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Abstract: The interaction between a charged metal implant surface and  
a surrounding body fluid (electrolyte solution) leads to ion redistribution and 
thus to formation of an electrical double layer (EDL). The physical properties of 
the EDL contribute essentially to the formation of the complex implant-
biosystem interface. Study of the EDL began in 1879 by Hermann von 
Helmholtz and still today remains a scientific challenge. The present mini 
review is focused on introducing the generalized Stern theory of an EDL, which 
takes into account the orientational ordering of water molecules. To ascertain the 
plausibility of the generalized Stern models described, we follow the classical 
model of Stern and introduce two Langevin models for spatial variation of the 
relative permittivity for point-like and finite sized ions. We attempt to uncover 
the subtle interplay between water ordering and finite sized ions and their impact 
on the electric potential near the charged implant surface. Two complementary 
effects appear to account for the spatial dependency of the relative permittivity 
near the charged implant surface – the dipole moment vectors of water 
molecules are predominantly oriented towards the surface and water molecules 
are depleted due to the accumulation of counterions. At the end the expressions 
for relative permittivity in both Langevin models were generalized by also 
taking into account the cavity and reaction field. 
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INTRODUCTION  
 

The contact between a negatively charged metal surface and an electrolyte 
solution results in an a rearrangement of ion distribution near the metal surface 
and formation of the so-called electrical double layer (EDL) [1-4]. To address 
the challenge of the EDL, Stern [4] combined the Helmholtz and Gouy-
Chapman models, providing the first attempt to incorporate steric effects. 
Helmholtz [1] treated the double layer mathematically as a simple capacitor, 
based on a physical model in which a layer of ions with a single layer of water 
molecules around each ion is adsorbed at the surface. Gouy [2] and Chapman [3] 
considered the thermal motion of ions and pictured a diffuse double layer 
composed of ions of opposite charge (counterions) attracted to the surface and 
ions of the same charge (co-ions) repelled by it, embedded in a dielectric 
continuum described by the Poisson - Boltzmann (PB) differential equation. An 
oft-stated assumption in the models describing this phenomenon is that the 
permittivity of the whole system is constant. But actually, close to the charged 
surface the water dipoles cannot move as freely as further away from it. Besides, 
due to accumulation of counterions near the charged metal surface, the water 
molecules are partially depleted from this region. Water molecules in an 
electrolyte solution can also better organize their hydrogen bonding network 
without ions, therefore it is energetically favourable that ions which disrupt the 
hydrogen bonded water network are moved from the bulk towards the charged 
metal surface [5]. In addition, the dipole moment vectors of water molecules at 
the charged metal surface are predominantly oriented towards the surface, while 
further away from the charged surface all orientations of water dipoles are 
equally probable [6-9]. 
The present paper describes two generalized Stern models of EDL which take 
into account the actual spatial variation of the permittivity near the charged 
surface [7]. The interplay between water ordering and the finite size of ions and 
their impact on the decrease of permittivity near the charged surface is 
discussed. 
 
STERN MODEL WITH A CONSTANT PERMITTIVITY 

In this mini review, we consider a planar uniformly charged surface in contact 
with an electrolyte solution of ions (counterions and co-ions). The planar surface 
bears a charge described by the surface charge density 

effσ , which incorporates 

the negatively charged electrode, as well as the specifically bound negatively 
charged ions. The x-axis of the Cartesian coordinate system used points in  
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a direction perpendicular from the charged planar surface to the bulk solution. 
The electric potential in general can be calculated from Poisson's equation [10]: 

0( ) ( )
( )

,r

d d
x x

dx dx

x ρφε ε⎛ ⎞ =−⎜ ⎟
⎝ ⎠       

(1) 

where ( )r xε  is the relative permittivity of the medium, 0ε  is the permittivity of 

a vacuum, ( )xφ is the electric potential and ( )xρ  is the macroscopic (net) 

volume charge density in the electrolyte solution. 
 

 
Fig. 1. Stern model consisting of a Stern layer defined by the outer Helmholtz plane (OHP) 
and a diffuse layer. 
 
Generally, the Stern model [4] consists of the Stern layer, restricted by an outer 
Helmholtz plane (OHP) [11] (Fig. 1), where the centres of hydrated counterions 
are at the distance of closest approach (b ). In the classical Stern model, the 
relative permittivity of the medium ( )r xε  is considered constant over both 

regions: 1( ) .r rxε ε=         (2) 

Within the Stern layer (0 )x b< <  (see Fig. 1), the electric potential is described 

by the Poisson equation, Eq. 1. The media is considered homogeneous and the 
ions are assumed to have a point-like charge at their centre. As they are arranged 
in the OHP, the charge density within the layer is zero ( ( ) 0xρ = ). On the other 

hand, in the diffuse layer ( )b x< < ∞ , the macroscopic volume charge density 

has the following form: 

0( ) ( )i i

i

x v e n xρ =∑         (3) 
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with ( )in x  being the concentration of the ions, /i = + −  the counterions and  

co-ions respectively, 0e  the elementary charge and iν  the ion valence. 

Hereafter, we assume that the ions are monovalent and their valence iν  is equal 

to 1ν + =  and 1ν − = −  for positive and negative ions respectively. The number 

density (i.e. the number of molecules per unit volume) of the charged ions of the 
electrolyte solution obeys the Boltzmann distribution law: 

0 0( ) exp( ( ) ), , ,i in x n v e x iφ β= − = + −                   (4) 

where 1/ kTβ =  and k  is the Boltzmann constant, T  the absolute temperature 

and 0n  the number density of ions in the bulk far away from the charged 

surface. Within the whole paper, we use a Cartesian coordinate system. By 
combining Eqs. 1-4, we obtain the so-called Poisson-Boltzmann equation (PB) 
for the region b x< < ∞ . The equations describing the Stern model are obtained 

then as 

2

0 02
0

1 0

0 0

2
sinh( ( ) )

r

x b
d

n e
e x b xdx

φ
φ β

ε ε

≤ <⎧
⎪= ⎨ ≤ < ∞⎪⎩

    (5) 

At room temperature the relative permittivity 1rε  (Eq. 2) is equal to 78.5. The 

boundary condition at x = 0 is consistent with the condition of electroneutrality 
of the whole system: 

0 1 0

.eff

x r

d

dx

σφ
ε ε=

= −         (6) 

The validity of Gauss's law at x b=
 
is fulfilled by the following equations: 

,
b b

d d

dx dx

φ φ

− +

=         (7) 

where also .
b b

φ φ
− +
=  Due to screening of the negatively charged metal surface 

by the accumulated cations, far away from the charged metal surface the 

magnitude of the electric field strength /E d dxφ=  tends to zero and 

consequently the electric potential there is constant. For simplicity we choose 
the value of electric potential to be zero at x → ∞ : 

0.
x

φ
→∞

=          (8) 

The classical Stern model described above treats the electrolyte solution as  
a continuous medium with a constant relative permittivity, i.e. it totally neglects 
the finite size of the ions, as well as the orientational ordering of water 
molecules close to the charged metal surface [7]. Ignoring the influence of the 
orientational ordering of water molecules is certainly a very rough 
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approximation, which is reflected in considerable discrepancies between the 
measured and predicted values of the surface electric potential, as well as in the 
corresponding values of the concentration of ions near the charged surface  
[7, 8, 11, 12]. Namely, the free rotation of polar water molecules is due to the 
strong electric field being substantially hindered at the charged metal surface. In 
addition, the strong accumulation of counterions near the charged surface may 
drastically reduce the concentration of water molecules at the charged metal 
surface [13-16]. Both phenomena, which are not taken into account in the 
classical Stern model, strongly influence the relative permittivity and the electric 
potential near the charged metal surface [7, 11, 16, 17]. Therefore, in the 
following sections we describe the influence of the finite size of ions and the 
orientational ordering near the charged metal surface on the spatial variation of 
permittivity. At the end the classical Stern model is generalized to take into 
account the spatial variation of permittivity near the charged metal surface. 
 
SPATIAL VARIATION OF PERMITTIVITY FOR POINT-LIKE IONS - 

LANGEVIN MODEL  
 

In the previous section describing the classical Stern model, the relative 
permittivity was taken into account a priori rather than deriving it from the 
average microscopic charge density, as is actually done in the present Langevin-
Boltzmann model of permittivity of an electrolyte solution in contact with  
a charged surface for point-like ions [7]. In the Langevin- Boltzmann model the 
electrolyte solution consists of water molecules, monovalent cations and anions. 
As already mentioned above, it was indicated [7] that the permittivity profile 
close to the charged surface is mainly determined by two mechanisms: the 
depletion of the water dipoles at the charged surface due to accumulation of 
counterions, and the decrease in orientational ordering of the water dipoles as  
a function of the increasing distance from the charged metal surface.  
In order to derive the spatial variation of the relative permittivity, the 
polarization ( )P x  is written as 

0( )  ( , ) ,w B
P x n x ω= p        (9) 

where 0  wn  is the number density of water dipoles, ( , )x ωp  is the water 

(Langevin) dipole moment vector at coordinate x , angle ω  describes the 
orientation of the dipole moment vector with respect to the x -axis and 

( , )
B

x ωp  is the average of ( , )x ωp over the angle distribution in thermal 

equilibrium at given x . In our case of a negatively charged planar surface  
(  0effσ < ), the electric field strength vector E  and the projection of the 

polarization vector P  point in the direction opposite to the direction of the  
x -axis. Hence ( )P x  is considered negative. 
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The probability of finding a water dipole vector in an element of solid angle  
dΩ = 2π sinω dω is proportional to the Boltzmann factor exp(-Wd β), where 

0· · cos( )d p EW φ ω= − = ∇ =p E p        (10) 

is the energy of the water (Langevin) dipole p  in the electric field φ= −∇E , 

'E φ=  is the magnitude of the electric field strength, 'φ
  

is the first derivative 

of φ  with respect to x  and 0p is the magnitude of the water dipole moment. 

Hence: 

( )
0 0

0
0 0

0

0

cos  exp( cos ) 2 sin  

( , )   .

exp( cos ) 2 sin  
B

p p d

x p

E

E

dE

p

p

π

π

ω ω π ω ω
ω

ω π ω ω

β
β

β

−
= = −

−

∫

∫
p L  (11) 

 

In our case  0effσ <
 

and ' 0φ > : ' 'E φ φ= = . The function 

( ) ( )( )coth –  1/u u u=L is the Langevin function, which describes the average 

magnitude of the Langevin dipole moments for a given E(x) . In the derivation 

of Eq. 11, we assumed that for a given ω  the dipole moment vector p  is 

oriented uniformly around the x -axis. By substituting Eq. 11 into Eq. 9, we can 
express the polarization as: 

( )0 0 0 0( )  ( , )    .w wB
P x n n Ex p pω β= = −p L      (12) 

The relative permittivity of the electrolyte solution ( ( )r xε ) can be derived as 

[10]: 

0

| |
1  .r

P

E
ε

ε
= +          (13) 

By taking into consideration Eq. 13, the relative permittivity takes the following 

form [7]: 0 0
0

0 0

( )| |
1  1  ( )   .r w

p pP
n

E E

E
x

βε
ε ε

= + = +
L

     (14) 

For 0 1p Eβ =  we can expand the Langevin function in Eq. 14 into a Taylor 

series up to the cubic term: ( ) 3/ 3 – / 45u x x≈L  to get [7]: 
2 2

0 0 0 0
2

0 0 01  / 3  ( ) ( 4) ./ 5r w wn p n p px Eε β ε β β ε≈ + −     (15) 

Obviously, from Eq. 15 it may be deduced that the relative permittivity ( )r xε  

decreases with increasing magnitude of the electric field strength ( E ). Since the 
electric field strength E decreases with increasing distance from the charged 
metal surface, this means that ( )r xε  increases with increasing distance from the 

charged surface. In accordance with the results of other authors (see for example 
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[9, 11]), it can be concluded that due to the distinct preferential orientation of 
water dipoles in the close vicinity of the charged surface, the relative 
permittivity ( )r xε  is reduced relative to its bulk value [7]. 

 
SPATIAL VARIATION OF PERMITTIVITY FOR FINITE-SIZED IONS 

– THE LANGEVIN-BIKERMAN MODEL 
 

To develop an integrating framework to clarify the factors influencing the 
relative permittivity, in this section we derive the permittivity with a spatial 
variation taking into account the orientational ordering of water and the finite 
size of molecules (Langevin-Bikerman model [7, 17]. The finite size of 
molecules is considered by assuming that ions and dipoles are distributed in  
a lattice, where each lattice belongs to only one of three molecular species 
(cations, co-ions, water molecules) [6, 7, 13, 14-16]. 
Since in bulk solution the number densities of water molecules ( 0  wn ), 

counterions ( 0  n ) and co-ions ( 0n ) are constant, their number densities can be 

expressed in a simple way by calculating the corresponding probabilities that  
a single lattice site is occupied by one of the three particle types in the 
electrolyte solution (counterions, co-ions and water molecules): 

0

0 0 0

( ) ( )  ,s

w

n
n x n x n

n n n
+ −→∞ = →∞ =

+ +
     (16) 

0

0 0 0

( )  ,w
w s

w

n
n x n

n n n+
→∞

+
=       (17) 

where  sn  is the number density of lattice sites defined as 00 2s wn n n+= . The 

number densities of ions and water molecules are influenced by the charged 
surface so the probabilities that the single lattice site is occupied by one of the 
three kinds of particles should be corrected by the corresponding Boltzmann 
factors: 

0

00 0

0
cos

0 0 0

( )  ,
e

e e Es p

w

n
n x n

n n e

e

e ne

φβ

φβ φβ ω

ω

β+ −

−

−+
=

+
    (18) 

0

0

0 0

0
cos

0 0 0

( )  ,
e

e pe

w

Es

n
n x n

n n n

e

e ee

φβ

φβ φ ω

ω

β β− −−
=

+ +
    (19) 

 

0 0

0

0

cos
0

cos
0 0 0

( )  ,

E

e

p

w

w s p

w

e E

n e
n x n

n n e n ee

β

φβ φβ β

ω

ω
ω

ω

−

−

−+ +
=     (20) 
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where 

0

0

0
cos

cos
0

0

2 (cos ) 
1

   sinh( ).
4

p E

Ep

d e

e p E
Ep

ω π
ω

β ω

β β
β

π ω

π

−

− = =
∫

  (21) 

 

Here, 0 cosp E
e

β ω

ω

−  is the dipole Boltzmann factor after rotational averaging 

over all possible angles ω  . Using the definition 

( ) 0
0 0 0

0

sinh( )
, 2 cosh( ) ,

( )w

p
E n n

p

E
e

E
φ φ

β
β β

= +H     (22) 

Eqs. 18-20 can be written in the form [7, 17]: 

0
0( )   ,e sn

n x n e
φβ−

+ =
H

        (23) 

0
0( )   ,e sn

n x n e
φβ

− =
H

        (24) 

0
0

0

 1
( )   sinh( ).w s

w

n n
n x p

p
E

E
β

β
=

H
      (25) 

In the case of finite sized ions, the polarization ( )P x  (Eq. 9) is derived as: 

( )0
0 0

 1
( ) ( ) ( , )   sinh( )  .w s

w B

n n
P x n x x p pE E

E
β β

β
ω= = −p L

H
  (26) 

Based on Eq. 13, we can express the relative permittivity of the electrolyte 
solution ( ( )r xε ) in contact with the charged surface as [7, 17]: 

( )
0 0

0
0 0

( )| |
1  1   ,

,
( )r s w

p pP
n n

E
x

E E

Eβ
φ

ε
ε ε

= + = +
F

H  
     (27) 

where  
 

( ) ( ) sinh /u u u u=F L .       (28) 

 
In the approximation of small electrostatic energy and small energy of dipoles in 
the electric field compared to the thermal energy, i.e. small 0e φβ  and small 

0p Eβ , Eq. 27 can be expanded in a Taylor series to get (for ns ≅ n0w) [7]: 

 
2 2 2 2

0 0 0 0 0 0
2

0 0 0 0 01  / 3  / 45 ( ) /( ) ( ) .3r w w wn p n p p Ex n epβ β φβε β ε ε β ε≈ −+ −  (29) 

 
To draw consistent inferences, we should have a closer look at Eq. 15 and Eq. 29 
describing the relative permittivity for point-like and finite-sized ions, 
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respectively. The first three terms in the expressions for ( )r xε  are equal in both 

models, i.e. in the Langevin model considering only orientational ordering of 
water and neglecting the finite size of molecules, and in the generalized 
Langevin model which also takes into account the finite size of molecules in the 
electrolyte solution. So these terms represent the effect of the orientation of 
water molecules in the electric field near the charged surface. The fourth term in 
Eq. 29 describes the decrease of ( )r xε  near the charged surface due to the 

depletion of water dipoles because of the accumulated counterions. Therefore, 
based on Eqs. 15 and 29 and numerical calculations presented in [7], it can be 
concluded that the relative permittivity of the electrolyte solution ( )r xε  near the 

charged metal surface is reduced relative to its bulk value due to the preferential 
orientation of water molecules and the depletion of water molecules in the close 
vicinity of the charged surface. In the following we shall present a generalization 
of the Stern model Fig. 2 which also includes the spatial variation of the relative 
permittivity ( )r xε . 
 

 
 

Fig. 2. Charge distribution in the generalized Stern model, where the interval 0 x a< <  is 

the region of strong water orientation and b  is the distance of closest approach. 
 
GENERALIZED STERN MODELS WITH SPATIAL VARIATION OF 

PERMITTIVITY FOR POINT-LIKE AND FINITE SIZED IONS  
 

Similarly as in the Stern model, so also in the generalized Stern models 
presented in this section the hard core interactions between the cations and the 
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negatively charged surface with surface charge density 
effσ  is taken into 

account by means of the distance of closest approach b a≤ , where a  (or the 
region of preferentially oriented water molecules) is defined as in Fig. 2. The 
generalized Stern model model can be described consistently by dividing the 
half-space into three regions: region I ( 0 x b< < ), region II ( b x a< < ) and 

region III ( a x< < ∞ ). In the region 0 x b< < , unlike in the Stern model, we 

still have a very small contribution to the macroscopic charge density from the 
few anions, despite the strong repulsion. The relative permittivity here is  

2rε  
and is smaller than the bulk value 1 78.5rε =  

(at room temperature) due to 

the strongly oriented water molecules and the depletion of water molecules, as 
described in previous sections and in [7]. The macroscopic charge density in 
region II is due to the cations and the few anions. The influence of the water 
dipoles in this region is described by 2 1r rε ε< . The third region involves the 

cations, anions and bulk water and is described by 1 78.5rε = , similarly to the 

Stern model (Fig. 2). Based on the results of statistical mechanical calculations 
of water ordering in an electrolyte solution near a charged surface in the 
previous two sections and in [7], the permittivity in generalized Stern models 
may therefore be approximately described as a step function of the distance from 
the charged surface (Fig. 3): 

2

1

( ) r

r

r

x a
x

x a

ε
ε

ε
<⎧

= ⎨ ≥⎩
 .       (30) 

 
 

Fig. 3. Model of the relative permittivity ( )r xε  in generalized Stern models as a step 

function of the distance from the charged surface, where a  denotes the region of 
preferentially oriented water molecules. 
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Langevin Stern (LS) model for point-like ions 

Similarly as in the classical Stern model for point-like ions, we combine Eqs. 1, 3 
and 4 to determine the governing equations of the Langevin Stern model for 
point-like ions: 

( )0 0
0

2 0

2
0 0

02
2 0

0 0
0

1 0

exp ( ) 0

2
sinh( ( ))

2
sinh( ( ))

r

r

r

e n
e x x b

e nd
e x b x a

dx

e n
e x a x

β φ
ε ε

φ β φ
ε ε

β φ
ε ε

⎧
≤ <⎪

⎪
⎪

= − ≤ <⎨
⎪
⎪
− ≤ < ∞⎪
⎩

    (31) 

Note that in the Poisson equation (Eq. 1) the macroscopic volume charge density 

0( ) ( ( ) ( )) x e n x n xρ + −= −  in the three described regions (Fig. 2) was calculated 

by using the Boltzmann distribution function for point-like ions (Eq. 4). 
Accordingly, the value of 2rε  should also be determined from the corresponding 

equation for point-like ions, i.e. from Eq. 14 as follows: 

0 0
2 0

0

( ( 0) )
( 0) 1   .

( 0)r r w

Ep p x
x n

E x
ε ε β

ε
=

= += =
=

L
    (32) 

 

Langevin-Bikerman Stern (LBS) model for finite-sized ions 

On the other hand, for finite-sized ions the macroscopic volume charge density 

0( ) ( ( ) ( )) x e n x n xρ + −= −  in the Poisson equation (Eq. 1) should be calculated 

from the ion distribution functions for finite sized ions, i.e. from Eqs. 23 and 24. 
The corresponding Poisson equation (Eq. 1) then reads: 

( )
( )

( )

( )

00 0

2 0

2
0 0 0

2
2 0

0 0 0

1 0

exp ( )
0

( ), ( )

2 sinh( ( ))

( ), ( )

2 sinh( ( ))

( ), ( )

s

r

s

r

s

r

e xe n n
x b

x E x

e n n e xd
b x a

dx x E x

e n n e x
a x

x E x

β φ
ε ε φ

β φφ
ε ε φ

β φ
ε ε φ

⎧
≤ <⎪

⎪
⎪⎪= − ≤ <⎨
⎪
⎪
− ≤ < ∞⎪
⎪⎩

H

H

H

    (33) 

Here the value of permittivity 2rε  is determined from the corresponding 

equation for finite-sized ions, i.e. from Eq. 27 as follows: 

( )
0 0

2 0
0

( 0)

( 0) (

( )
( 0) 1   .

), 0) ( 0r r s w

p p
x n n

E E

E x

x x x

βε ε
φε

=
=

=
=

=
= +

=
F

H    (34) 
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Boundary conditions 
The boundary conditions in the generalized Stern models are consistent with the 
ones used in the Stern model. The only difference is that at 0x =  the relative 

permittivity corresponds to 2rε  and we can write Eq. 6 as: 

0 2 0

.eff

x r

d

dx

σφ
ε ε=

= −
        

(35) 

The validity of Gauss's law should be fulfilled not only at x b=  (see Eq. 7), but 
also at x a= : 

2 1 ,r r

a a

d d

dx dx

φ φε ε
− +

=
        

(36) 

where also .
a a

φ φ
− +
=  The assumption that the electric field strength tends to 

zero (Eq. 7) far away from the charged metal surface is valid here as well. 
The generalized Stern equations for point-like ions (Eqs. 31, 32) and finite sized 
ions (Eqs. 33, 34) were solved numerically for planar geometry using the finite 
element method (FEM) within the program package Comsol Multiphysics 3.5a 
Software (COMSOL AB, Stockholm). The value of 2rε  for a given 

effσ
 
was 

determined in an iterative procedure, where the initial value of 2rε  was equal to 

the permittivity of the bulk solution. The corresponding boundary conditions as 
described above were taken into account. 
Fig. 4 shows the electric potential as a function of the distance from the planar 
charged surface ( x ) calculated within the classical Stern model and both 
generalized Stern models, i.e. within the Langevin Stern (LS) model for point-
like ions and the Langevin-Bikerman Stern (LBS) model for finite-sized ions. 
For both generalized Stern models the values of the relative permittivity 2rε  in 

the region 0 x a≤ <  were determined as described above, while in the classical 

Stern model the relative permittivity is constant in the whole solution. We 
should also note that within the generalized Stern models a smaller permittivity 

2rε  yields a more negative surface potential than in the classical Stern model. 

Furthermore, the potential drop near the charged surface is the largest in the case 
of the LBS model for finite sized ions, while for point-like ions the potential 
drop is smaller. This can be explained by the larger value of 2rε  for point-like 

ions (see also [7]). The difference between the values of the predicted surface 
potential in the LS and LBS models is more pronounced for more negative 
surface charge densities (

effσ ). 
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Fig. 4. Electric potential distribution in a classical Stern model (dash-dotted line) and both 
generalized Stern models, i.e. the Langevin Stern (LS) model for point-like ions (full line) 
and Langevin-Bikerman Stern (LBS) model for finite-sized ions (dashed line). In Fig. 4A the 

parameters used are surface charge denisty 20.2 As / meffσ −= , εr2 = 72 (for LS) and  

εr2 = 54 (for LBS) and for Fig. 4B - surface charge denisty 20.3 As / meffσ −= , εr2 = 62 

(for LS) and εr2 = 25 (for LBS). The common parameters in both figures are as following: 

bulk concentration of salt n0/NA = 0.15 mol/l, 0.32a =  nm, 0.16b =  nm, 0   4.79p =  

D and bulk concentration of water n0w/NA = 55 mol/l. 
 
As expected, the electric potential changes linearly in the region 0 x b≤ < , but 

then close to the region around x b= , the slope (i.e. the electric field strength) 

changes (see Fig. 4). The main reason for such behaviour is that the electric field 
strength close to the charged surface in the region 0 x b≤ <  (where the free co-

ions are almost depleted) is practically completely determined by the boundary 
condition at the charged metal surface (at 0x= ). Therefore, in this region the 

magnitude of the electric field strength is 2 00
/ / .eff rx

E d dxφ σ ε ε
=

= = −  

 

DISCUSSION AND CONCLUSIONS 
 

In conclusion, we have presented the generalized Langevin Stern (LS) model 
and the generalized Langevin-Bikerman Stern (LBS) model, in which the 
relative permittivity is spatially dependent and derived from the Langevin model 
for point-like ions and the Langevin-Bikerman model for finite sized ions. The 
Langevin model for point-like ions describes the influence of water dipole 
ordering near a charged surface on the spatial variation of the relative 
permittivity ( )r xε . The analytical expression derived (Eq. 14) is then compared 

with the corresponding expression within the Langevin-Bikerman model for 
finite-sized ions (Eq. 27). In order to elucidate the influence of the finite size of 
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the ions on the relative permittivity ( )r xε ,
 

( )r xε  is expanded in both models 

into Taylor series for  small  0p Eβ  and small 0e φβ , i.e. for small magnitudes 

of the surface charge density
effσ . The important role of water molecule 

depletion (4th term in Eq. 29) in the decrease of the relative permittivity near the 
charged surface is revealed and is even more pronounced at higher values of 

effσ  (see [7]). The influence of water ordering (3rd term in Eqs. 15 and 29) is 

less important. Accordingly, a stronger decrease of the relative permittivity 
( )r xε  is observed near the charged surface with increasing surface charge 

density 
effσ  for finite-sized ions than for point-like ions [7].  

As described, the contact between a negatively charged metal surface and an 
electrolyte solution results in a rearrangement of the ion distribution and water 
orientational ordering near the metal surface. A variety of EDL models have 
been published up to date, most of which are based on the supposition that the 
permittivity is constant in the whole system. However, the Langevin and 
Langevin-Bikerman models presented in this mini review show that the dipole 
moment vectors of water molecules at the charged metal surface are on average 
oriented towards the surface. Additionally, due to the accumulation of 
counterions near the charged metal surface, we predicted that the permittivity is 
significantly reduced there [7]. Importantly, the models of ( )r xε  presented 

enable us to understand the basic mechanisms explaining the behaviour of the 
permittivity. To conclude, an important feature that results in better agreement 
between EDL theory and the corresponding experiments is the inclusion of 
spatially dependent permittivity in the theoretical EDL models [7-9, 17]. 
The magnitude of the effective dipole moment of the water molecule ( 0p ) 

should be known before a satisfactory statistical-mechanical study of water and 
aqueous solutions is possible. The dipole moment of a water molecule in liquid 
water differs from that of the isolated molecule because each molecule is further 
polarized by the electric field of the surrounding molecules [18]. Thus in the 
above described treatment of water ordering, in the saturation limit at high 
electric field within the Langevin and Langevin-Bikerman models the effective 
dipole moment of water 0 4.79p = D is larger than the dipole moment of an 

isolated water molecule 0 1.85p = D. However, it is also larger than the dipole 

moment of a water molecule in clusters ( 0 2.7p = D) and the dipole moment of 

an average water molecule in the bulk ( 0 2.4 2.6p = − D) [19] since the cavity 

and reaction fields, as well as structural correlations between water dipoles  [20, 
21], were not explicitly taken into account in the Langevin and Langevin-
Bikerman models. In the past the treatment of the cavity and reaction fields and 
the structural correlations between water dipoles in the Onsager [22], Kirkwood 
[23] and Fröhlich [20] models  were limited to the case of small electric field 
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strengths, i.e. they were valid far away from the saturation regime considered in 
the Langevin-Bikerman model and also in the Langevin model. Generalization 
of the Kirkwood-Onsager-Fröhlich theory in the saturation regime was 
performed by Booth [24] to find : 

( )22
02 0 0

0

73( / 6(
( )

3

2)7 2)
  

73
.w

r

n pn p n
n

E
x

E

β
ε

ε

++
= +

L
    (37) 

The above Booth expression for the relative (effective) permittivity for point-
like ions takes into account the cavity and reaction fields and the structural 
correlations between water dipoles, and can be used instead of Eq. 14 in the LS 
model. In the limit of zero electric field the above equation transforms into: 

2 2 2
2 0 0

0

7 )(2

54
  .w

r

n n p
n

βε
ε

+
≈ +        (38) 

It follows from Eq. 38 that the dipole moment of water 0 2.03p = D corresponds 

to the bulk permittivity 78.5rε = . Booth's expression for the relative permittvity 

(Eq. 37), however does not consider the excluded volume principle in electrolyte 
solution near a charged surface as is taken into account in the Langevin-
Bikerman model (Eq. 27). Therefore the Langevin-Bikerman expression for 
relative permittivity was recently generalized by Gongadze and Iglič by taking 
into account the cavity and reaction fields (but not also structural correlations 
between water dipoles) in saturation regime important in the consideration of an 
electrolyte solution in contact with charged surface (Gongadze, E. et al. Comput. 
Meth. Biomech. Biomed. Eng. submitted and Gongadze, E. and Iglič, A.  
Bioelectrochemistry submitted): 
 

( )
2

2 0 0
0

0

( )2
 ,

3 ,
( )r s w

p pn
n n n

E E

E
x

βε
φε
γ⎛ ⎞+

= + ⎜ ⎟
⎝ ⎠

F

D  
     (39) 

where 

( ) 0
0 0 0

0

sinh( )
, 2 cosh( ) ,

( )w

p
E n ne

Ep

Eγφ φ
γ β

β β
= +D

    

(40)

 
23 2

.
2 3

nγ
⎛ ⎞+

= ⎜ ⎟
⎝ ⎠         

(41) 

In the limit of vanishing electric field strength the above Eq. 39 yields the 
Onsager expression for permittivity:  

2 22
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≈       (42) 
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From Eq. 42 it follows that the value of the dipole moment p0 = 3.1 D 
corresponds to the bulk permittivity 78.5rε = . This value is considerably 

smaller than the corresponding value in the LB model ( 0 4.79p = D) (see Fig. 4) 

which does not take into account the cavity and reaction fields, and is also close 
to the experimental values of the effective dipole moment of water molecules in 
clusters ( 0 2.7p = D) and in bulk solution ( 0 2.4 2.6p = − D). Nevertheless, this 

fact does not negate the predictions of the LB model where all the equations 
(including the expression for relative permittivity) have the same structure as in 
the modified LB model (i.e. in Eq. 39 ), only the effective value of water dipole 
moment 0p  is larger in LB model. 

A practical application of the GSM developed can be found in the field of 
orthopaedics and specifically by surface modification of a hip implant. Namely, 
the cell and tissue reaction to the physical features of an implant surface 
ultimately determines the clinical success of an implant. The mechanism of the 
initial adhesion of osteoblastic cells to the implant surface is based on a protein 
and cation mediated attractive interaction between two negatively charged 
surfaces [25-27], i.e. the negatively charged implant surface and the negatively 
charged osteoblasts [28-30]. Therefore, the adhesion of osteoblasts to the 
implant is to a large extent determined by the electrical properties of the implant 
surface. Accordingly, many studies in the past indicated that increased negative 
surface potential of titanium implants promotes osteoblast adhesion and 
consequently, to new bone formation [29, 31, 32]. It it shown in this work that 
depletion and water ordering near the charged surface of a metal implant locally 
decrease the relative permittivity. The electric field strength and the magnitude 
of the negative electric potential in the close vicinity of the implant surface, due 
to this effect, are substantially increased which is of a crucial importance for the 
improved adhesion of cells to the metal surface [28, 29, 31, 32]. Accordingly, it 
has been shown recently that the topography of a nanostructured implant surface 
is a decisive factor for surface cell adhesion and growth [33-35]. The models of 
the electric double layer presented may thus serve as a practical tool to find the 
nanostructured surface topography of implants with optimal electric field 
strength and electric potential distribution that would promote the protein and 
cation mediated adhesion of osteoblasts to the negatively charged implant 
surface [35] and also communication between cells [36]. 
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