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ABSTRACT

Both the coherent states and also the squeezed states of the harmonic
oscillator have long been understood from the three classical points of
view: the 1) displacement operator, 2) annihilation- (or ladder-) opera-
tor, and minimum-uncertainty methods. For general systems, there is the
same understanding except for ladder-operator and displacement-operator
squeezed states. After reviewing the known concepts, I propose a method
for obtaining generalized minimum-uncertainty squeezed states, give ex-
amples, and relate it to known concepts. I comment on the remaining
concept, that of general displacement-operator squeezed states.

1 Introduction

As we all know, Glauber, Klauder, and Sudarshan produced the modern era's seminal
works on coherent states of the harmonic oscillator [1, 2, 3, 4]. There came to be three
classical definitions of these coherent states, from 1) the displacement.operator method,
2) the annihilation-operator method which I will relabel the ladder.operator method,
and 3) the minimum-uncertainty method. Todav coherent states are important in
many fields of theoretical and experimental physics [5, 6].

Generalizations of these states appeared in two areas. One was to "two-photon
states" [7], states which were rediscovered under many names. In 1979 they were
first called "squeezed states" [8]. In recent times these states have become of more
and more interest [9, 10]. This is especially true in the fields of quantum optics [11]
and gravitational wave detection [12]. The squeezed states of the harmonic oscillator

LEmail: mnm,qpion.lanl.gov



_r

can also be equivalently defined 1)v al)l)ropriate generalizations of the three classical
definitions of the coherent states.

The oti.t, generalization was to non-harmonic oscillator systems. From the group
theorv or operator point of view. generalized coherent states for Lie groups were
widely studied fl'om the displacement operator and annihilation operator methods
[3. 131.

In 1978 I, along with .XIikeSimmons and Vincent Gutschick, began a program to
find the coherent states for arbitrary potentials from a minimum-uncertainty point of
view, You give us the potential, be it Morse, P6schl-Teller, Coulomb, or whatever,
and we'll give you the coherent states. \Vhat came as a byproduct was the realization
that along the way we had also found the appropriate generalization to the squeezed
state. Further, we found that for arbitrary systems the three methods no longer
necessarily gave the same coherent and/or squeezed states.

This all is in the past, from the theme of this Symposium. It leaves appropriate
generalizations of squeezed states fl'om the ladder-operator and displacement-operator
points of view to be found.

The present deals with work which Rod Truax and I have recently reported
on [14]. (Indeed, in this Proceedings I draw upon nmch of the contents of Ref.
[14], especially in Section 3.) \Ve proposed a generalization of squeezed states us-
ing the ladder-operator method. This method was also connected to the minimum-
uncertainty method and some aspects of special-case displacement-operator squeezed
states which have been obtained. It was also found that, as expected, the generalized
squeezed states from the different methods could be equivalent, but need not be. (I
note that connections of these ideas to Rydberg wave packets and other quantum
systems have been made elsewhere [15, 16].)

This leaves the future. What remains to be done is to find generalized squeezed
states from the displacement-operator method.

2 Past

2.1 Coherent states for the harmonic oscillator

I begin bv reviewing the coherent states for the harmonic oscillator. As is well-known,
there are three standard definitions of these states, which are equivalent.

1) Displacement-Operator Method. The coherent states can be obtained by apply-
ing the unitary displacement operator on the ground state [3, 2]:

Ic )= D(a)lO) - exp[cm t- = - _ '

where In) are the number states.



2) Ladder. (or Annihilation-) Operator Method. Tile coherent states can also be
defined as the eigenstates of the destruction oi)erator:

.1_)= _1,,). (2)
This follows from Eq. (1), since

0 = D(tt)alO ) = (a- a)D(a)10 ) = (a- a)la ). (3)

These states are the same as the displacement-operator coherent states.

3) Minimum-Uncertainty Method. This method harks back to Schr6dinger's dis-
covery of the coherent states [17]. Recall that Schr6dinger wanted to find states
which maintained their shapes and followed the classical motion. For the harmonic
oscillator, these are the states which minimize the uncertainty relation

[,r,p]= ih, (,-Xz)'2(Zp)2> _h'2, (4)

subject to the constraint that the ground state is a member of the set. In wave
fimction language (?i = ._,= m, = l) they are described by

_'_(,r) = [7r]-1/4 exp [ (,r - Xo)2- 2 + ipox (5)

That the states of Eqs. (1) and (5) are the same can be demonstrated by using the
generating function for the Hermite polynomials along with the identifications

v_(_) = x0, vq_(a) = p0, (6)

Observe that of the four original parameters, (x). (x2), (p), and (p2), only two remain,
_(o) and '-3(a). That is firstly because the inequality in the uncertainty relation
has been satisfied. The remaining three parameter set of states is restricted to two
parameters by demanding that the ground state (which corresponds to zero motion)
must be a member of the set.

2.2 Squeezed states of the harmonic oscillator

The above three methods also yield equivalent squeezed states for the harmonic os-
cillator.

1) Displacement.Operator Method. In this method one applies the "squeeze" or
SU(1,1) displacement operator on the coherent state:

D(_)S(:)IO >= I(a,z)>, S(z) =exp[zZ_+ - z'Z,'_], (7)
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where/(.. N_, and No form an s_l(].l) algebra amongst themselves:

1

[No,ICe]= +h'± , [K+,K_] = -2Ko. (9)

Tile ordering of DE vs. SD in Eq. (7) is unitarily equivalent, amounting to a change
of parameters:

D(o)S(:) =S(z)D(3), _ =acoshr - a'e i°sinhr, (10)

where z = rei°.

2) Ladder.Operator Method. For the harmonic oscillator, this method again follows
from the displacement-operator method. Combining the Bogoliubov transformation
[181,

S-loS = (coshr)a + e'°(sinhr)a t, (11)

with Eq. (10), one has that

[(cosh,')a- e'O(sinh,')at][(a,z)}= 7[(a,z)). (12)

One now sees why I relabel this method the ladder-operator method. For the squeezed
states one needs both the raising (creation) and lowering (annihilation) operators.

3) Minimum-Uncertainty Method. From this point of view, the transition from
coherent to squeezed states is intuitively simple. These states minimize the x -p
uncertainty relation, without the added restriction that the ground state (Gaussian)
is a member of the set. That is, these are a three parameter set of states, which are
the Gaussians of all widths:

ti'.,,(ir) = [?rs2]-1/4 exp [ ('"- 'r0)2- 2s.a + ipox , (13)

These squeezed states are equivalent to those obtained from the other formulations.
This can be verified by combining Eqs. (12) and (13) with the relationships

(a + at) (a - a*)
x--- V_ ' P" iv/'2 ' (14)

The remaining relationships among the parameters are

z = re iO, r = In s. (15)

(The phase, 8, is an initial time-displacement.)



2.3 Generalized (displacement- and ladder-operator)
coherent states

When one considers coherent states for general systems one finds that tile coherent
states from all three methods are not, in general, equivalent, although they may' be
in particular cases.

1) Displacement.Operator M, ,'_,od.Tile generalization of this method to arbitrary
Lie groups has a long history [5, 6, 3, 13].(Supersymmetric extensions of it also exist
[19].) One simply applies tile displacement operator, which is the unitary exponen-
tiation of tile factor algebra, on to an extremal state. That is, let T be a unitary
irreducible representation of the group G on a Hilbert space and let I_'0) be a fixed
vector in the space. Let Go be the stability group; i.e.,

T(Go)lu,o)= e'°(a°)l_,o). (16)
Then

{tl,g)= T(G/Go)I_,o) (17)
are the coherent states.

2) Ladder-Operator Method. The generalization to arbitrary Lie groups is straight
forward, and has also been widely studied [5, 6]. One obtains the eigenstates of the
generalized lowering-operator (assuming there is an extremal state below):

A_l_>= 61_>, (_s)

2.4 Generalized (minimum-uncertainty) coherent and
squeezed states

In the program I described in the introduction, we wanted to find the coherent states
for arbitrary potential systems. We were motivated by the physics of Schr6dinger.
We wanted to find states which follow the classical motion as well as possible and
which maintain their shapes as well as possible. We felt that meant there was an
associated uncertainty relation, but in which variables? Our answer was found in a
manner completely backwards from the way I now present it, but such is often the
case with physics. In fact, along the way, this method also yields the squeezed states
for genera' potential systems [20, 21].

One starts with the classical Hamiltonian problem and transforrns it into the
"natural classical variables," Xc and Pc, which vary as the sin and the cos of the
classical _vt. The Hamiltonian is therefore of the form P_ + X_. One then takes these
natural classical variables and transforms them into "natural quantum operators."
Since these are quantum operators, they have a commutation relation and uncertainty
relation:

[.\',P] = iG, (AX)'-_(,SP)_ >___(G}2. (19)
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The stat_s that n_inimize this _nc_,rt_inty relation _re given by the solutions to th_
eqllation

l'c,., = X + 2(&p)---------_Pc',,.,= <.\'} + 2,v-_)2<P } c'.,,,. (20)

Note that of the four parameters {X), {P}, (p2}, and {G), only three are independent
because they satisfy the equality in the uncertainty relation. Therefore,

,_XX

(.\"+ iBP)_,_= C_,_, B = _, C = {X> + iB<P}. (21)

Here B is real and C is complex. We called these states, ,z',_(B, C), the minimum-
uncertainty states for general potentials [20, 21]. However, using the parlance ac-
cepted later, they are the squeezed states for general potentials [10]. Then B can
be adjusted to B0 so that the ground eigenstate of the potential is a member of the
set. Then these restricted states, c_,,_(B = Bo, C) = _'_(Bo, C), are the minimum-
uncertainty coherent states for general potentials.

It can be intuitively understood that _',,( B, C) and _:',,(B0, C) are the squeezed
and coherent states by recalling the situation for the harmonic oscillator. The coherent
states are the displaced ground state. The squeezed states are Gaussians that have
widths different than that of the ground state Gaussian, which are then displaced.

3 Present: Generalized Ladder-Operator

Squeezed States

.-ks we have discussed, general annihilation-operator {or ladder-op,,rator) coherent
states are the eigenstates of the lowering operator (given a lowest extremal state).
We now propose a generalization to squeezed states, including those for arbitrary
symmetry systems: The general ladder.operator squeezed states are the eigenstates of
a linear combination of the lowering and raising operators.

I note that the success of this method will not be totally surprising. In many
exactly solvable potential systems, the natural quantum operators of the minimum-
uncertainty method were found to be Hermitian combinations of the n-dependent
raising and lowering operators [20, 21]. Here, however, one must generalize to full
operators: n _ n(H). Furthermore, in other harmonic-oscillator-like systems, with
a Bogoliubov transformation, this method applies. (See below.)

I will proceed by showing how the minimum-uncertainty method for obtaining
generalized squeezed states can be used as an intuitive tool to aid in understanding
the ladder-operator method for obtaining generalized squeezed states. I will do this
with two specific examples. Once that is done, the ladder operator method can
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be applied to general symmetry systems, independent of whether they come from a
Hamiltoniau system in the manner of the minimum-uncertainty method above. Such
is our third example.

3.1 Example I:The harmonic oscillator.

Firstletusre-examinetheharmonicoscillator,startingfromtheminimum-uncertainty
method. Here ,\" and P are obviously ,r and p. Then we have

y=x+s_ d
dx (22)

where we have presciently labeled B as s2. (For the limit to coherent states, it turns
out that B = 1.)

Now writing x and p in terms of creation and annihilation operators, we find

[x/_ a 2 + u't 5 ¢"'(s'2'x° + is'2P°) = [x0 + is'2po]¢',s(s2,xo + ts2p0).

(23)
Therefore, the squeezed states are eigenstates of a linear combination of the annihi-
lation and creation operators. Specifically, these states are as given in Eq. (13),

_',_(x) = [_s_]-l/4exp [ (x- Xo)2- 2s.2 + ipox , (24)

3.2 Example II: The harmonic oscillator with centripetal
barrier.

I now discuss the symmetry of the harmonic oscillator with centripetal barrier. Previ-
ously, the coherent states for this particular example were found with the minimum-
uncertainty method, but not the squeezed states [21]. Therefore, it is a useful system
since, at the end, we can relate our results to the coherent states obtained from the
minimum-uncertainty method.

This system contains an su(1,1) algebra [22]. Its elements are

1 ar2 1 d 1 u2 t/
L±= .tudz'2:F-_:_ _::_+ 7" - 4z-"_' (25)



L,_- 41,+ '2 H = ,/'-' + z,-' i26)

.Y= - = -'- 1+ . P=" - =- 2: +1 ('_7)z, i i _ " "

Therefore, rl_, s_l_ie_'ze_lstat_,s for this s,vstelll are forlned l)y the ,_ol_ttion to the,
,,Clltation

,/_ l ',,,B,j _ _ :J 2 J() = //,1_/_"-* 2 +" " + !/- -- + 2Bt_ - ,.,,.,, (28)

where we have cllang_,_l variables to !/ = v:" The S(l_Wezed state solutions to this
_'(lllatioll are

,,, _+, (,\+_) , ,\+ ' ,..,!/ , (29)

whore ¢(_, b:,') is the conftlwnt hvpergeometric function E,,___0_ ¢_.,_B_ 1' " (bt..!' _ = - "['

an¢! ,\(,\ + I) = z,,:_.In the limit whore B -+ 1/(2/,,). thrso b_,,'ome the coherent states
giw'n in Fief. [21].

r _ 1/2e__,;N(, l 11'2
= • _,,., _ ((2_Cy)l_" LZ,+,/-'('.'lCl),, ,,-:_/,.r,+,,_ ,'_). (30)

whew I is the modified Bessel function.

3.3 Example III: The squeeze algebra.

\Ve now _'onsider a symmetry system which does not have as its origin a Hamiltonian
system. ",\'_'_'onsi(ler the su(1.1) symmetry of Eqs. (8, 9). Our ladder-operator
S(l_teezed _tates al'(, thus tile solutions to

](lit Jr" (Itri t e,., = ,1"_'.,,,, (31)



wll,,r,. )11,,_l_;_l,)-ll,, ()t'B is ,, an(l rh(, r()l(, ()f d' is t_l¢(,xl t>y ._-'. l.'sillg tll(' differonti_L1
r_'l>r_,_,_,lit_lti(_n.,,_)t'tht, ln_lch'r _)p(,rutc)rs. E]c1. (31) van Ix, writtel), ill tit,, form

-' d ]+ 2!/."T q + !I" + 1.'_--'2.: t2) _.',,,= (1. (32i

()l).,,erve that th(, lad(l(,r operators raise and lower the nunlhm" states by two llnits.
Therefore, theft will I)r two sollltions to this eqllation, one ('ontaining only rw, n

nllml)rr statos an(l ()m, ('ontaining only odd number statrs. \Vr will designato these
as t'tc.,, and t'().,.,. These sollltions are

"}' ),.'t:,,.,= .\'_-:(:Xl, -_(,', + v/.Q - 1') ¢ + 2v/Q, i , _: !l"v'._' i , (33)

h_ the limit .s -+ 1, these I)ecome the even and odd coherent states:

],/, [ ]
e-Ja I ,,

_'_:,,.,= /_ - . exI) - cosh( ,

'.'o_., - ,_/'-' sinh I,._l'-' exp - !i_ sinh(v/22.J.q). 36)

Using gon,,rating formulae, these can be writtrn in the number-state basis as

fa,, + I

'.'o,,., = [sinh {"'_):_]-'/" ,,_0=_/i':2;; :+i }: 12,)+i Z). (38)

l'p to th(: normalization, these are the "even and odd coherent states" previously

foun(l in Hcf. [23]. Although this s.vstem did not come from a Hamiltonian, one could



t

ll_tV(' )l_q',[ _| ll)illlItllillI-)lll('('l'1_liIltV i)l'il_(.ii)l,, t_)(_])r_il_ th(, _llll(' _t_,tt_',_ ])%" _tal'lill_

wirll rl_,. ,")IZlltll))_Iri()tl r('i,lti()ll if(... IX'_I = --:2A'(). [-'I()w(,vrr. ()It(, (I()('s ll()t ()l)railt rla,
_t(' ,',)l_,'t,'z_r ,,t_r,,,,, I'I()_ rh,, ,Iisl)l)t('(,i_,,l_r-()l)(,rat()r m(,thori. Thos(, ('()lwr(,nt _rarrs.

,l,'fill('([ ),v ,_'I : ii()". _)'_' el),, ,_(lll('_'Z('(l-X'_'ll)l)llGau._siaa (_f Eq. (:24) with ,r() = I>o= O.

Tll(, _l>,)v,, rl_).(,,,,'×_)i_l)l('_ l_ax'(,all l>_,(,aca._(,,_wh(,re A_ = (.4.)) . Som(,tim(,._ that

i_ m)r rh(, ('_._(,. _.,, ia ('(,rrai_ l),_r(,t_rial _ysr(,m._ xvh()._(,rigelt('a(,rgies _,tl'(-' IV,)t ('(i_allv
_pa(:('(:l [:20. 21]. TIw_. as in E(I. 12G), ()m, should _,_e tlw Ol>erator form for "_":
A,) _ A,)(//), t()('ol),ll_'(:'t tO )'II(:) lllillillllilll-llllCel't_tiilry nterho¢[. ]ii these ca._es, the

Iadd(,r-ol)erator ('oh(,r(,nt aa(l squeezed states can be different than, though related
r(), th(,ir milti_m_-_)_w(,rtai_ty (:o)taterparts.

4 Future: Generalized Displacement-Operator
Squeezed States?

Although the rii_l)la(.(,ment-Ol:)erator t_wthod is the aat_tt'al one for defiaing c,)hereat

states of Li_, _rO_tl_s. there is a,s yet t_o w(,ll-known general extensioa of this method

to define geaeral _ii._l)la¢'e_neat-Ol)(,rator squeezed stares. It has basically oaly been

applied to harn_.oaic-(>s('iIIator-like systems [9. I0].

This has l_,,)_a rouch(_,d l_I)on ia discussions [24] al)out higher-order generaliza-
rio'ns of the "sq_meze operator," S(,:). In I)articular, although harmonic-oscillator-

like systems admit s(1)_eeze Ol)e),'at()):s (()r Bogoli_)bov transformations) connecting the

displacemear-Ol)erat()r an¢I ladder-ol)erator methods [25, 2G], the appropriate geaeral-
izatioa of these sq_wez(, Ol)erators have llot })Yell fOlllI(:l. Therefore. for aow, the ladder-

()I)rrator m(,thod is _eacraIIy conaected oaly to the minimum-uncertainty method.

.N'()te also tl_at for finite-dimeasioaal rel)rr._(,ntatioas, such as for angular momea-
t_m (:ohereat states, the ladder-operator method does aot allow a solution for coher-

ent states, although the disl)la(,(,)nent-operator method does [25]. Coatrariwise, for
S(l_W(:,zedstate,s, we ol)serve that the opposite is true.

It thus remains for the future to find generalized squeezed states from the dis-

l)lac(:me): ()l)erat()r method. I have been given some helpful advice by a number of

l)eol)l( , at this S v))_i)osium, including .}oha I,_lauder aad Arthur \Vightmaa. but the

solutioa remains to be found. Hopefully, at the aext Symposi_m something further
cat_ l)(, sai(l.

It)
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