
that for trees but without the notational technicalities.
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Figure 4 shows a matrix that is row-equivalent to the GKM matrix for the
path (Pn, α). The solutions can be written in parametric form as

pv1

pv2

pv3

pv4
...

pvn−1

pvn


= pvn



1
1
1
1
...

1
1


+ αn−1,n



1
1
1
1
...

1
0


+ · · · + α3,4



1
1
1
0
...

0
0


+ α2,3



1
1
0
0
...

0
0


+ α1,2



1
0
0
0
...

0
0


,

where the coefficients pvn and αi,i+1 for all 1 ≤ i ≤ n − 1 are chosen arbitrarily
from the sets R and α(ei,i+1) = Ii,i+1 respectively. By Corollary 3.4, this gives
precisely the collection of generalized splines for the path Pn .

When R is an integral domain, this also gives linearly independent vectors in RPn

(for any choices of αi,i+1 ∈ Ii,i+1):

(6) BRPn
=





1
1
1
1
...

1
1


,



αn−1,n
αn−1,n
αn−1,n
αn−1,n
...

αn−1,n
0


, . . . ,



α3,4
α3,4
α3,4

0
...

0
0


,



α2,3
α2,3

0
0
...

0
0


,



α1,2
0
0
0
...

0
0




.

Morally speaking, this decomposition describes something very close to a basis
for the generalized splines — as long as we can write a basis for the ideals Ii,i+1.
For instance, when each ideal Ii,i+1 is principal and αi,i+1 denotes the generator
of Ii,i+1 for each 1≤ i ≤ n− 1, then these vectors form a basis for RPn . In general,
we won’t be able to find a basis for RG because we can’t even necessarily find bases
for the ideals Ii,i+1. Even when R is a polynomial ring, we need all of the technical
tools developed in the theory of Gröbner bases to compute bases of ideals in R.

However, we can find generators for the splines on trees. We reformulate the
essential property of this basis from the point of view of trees. Observe that p ∈ RPn

must satisfy the following property for any vi , v j ∈ V (Pn) with i < j :

(7) pv j = pvi +

j−1∑
k=i

αk,k+1 for some αk,k+1 ∈ Ik,k+1.

Trees are more complicated than paths, so describing the general result precisely is
more complicated. The main idea is similar to the one above, though. It relies on the
fact that there is exactly one path between any two vertices in a tree, as well as on (7).
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Theorem 4.1. Let T = (V, E, α) be a finite edge-labeled tree. The tuple p ∈ R|T |

is a generalized spline p ∈ RT if and only if given any two vertices vi , v j ∈ V we
may write

(8) pv j = pvi +αi,i1
+ · · ·+αim−1,im

+αim , j for some αl,k ∈ α(el,k)= Il,k,

where vi , vi1, . . . , vim , v j are the vertices in the unique path connecting vi and v j

in the tree T . Furthermore p is nontrivial if and only if at least one of the αl,k is
nonzero.

Proof. We proceed via induction on |V |. The base case |V | = 1 is trivial since
E =∅. We also prove the case |V | = 2, namely, when T is a path on two vertices.
Denote the vertices of T by v1 and v2 and the edge set by E = {e1,2}. Now let
p= (pv1, pv2)∈ R2. By Definition 2.3 we know p∈ RT if and only if pv1− pv2 ∈ I1,2.
We rewrite this as pv1 = pv2+α1,2 for some choice of α1,2 ∈ I1,2. In other words p
is a generalized spline for T if and only if p satisfies (8) for all pairs of vertices in
V = {v1, v2}. Furthermore p is nontrivial if and only if pv1 6= pv2 or equivalently
α1,2 6= 0.

Assume the theorem holds for every tree with at most n vertices and let T ′ =
(V ′, E ′, α) with |V ′| = n+1. Suppose p ∈ R|V

′
| satisfies (8) for all pairs of vertices

in V ′ and let eh,k ∈ E ′ be an arbitrary edge. Since vh and vk are adjacent in T ′

we know pk = ph +αh,k for some αh,k ∈ Ih,k by (8). Rewriting this condition, we
obtain pk − ph ∈ Ih,k . Since eh,k was arbitrary we conclude p ∈ RT ′ .

Conversely, suppose that p ∈ RT ′ . We show that p satisfies (8) for all vertices
in V ′. Without loss of generality, label the vertices of T ′ so that vn+1 is a leaf
adjacent to vn . Choose arbitrary vi , v j ∈ V ′ and let vi , vi1, . . . , vim , v j denote the
vertices in the unique path connecting vi and v j in T ′. Let T denote the subgraph
T ⊆ T ′ induced by vi , vi1, . . . , vim , v j . The graph T is a tree itself, since it is
a connected subgraph of a tree. The restriction of p to the vertices in T is a
generalized spline for T by Proposition 2.8. If T has at most n vertices then the
inductive hypothesis implies that p satisfies (8) for the pair vi , v j . If T has n+ 1
vertices then T is a path of length n+ 1. Figure 4 shows a system equivalent to the
GKM matrix in this case. The first row of this matrix describes the equation

pv j = pvi +αi,i1
+ · · ·+αim−1,im

+αim , j

for some set αl,k ∈ α(el,k) = Il,k . In other words, this graph also satisfies (8),
proving our claim.

Finally, the spline p is nontrivial if and only if there exists some pair of vertices
vi , v j ∈ V ′ such that pvi 6= pv j . This is equivalent to saying that the coefficients
αi,i1

, αi1,i2
, . . . , αim−1,im

, αim , j associated to the path vi , vi1, . . . , vim , v j are not all
equal to 0, by (8). Equivalently there exists a pair l, k with αl,k 6= 0 as desired. �
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5. Existence of generalized splines and lower bounds on the rank of RG

We now address a fundamental question: Do nontrivial generalized splines exist
for an arbitrary edge-labeled graph (G, α)? We solved this question in the case
of edge-labeled cycles (Cn, α) in Theorem 3.8. The answer in that case (yes)
leads naturally to a stronger result: Equation (5) actually identifies a collection of
generalized splines that are linearly independent when R is an integral domain. The
condition that R be an integral domain is crucial, as Bowden and Tymoczko show
in forthcoming work [2015].

Similarly, we will answer the existence question for generalized splines on arbi-
trary (G, α) (yes, unless G consists of a single vertex) by constructing a collection
of generalized splines that are linearly independent when R is an integral domain.
This provides a lower bound on the rank of RG as an R-module when RG is a
free R-module, and constructs a collection of generators associated to vertices
when the ideal α(e) is principal for each edge e. All of these hypotheses are
satisfied for the generalized splines used to construct equivariant cohomology and
equivariant K -theory, where constructing bases is an important and well-studied
question [Guillemin and Zara 2001; Goldin and Tolman 2009]. Geometrically,
Theorem 5.1 and Corollary 5.2 partially extend existing results on flow-up classes
in equivariant cohomology, since we broaden the class of varieties for which we
can construct linearly independent rank-n collections of flow-up classes. The result
is new for equivariant K -theory. We note, however, that our flow-up classes are
generally not a basis for RG .

Corollary 5.2 proves that each RG contains a free submodule of rank n as a
special (and simpler) case of Theorem 5.1.

Theorem 5.1. Let (G, α) be a finite edge-labeled graph. Fix any subgraph G ′ of G
and let p be a generalized spline for (G ′, α|G ′). Let NG ′ =

∏
S αi, j , where each αi, j

is a nonzero element of the ideal α(viv j ) and the product is taken over the set S of
edges incident to a vertex in G ′ but not in G ′, namely,

S = {αi, j : viv j ∈ E(G−G ′) and vi ∈ V (G ′) or v j ∈ V (G ′)}.

Then the vector q defined by

qvi =

{
NG ′ pvi if vi ∈ V (G ′),
0 if vi /∈ V (G ′)

is a generalized spline for G.

Proof. For each edge viv j ∈ E(G), there are three possibilities:

(1) Both vi and v j are in V (G ′). Then pvi − pv j satisfies the GKM condition
in G ′. Thus qvi − qv j = NG ′( pvi − pv j ) satisfies the GKM condition for vi , v j

in G since α(viv j ) is an ideal and NG ′ ∈ R.
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(2) Neither vi nor v j is in V (G ′). Then the difference qvi − qv j = 0−0 vacuously
satisfies the GKM condition for vi , v j in G.

(3) Exactly one of vi , v j is in V (G ′). Suppose that vi ∈ V (G ′) and v j /∈ V (G ′).
Consider the difference qvi − qv j = NG ′( pvi − pv j ). The factor NG ′ is in
the ideal α(viv j ) by definition of NG ′ and by definition of ideals. Hence the
product NG ′( pvi − pv j ) satisfies the GKM condition for vi , v j in G. �

The next corollary constructs classes that look like what are called “flow-up”
classes in geometric applications. Given a partial order on the vertices of G, a flow-
up class associated to the vertex v is a generalized spline pv so that for each vertex u
with u 6> v the spline satisfies pv

u = 0. (In geometric applications, flow-up classes
satisfy additional conditions as well.) These classes occur naturally in geometric
applications: the partial order comes from a suitably generic one-dimensional torus
action on the variety (and hence on the graph), and the spline is the cohomology
class associated to the subvariety that flows into the vertex v. The most famous
examples of flow-up classes occur in flag varieties and Grassmannians, where they
are known as Schubert classes and where they in fact form a basis for the ring of
generalized splines (equivariant cohomology rings, in the geometric context).

Our motivation for the next sequence of corollaries comes from these geometric
applications. In those cases, the ideals α(e) for each edge e are principal. If some
ideals were not principal, the results that follow could be refined to construct a
larger free submodule of RG .

We now construct a rank-n free submodule of the generalized splines for an
arbitrary edge-labeled graph (G, α) using a collection of linearly independent flow-
up classes. The reader interested only in the special case of this corollary could
prove it directly by taking G ′ to be a single vertex.

Corollary 5.2. Let R be an integral domain and (G, α) a connected edge-labeled
graph on n vertices. Then RG contains a free R-submodule of rank n.

Proof. Enumerate the vertices in V (G) as v1, v2, . . . , vn . For each vi define G ′i
to be the subgraph consisting of exactly vertex vi . Clearly p = 1 is a generalized
spline for (G ′i , α|G ′i ) for all 1≤ i ≤ n. Then Theorem 5.1 yields generalized splines
{qi : i = 1, . . . , n} for G, where qiv j

= δi j NG ′i and NG ′i =
∏

j 6=i αi, j for arbitrarily
chosen 0 6= αi, j ∈ α(viv j ). We show that this set is linearly independent in the
R-module RG . Suppose

∑n
i=1 ci qi = 0 for coefficients ci ∈ R. For each 1≤ j ≤ n,

evaluation at v j yields

(9)
n∑

i=1

ci qiv j
=

n∑
i=1

ciδi j NG ′i = c j NG ′j = 0.
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Since R is an integral domain and each αi, j 6= 0 it follows that NG ′j 6= 0 for all j .
Hence (9) implies c j = 0 for all 1 ≤ j ≤ n so that {qi : i = 1, . . . , n} is linearly
independent in RG and therefore spans a free R-submodule of rank n. �

The next corollary makes note of a particular choice for the scaling factor NG ′

in Theorem 5.1 that can be useful in the kinds of examples that arise in geometric
applications. All of the hypotheses hold in typical geometric applications (equivari-
ant cohomology with field coefficients, equivariant K -theory with field coefficients,
and classical algebraic splines).

Corollary 5.3. Fix an edge-labeled graph (G, α) and let R be a unique factoriza-
tion domain. Suppose that for each edge e the ideal α(e) is principal and choose
a generator αi, j for each edge e = viv j . Then for any subgraph G ′ of G we may
apply Theorem 5.1 by choosing

NG ′ = lcm{αi, j : viv j ∈ E(G−G ′) and vi ∈ V (G ′) or v j ∈ V (G ′)}.

The next two corollaries of Theorem 5.1 address particular ways to construct
(nontrivial) generalized splines for G from subgraphs of G.

Corollary 5.4. If G contains any subgraph G ′ for which RG ′ contains a nontrivial
generalized spline then RG also contains a nontrivial generalized spline.

Example 5.5. We can construct generalized splines for the edge-labeled graph
(K4, α) given in Figure 1 using these corollaries. The vertex in the upper-left corner
is v1 and the other vertices, clockwise around the square, are v2, v3, v4. Let C4

denote the Hamiltonian cycle determined by ordering the vertices v1v2v3v4, and let

NC4 = lcm{α(v1v3), α(v2v4)} = lcm{α5, α6}

with the labeling in Figure 1. Theorem 3.8 constructed many nontrivial generalized
splines for C4, including

p =


0

α(v1v4)α(v1v2)

α(v1v4)(α(v1v2)+α(v2v3))

α(v1v4)(α(v1v2)+α(v2v3)+α(v3v4))

=


0
α4α1

α4(α1+α2)

α4(α1+α2+α3)

.
The corollaries show that the multiple NC4 p is a generalized spline for K4.

Corollary 5.6. Let R be an integral domain. If G contains at least two vertices
then RG contains a nontrivial generalized spline.

Proof. The vertex set V has at least two vertices, so V has a proper subset. Let G ′

denote a subgraph of G induced by any proper subset of V . Choose the unit 1 ∈ RG ′

for the spline p in Theorem 5.1. The factor NG ′ is nonzero because R is an integral
domain. �
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6. Decomposing RG as an intersection

This section describes two ways to express RG as an intersection of rings RGi for
simpler graphs Gi . Both are inspired by the GKM matrix, which allows us to
recognize and manipulate the GKM conditions for various subgraphs of G.

In the first decomposition, we essentially reorganize the GKM matrix and identify
the GKM matrices associated to subgraphs of G inside the GKM matrix for G. When
these subgraphs are the edges themselves, we recover the result that the generalized
splines are the intersection of the GKM conditions on all edges independently. We
can alternatively take these subgraphs to be trees, whose generalized splines we
identified completely in Section 4; this reduces the number of intersections needed
to calculate RG .

In the other decomposition, we row-reduce the GKM matrix in a natural way to
demonstrate that RG is the intersection of the generalized splines for a particular
collection of subcycles of G. This demonstrates how the combinatorial perspective
can contribute to the study of generalized splines and GKM theory: cycles are
subgraphs that do not arise from geometric considerations but are natural in this more
general combinatorial setting. It also reinforces Rose’s results [1995; 2004] showing
the importance of cycles in studying splines. Handschy, Melnick, and Reinders
[2014] identify a basis for generalized splines with integer coefficients over cycles in
forthcoming work. Bowden, Cao, Hagen, King, and Reinders [2015] give a simpler
basis for generalized splines over cycles whose edge labels satisfy a coprimality
condition; this allows them to identify the ring structure of the generalized splines
completely.

We begin by expressing the ring of generalized splines as an intersection of
generalized splines for subgraphs.

Theorem 6.1. Let (G, α) be an edge-labeled graph. Suppose G1,G2, . . . ,Gk

are a collection of spanning subgraphs of G whose union is G, in the sense that
V (Gi ) = V (G) for all i and

⋃k
i=1 E(Gi ) = E(G). Let αi = α|Gi be the edge

labelings given by restriction for each i . Then

RG =

k⋂
i=1

RGi .

Proof. Proposition 2.8 showed that RG is contained in RG ′ for each spanning
subgraph G ′ of G, and in particular is contained in RGi for each subgraph Gi .
Conversely, suppose p is contained in

⋂k
i=1 RGi . Every edge v jvk ∈ E(G) is

contained in the edge set of (at least) one of the subgraphs, say Gi . The spline p is
a generalized spline for Gi by hypothesis, so the GKM condition is satisfied at v jvk

in Gi and hence in G as well. �
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Figure 7. Two spanning trees whose generalized splines determine RC3 .

Theorem 6.1 generalizes the definition of RG . Indeed, for each edge e ∈ E(G),
consider the subgraph Ge = (V (G), {e}). The ring RGe is exactly the subring of
R|V (G)| defined by applying the GKM condition at just the edge e. Theorem 6.1 says

RG =
⋂

e∈E(G)

RGe ,

namely, that the generalized splines on G are formed by imposing the GKM
condition on every edge of G simultaneously.

The next corollary uses another common family of subgraphs: spanning trees.
We completely identified the generalized splines for trees in Theorem 4.1. Thus, the
corollary expresses the ring of generalized splines using far fewer intersections than
in the original GKM formulation. Calculating intersections of subrings is subtle,
so this corollary reduces the computational complexity of identifying the ring of
generalized splines.

Corollary 6.2. If G can be written as a union of spanning trees T1, T2, . . . , Tm

(whose edges are not necessarily disjoint) and if αi = α|Ti is the edge labeling given
by restriction for each i then

RG =

m⋂
i=1

RTi .

Figure 7 shows an example using the 3-cycle and principal-ideal edge labels. In
this case RG can be expressed as the intersection of just two rings of generalized
splines, each of which is completely known. In fact, Theorem 4.1 says that the
generalized splines for the two marked paths have the form

(p1, p1+α1,4 p4+α2,4 p2, p1+α1,4 p4)

and
(q1, q1+α1,2q2, q1+α1,2q2+α2,4q4)

for free choices of elements p1, p2, p4, q1, q2, q4 ∈ R. The intersection of these
two sets is RC3 .

Given a connected graph G, we could also use Theorem 6.1 to describe RG

in terms of the generalized splines for cycles as follows. Fix a spanning tree T
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Figure 8. A triangle, its extended GKM matrix, and a row-reduction.

for G. For each edge e ∈ E(G)− E(T ) let Ce denote the unique cycle contained in
T ∪ {e}. (This cycle exists and is unique by a classical result in graph theory [West
2001, pp. 68–69].) Let C ′e be the graph containing the cycle Ce as one connected
component and the rest of the vertices of G as the other connected components.
Then

(10) RG = RT ∩
⋂

e∈E(G)−E(T )

RC ′e

by Theorem 6.1.
However, a natural row-reduction of the GKM matrix of G proves this intersection

directly. To motivate our approach, we return to the complete graph on four vertices
with principal-ideal edge labels from Example 3.9. The system of equations in
Figure 6 is consistent precisely when q = (q1,2, q1,3, q1,4, q2,3, q3,4) ∈ R5 satisfies
the homogeneous system of equations

(11)

q1,2α1,2− q1,4α1,4+ q2,4α2,4 = 0,

q1,3α1,3− q1,4α1,4+ q3,4α3,4 = 0,

q2,3α2,3− q2,4α2,4+ q3,4α3,4 = 0.

Figure 8 shows the edge-labeled 3-cycle v1, v2, v4 of Figure 7, its extended GKM
matrix, and a natural row-reduction of its extended GKM matrix. The equation that
remains is (up to sign) the same as that which occurs in (11). In fact, the entire
system in (11) arises from the equations (up to sign) for the three subcycles induced
by the vertices

• v1, v2, v4,

• v1, v3, v4, and

• v2, v3, v4.
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The next theorem generalizes this example. We also see it, together with
Remark 3.2, as a first step towards generalizing Rose’s work on syzygies of edge
ideals [1995; 2004].

Theorem 6.3. Suppose that (G, α) is an edge-labeled graph on n vertices. Fix a
spanning tree T for G. For each edge e ∈ E(G)− E(T ) let Ce denote the unique
cycle contained in T ∪ {e}. Then the extended GKM matrix for G is equivalent to
an extended GKM matrix for T , followed for each edge e ∈ E(G)− E(T ) by a row
that is zero except in the last column, which is

∑
e′∈Ce

qe′ where qe′ are arbitrary
elements of α(e′).

Proof. Choose a spanning tree T for the graph G. We assume without loss of
generality that the first n − 1 rows of the GKM matrix for G correspond to the
edges in T . The first n− 1 rows of the GKM matrix of G thus consist of the GKM
matrix for T , by construction.

Consider each of the other rows in turn. Each row corresponds to an edge e in G
but not T . We now describe an invertible row operation to eliminate all nonzero
entries from the first n columns of the row corresponding to e and describe RG

more precisely. Denote the edges of the cycle Ce by e1 = e = vi1vi2 , e2 = vi2vi3 ,
. . . , ek = vikvi1 . Let c j ∈ {±1} be the entry in the row corresponding to e j and the
column corresponding to vertex vi j for each 2 ≤ j 6= n. Denote the e j -th row of
the GKM matrix by re j . The sum of the scaled rows,

k∑
j=2

c jre j ,

has 1 in column vi2 , −1 in column vi1 , 0 in the rest of the first n columns, and∑k
j=2 c j q j in the last column, all by the definition of the GKM matrix. Finally we

add
∑k

j=2 c jre j to the row corresponding to e. This leaves 0 in the first n columns
of row e and qe+

∑k
j=2 c j q j in the last entry of the row.

The elements qe and q j are arbitrary elements of their respective ideals and c j is
a unit in R for each j so the set of all possible qe+

∑k
j=2 c j q j is the same as the

set of all possible
∑

e′∈Ce
qe′ . The result follows. �

The last corollary uses this information to describe the generalized splines for G
in terms of the generalized splines for cycles, as promised.

Corollary 6.4. Suppose that (G, α) is an edge-labeled graph on n vertices. Fix a
spanning tree T for G. For each edge e ∈ E(G)− E(T ) let Ce denote the unique
cycle contained in T ∪ {e} together with the other vertices in G. Then

RG = RT ∩
⋂

e∈E(G)−E(T )

RC ′e .
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Proof. Consider an edge e outside of the spanning tree T and its corresponding
cycle Ce. The previous theorem showed that the submatrix of an extended GKM
matrix for G given by the rows indexed by the edges e′ ∈ E(Ce) forms an extended
GKM matrix for the cycle Ce. The vector p ∈ R|V | solves an extended GKM matrix
for G if and only if it simultaneously solves the corresponding extended GKM
matrices for T and all of the Ce for e ∈ E(G)− E(T ). �

7. Open questions

We end with several open questions, extending some of the major research problems
for splines and GKM theory to the context of generalized splines.

Most research into what we call generalized splines focuses on particular exam-
ples, whether because of explicit hypotheses (e.g., a particular choice of the ring R,
the graph G, or the edge-labeling function α) or implicit hypotheses (e.g., that edge
labels be principal). Special cases remain very important, both for applications and
for data to build the general theory.

Question 7.1. Identify RG in important special cases: for instance, when all edge
labels α(e) are principal ideals; or when R is a particular ring (integers, polynomial
rings, ring of Laurent polynomials); or when G is a particular graph or family of
graphs (cycles, complete graphs, bipartite graphs, hypercubes).

Splines on complete graphs are particularly important for approximation theory,
where they appear as the Alfeld split of a simplex (for a proof see [Tymoczko 2015,
Section 3.1]).

Billera asked the following question, seeking an interpretation of r -smoothness
in the context of equivariant cohomology. We extend Billera’s question to ask about
the analogue of r -smoothness for generalized splines over arbitrary rings.

Question 7.2. Let (G, α) be an edge-labeled graph. Define the function αr
: E→ I

by the condition that for each edge e the image αr (e) is the r -th power (α(e))r . The
r-smooth generalized splines are the elements of the ring RG,αr . We ask how the
r-smooth generalized splines compare for various r . Billera asks for a geometric
interpretation of r -smoothness in the context of equivariant cohomology rings.

As a module, the generalized splines RG can also be viewed as group represen-
tations: for instance, the group of automorphisms of the graph G that preserve the
edge labeling naturally induces a representation on RG . Representations obtained
in this and similar ways are often intrinsically interesting [Fiebig 2011; Tymoczko
2008] and can also be a powerful tool with which to approach other questions in
this section [Tymoczko 2008].
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Question 7.3. Given a specific automorphism group, what are the induced repre-
sentations on RG (in terms of irreducible representations, say)? For what families
of graphs are there nontrivial representations on RG?

Propositions 2.8 and 2.10 and Sections 5 and 6 all use combinatorial aspects
of graphs to analyze the ring of generalized splines. More recently, Handschy,
Melnick, and Reinders [Handschy et al. 2014] and Bowden, Cao, Hagen, King, and
Reinders [Bowden et al. 2015] have used deletion and contraction to study splines
on cycles. We believe that these are special cases of a more general relationship
between the underlying combinatorics and geometry.

Question 7.4. How do classical graph-theoretic constructions (such as deletion-
contraction) affect the algebraic structure of splines RG?

Theorems 2.12, 4.1 and 5.1 are part of a larger program to identify useful bases
for splines and GKM modules [Haas 1991; Goldin and Tolman 2009; Guillemin
and Zara 2003]. The next question extends that program to generalized splines.

Question 7.5. Given a graph G, find a minimal generating set (or basis, if R is
an integral domain) for the generalized splines RG . If G is a particular family of
graphs (cycles, complete graphs, etc.), can we find a minimal generating set (or
basis) for RG?

More specifically, geometers think about bases with certain “upper-triangularity”
properties that arise in many important examples, like Schubert classes, Białynicki-
Birula classes, and the canonical classes of [Knutson and Tao 2003] and [Goldin
and Tolman 2009] (see also [Harada and Tymoczko 2010]). Theorem 5.1 is an
initial step in constructing flow-up bases for generalized splines.

Question 7.6. What is the right definition for a flow-up class in the module of gen-
eralized splines? Under what conditions is there a flow-up basis for the generalized
splines?

Answering the previous question may require further extending generalized
splines so that the vertices are labeled by different modules Mv rather than a fixed
ring R, as described in Section 1. Characterizing those splines would have immediate
implications in geometric applications like computing equivariant intersection
homology.

Question 7.7. Which of the results in this paper extend to generalized splines over
modules? Is there an algorithm or an explicit formula to construct flow-up basis
classes for generalized spines over modules?
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