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GENERALIZED SUPPLEMENTED MODULES

Yongduo Wang and Nanqing Ding

Abstract. Let R be a ring and M a right R-module. It is shown that: (1) M is
Artinian if and only if M is a GAS-module and satisfies DCC on generalized
supplement submodules and on small submodules; (2) if M satisfies ACC on
small submodules, then M is a lifting module if and only if M is a GAS-
module and every generalized supplement submodule is a direct summand of
M if and only if M satisfies (P ∗); (3) R is semilocal if and only if every
cyclic module is a GWS-module.

1. INTRODUCTION AND PRELIMINARIES

In this note all rings are associative with identity and all modules are unital right
modules unless otherwise specified.

The concepts of generalized (amply) supplemented modules were introduced in
[13] to characterize semiperfect modules, (semi)perfect rings. It is well known that
a module M is Artinian if and only if M is an amply supplemented module and
satisfies DCC on supplement submodules and on small submodules. In Section 2,
we show that a module M is Artinian if and only if M is a GAS-module and
satisfies DCC on generalized supplement submodules and on small submodules. It
is also proven that a module M with ACC on small submodules is a lifting module
if and only if M is a GAS-module and every generalized supplement is a direct
summand of M if and only if M satisfies (P ∗). In Section 3, we define the concept
of a WGS-module and prove that a ring R is semilocal if and only if every cyclic
right R-module is a WGS-module.

Let R be a ring and M a module. N ≤ M will mean N is a submodule of M .
Rad(M) will denote the Jacobson radical of M . A submodule E of M is called
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essential in M (notation E ≤e M ) if E ∩ A �= 0 for any non-zero submodule A

of M . Dually, a submodule S of M is called small in M (notation S � M ) if
M �= S + T for any proper submodule T of M . Let N and L be submodules of
M , N is called a supplement of L in M if N + L = M and N is minimal with
respect to this property, or equivalently, M = N + L and N ∩ L � N . N is
said to be a supplement submodule of M if N is a supplement of some submodule
of M . M is called an amply supplemented module if for any two submodules A

and B of M with A + B = M , B contains a supplement of A. M is called
a supplemented module (see [8]) if for each submodule A of M there exists a
submodule B of M such that M = A + B and A∩B � B. M is called a weakly
supplemented module if for each submodule A of M there exists a submodule B
of M such that M = A + B and A ∩ B � M . M is called a hollow module if
every proper submodule of M is small in M . M has property (P∗) (see [2]) if for
any submodule N of M , there exists a direct summand K of M such that K ≤ N

and N/K ≤ Rad(M/K). The notions which are not explained here will be found
in [12].

Lemma 1.1. (see [12, 41.1]) Let M be a module and K a supplement sub-
module of M . Then K ∩ Rad(M) = Rad(K).

Lemma 1.2. (see [3, Proposition 5.20]) Suppose that K1 ≤ M1 ≤ M , K2 ≤
M2 ≤ M , and M = M1 ⊕ M2. Then K1 ⊕ K2 ≤e M1 ⊕ M2 if and only if
K1 ≤e M1 and K2 ≤e M2.

Theorem 1.3. (see [2, Theorem 5]) Let R be any ring and M a module. Then
Rad(M) is Artinian if and only if M satisfies DCC on small submodules.

2. GS-MODULES AND GAS-MODULES

Let M be a module. If U , U ′ ≤ M and M = U + U ′ then U ′ is called a
generalized supplement of U in case U∩U ′ ≤ Rad(U ′). Clearly each supplement is
a generalized supplement. M is called a generalized supplemented module or briefly
a GS-module (see [13]) in case each submodule U has a generalized supplement
U ′. For example, (amply) supplemented modules, hollow modules and modules
with (P ∗) are GS-modules. M is called a generalized amply supplemented module
or briefly a GAS-module in case M = U + V implies that U has a generalized
supplement U ′ ≤ V . U is called a generalized supplement submodule if U is a
generalized supplement of some submodule of M .

We start with the following.

Proposition 2.1. Let M be a GS-module and L a submodule of M with
L ∩ Rad(M) = 0. Then L is semisimple. In particular, a GS-module M with
Rad(M) = 0 is semisimple.
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Proof. Let L′ be any submodule of L. Since M is a GS-module, there exists
L′′ ≤ M such that L′ + L′′ = M and L′ ∩ L′′ ≤ Rad(L′′). Thus L = L ∩ M =
L ∩ (L′ + L′′) = L′ + L ∩ L′′. Since L′ ∩ L′′ ≤ Rad(L′′) and L′ ∩ L ∩ L′′ =
L′ ∩ L′′ ≤ L ∩ Rad(L′′) ≤ L ∩ Rad(M) = 0, L = L′ ⊕ (L ∩ L′′). So L is
semisimple.

Proposition 2.2. Let M be a GAS-module and K a direct summand of M .
Then K is a GAS-module.

Proof. Since K is a direct summand of M , there exists K ′ ≤ M such that
M = K ⊕ K ′. Suppose that K = C + D, then M = D + (C ⊕ K ′). Since
M is a GAS-module, there exists P ≤ D such that M = P + (C ⊕ K ′) and
P ∩ (C ⊕K ′) ≤ Rad(P ). Therefore K = K ∩M = K ∩ (P +(C ⊕K′)) = P +C
and P ∩ C = P ∩ (C ⊕ K ′) ≤ Rad(P ), as required.

Proposition 2.3. Let M be a GS-module. Then M = N ⊕ L for some
semisimple N and some module L with essential radical.

Proof. For Rad(M), there exists N ≤ M such that N ∩ Rad(M) = 0 and
N ⊕ Rad(M) ≤e M . Since M is a GS-module, there exists L ≤ M such that
N +L = M and N ∩L ≤ Rad(L). Since N ∩L = N ∩ (N ∩L) ≤ N ∩Rad(L) ≤
N ∩ Rad(M) = 0, M = N ⊕ L. By Proposition 2.1, N is semisimple. Thus
Rad(M) = Rad(N )⊕ Rad(L) = Rad(L). Since N ⊕ Rad(M) ≤e M = N ⊕ L,
i.e., N ⊕ Rad(L) ≤e M = N ⊕ L, Rad(L) ≤e L by Lemma 1.2. This completes
the proof.

Proposition 2.4. Let M1, U ≤ M and M1 be a GS-module. If M1 + U has a
generalized supplement in M , then so does U .

Proof. Since M1 +U has a generalized supplement in M , there exists X ≤ M
such that X +(M1 +U) = M and X ∩ (M1 +U) ≤ Rad(X). For (X +U)∩M1,
since M1 is a GS-module, there exists Y ≤ M1 such that (X +U)∩M1 +Y = M1

and (X + U) ∩ Y ≤ Rad(Y ). Thus we have X + U + Y = M and (X + U) ∩
Y ≤ Rad(Y ), that is, Y is a generalized supplement of X + U in M . Next, we
will show that X + Y is a generalized supplement of U in M . It is clear that
(X + Y ) + U = M , so it suffices to show that (X + Y ) ∩ U ≤ Rad(X + Y ).
Since Y + U ≤ M1 + U , X ∩ (Y + U) ≤ X ∩ (M1 + U) ≤ Rad(X). Thus
(X +Y )∩U ≤ X∩(Y +U)+Y ∩(X+U) ≤ Rad(X)+Rad(Y ) ≤ Rad(X+Y ),
as required.

Proposition 2.5. Let M1 and M2 be GS-modules. If M = M1 + M2, then M

is a GS-module.
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Proof. Let U be a submodule of M . Since M1 + M2 + U = M trivially has
a generalized supplement in M , M2 + U has a generalized supplement in M by
Proposition 2.4. Thus U has a generalized supplement in M by Proposition 2.4
again. So M is a GS-module.

Proposition 2.6. If M is a GS-module, then

(1) Every finitely M -generated module is a GS-module.
(2) M/Rad(M) is semisimple.

Proof. (1) From Proposition 2.5, we know that every finite sum of GS-modules
is a GS-module. Next we will show that every factor module of a GS-module is
again a GS-module.

Let M be a GS-module and M/N any factor module of M . For any submodule
L of M containing N , since M is a GS-module, there exists K ≤ M such that
L + K = M and L ∩ K ≤ Rad(K). Thus M/N = L/N + (N + K)/N and
(L/N ) ∩ ((N + K)/N ) = (N + (L ∩ K))/N ≤ Rad((N + K)/N ), that is,
(N + K)/N is a generalized supplement of L/N in M/N , as required.

(2) Let N be any submodule of M containing Rad(M). Then there exists a
generalized supplement K of N in M , i.e., M = N +K and N ∩K ≤ Rad(K) ≤
Rad(M). Thus M/Rad(M) = N/Rad(M)⊕ (K + Rad(M))/Rad(M), and so
every submodule of M/Rad(M) is a direct summand. Therefore M/Rad(M) is
semisimple.

Let M be a module and N ≤ M . N is said to have generalized ample supple-
ments in M if for every submodule L such that M = N + L, N has a generalized
supplement in L.

Proposition 2.7. Let M be a module and M = U1 + U2. If U1, U2 have
generalized ample supplements in M , then U 1 ∩ U2 also has generalized ample
supplements in M .

Proof. Let V ≤ M and U1 ∩ U2 + V = M . Then U1 = U1 ∩ U2 + (V ∩ U1)
and U2 = U1∩U2 +(V ∩U2), so M = U1 +V ∩U2 and M = U2 +V ∩U1. Since
U1, U2 have generalized ample supplements in M , there exist V ′

2 ≤ V ∩ U2 and
V ′

1 ≤ V ∩U1 such that U1 + V ′
2 = M and U1 ∩ V ′

2 ≤ Rad(V ′
2), and U2 + V ′

1 = M

and U2 ∩ V ′
1 ≤ Rad(V ′

1). Thus V ′
1 + V ′

2 ≤ V and U1 = U1 ∩ U2 + V ′
1 and

U2 = U1∩U2+V ′
2. Therefore (U1∩U2)+(V ′

1+V ′
2) = M and (U1∩U2)∩(V ′

1+V ′
2) =

(U2 ∩ V ′
1) + (U1 ∩ V ′

2) ≤ Rad(V ′
1 + V ′

2). This completes the proof.

Theorem 2.8. Let M be a module and U ≤ M . The following statements are
equivalent.

(1) There is a decomposition M =X ⊕ X ′ with X≤U and X ′∩U ≤Rad(X ′).
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(2) There is an idempotent e ∈ End(M) with e(M) ≤ U and (1 − e)U ≤
Rad((1− e)(M)).

(3) There is a direct summand X of M with X ≤ U and U/X ≤ Rad(M/X).
(4) U has a generalized supplement V in M such that V ∩U is a direct summand

of U .

Proof. (1) =⇒ (2) For a decomposition M = X ⊕ X ′, there is an idempotent
e ∈ End(M) with e(M) = X and (1 − e)(M) = X ′. Since X ≤ U , we have
(1 − e)(U) = U ∩ (1− e)(M) ≤ Rad((1− e)(M)).

(2) =⇒ (3) Take X = e(M).

(3) =⇒ (1) If M = X⊕X ′ and U/X ≤ Rad(M/X), then U = X +(X ′∩U),
X ′ ∩ U � U/X ≤ Rad(M/X) ≤ M/X � X ′, hence X ′ ∩ U ≤ Rad(X ′).

(1) =⇒ (4) By assumption, X ′ is a generalized supplement of U in M and
U = X ⊕ (X ′ ∩ U), as required.

(4) =⇒ (1) Let V be a generalized supplement of U in M with U = X ⊕ (V ∩
U). Then M = U +V = X +(V ∩U)+V = X +V and X ∩V = (X∩U)∩V =
X ∩ (V ∩U) = 0 (for X ≤ U ), i.e., X is a direct summand of M . This completes
the proof.

Corollary 2.9. A module M has (P ∗) if and only if for any submodule N

of M there exist submodules K, K ′ of M such that M = K ⊕ K ′, K ≤ N and
N ∩ K ′ ≤ Rad(K ′).

Lemma 2.10. Let U , V be submodules of M and V a generalized supplement
of U in M . If U is a maximal submodule of M , then U ∩V = Rad(V ) is a unique
maximal submodule of V .

Proof. Since V/(U ∩ V ) � M/U , U ∩ V is a maximal submodule of V , and
hence Rad(V ) ≤ U ∩V . Since U ∩V ≤ Rad(V ), U ∩ V = Rad(V ), as desired.

Let M be a module and N ≤ M . N is said to be a cofinite submodule (see
[1]) of M if M/N is finitely generated.

Theorem 2.11. Let M be a module. Then the following statements are equiv-
alent.

(1) M is a sum of hollow submodules and Rad(M) � M .
(2) Every proper submodule of M is contained in a maximal one and every

cofinite submodule of M has a generalized supplement in M .
(3) M is an irredundant sum of local modules and Rad(M) � M .
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Proof. (1) ⇐⇒ (3) Let M = ΣILi and Li (i ∈ I) be hollow submodules of M .

Then M/Rad(M) = ΣI(Li+Rad(M))/Rad(M). Since Rad(Li) ≤ Li∩Rad(M)
and (Li + Rad(M))/Rad(M) � Li/(Li ∩ Rad(M)), these factors are simple or
zero. Thus we have M/Rad(M) = ⊕I′(Li + Rad(M))/Rad(M). Therefore
M = ΣI′Li is an irredundant sum of local submodules Li (i ∈ I ′ ⊆ I) (for
Rad(M) � M ), as required.

(3) =⇒ (2) It is clear that M/Rad(M) is semisimple. Since Rad(M) � M ,
every proper submodule of M is contained in a maximal submodule by [12, 21.6].
Let K ≤ M with M/K finitely generated. Then there are finitely many local
submodules L1, · · ·, Ln such that M = K + L1 + · · · + Ln. By Proposition 2.5,
L1 + · · · + Ln is a GS-module. Thus K has a generalized supplement in M by
Proposition 2.4.

(2) =⇒ (1) Since every proper submodule of M is contained in a maximal
submodule, Rad(M) � M holds by [12, 21.6]. Let H be the sum of all hollow
submodules of M and assume H �= M . By assumption, there exists a maximal
submodule N of M such that H ≤ N and N has a generalized supplement L in
M . By Lemma 2.10, L is local (hollow). Thus L ≤ H ≤ N , a contradiction.
Hence H = M .

Corollary 2.12. Let M be a finitely generated module. Then the following
statements are equivalent.

(1) M is a GS-module.
(2) Every maximal submodule of M has a generalized supplement in M .
(3) M is a sum of hollow submodules.
(4) M is an irredundant sum of local submodules.

Proposition 2.13. Let M be a module. If every submodule of M is a GS-
module, then M is a GAS-module.

Proof. Let L, N ≤ M and M = N + L. By assumption, there is H ≤ L such
that (L ∩ N ) + H = L and (L ∩ N ) ∩ H = N ∩ H ≤ Rad(H). Thus H + N

≥ H + (L ∩ N ) = L and hence H + N ≥ N + L = M . Therefore M = H +N ,
as required.

Corollary 2.14. Let R be any ring. Then the following statements are equiv-
alent.

(1) Every module is a GAS-module.
(2) Every module is a GS-module.
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A module M is said to be π-projective if for every two submodules U , V of M

with U + V = M there exists f ∈ End(M) with Imf ≤ U and Im(1− f) ≤ V .

Theorem 2.15. Let M be a module. If M is a π-projective GS-module, then
M is a GAS-module.

Proof. Let A, B be submodules of M such that M = A + B. Since M
is π-projective, there exists an endomorphism e of M such that e(M) ≤ A and
(1−e)(M) ≤ B. Note that (1−e)(A) ≤ A. Let C be a generalized supplement of A
in M . Then M = e(M)+(1−e)(M) = e(M)+(1−e)(A+C) ≤ A+(1−e)(C) ≤
M , so that M = A + (1− e)(C). Note that (1 − e)(C) is a submodule of B. Let
y ∈ A∩ (1− e)(C). Then y ∈ A and y = (1− e)(x) = x − e(x) for some x ∈ C.
Next x = y + e(x) ∈ A, so that y ∈ (1 − e)(A ∩ C). But A ∩ C ≤ Rad(C) gives
that A ∩ (1 − e)(C) = (1 − e)(A ∩ C) ≤ Rad((1− e)(C)). Thus (1 − e)(C) is a
generalized supplement of A in M . It follows that M is a GAS-module.

Theorem 2.16. Let M be a module. Then M is Artinian if and only if M is
a GAS-module and satisfies DCC on generalized supplement submodules and on
small submodules.

Proof. The necessity is clear. Conversely, suppose that M is a GAS-module
which satisfies DCC on generalized supplement submodules and on small submod-
ules. Then Rad(M) is Artinian by Theorem 1.3. Next, it suffices to show that
M/Rad(M) is Artinian. Let N be any submodule of M containing Rad(M).
Then there exists a generalized supplement K of N in M , i.e., M = N + K and
N ∩ K ≤ Rad(K) ≤ Rad(M). Thus M/Rad(M) = (N/Rad(M)) ⊕ ((K +
Rad(M))/Rad(M)) and so every submodule of M/Rad(M) is a direct summand.
Therefore M/Rad(M) is semisimple.

Now suppose that Rad(M) ≤ N1 ≤ N2 ≤ N3 ≤ · · · is an ascending chain of
submodules of M . Because M is a GAS-module, there exists a descending chain of
submodules K1 ≥ K2 ≥ ··· such that Ki is a generalized supplement of Ni in M for
each i ≥ 1. By hypothesis, there exists a positive integer t such that Kt = Kt+1 =
Kt+2 = · · ·. Because M/Rad(M) = Ni/Rad(M)⊕(Ki+Rad(M))/Rad(M) for
all i ≥ t, it follows that that Nt = Nt+1 = · · ·. Thus M/Rad(M) is Noetherian,
and hence finitely generated. So M/Rad(M) is Artinian, as desired.

Corollary 2.17. Let M be a finitely generated GAS-module. Then M is
Artinian if and only if M satisfies DCC on small submodules.

Proof. “ ⇐= ” Since M/Rad(M) is semisimple and M is finitely generated,
M/Rad(M) is Artinian. Now that M satisfies DCC on small submodules, Rad(M)
is Artinian by Theorem 1.3. Thus M is Artinian.
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“ =⇒ ” is clear.

Remark 2.18. Let R be a ring. If RR is a GAS-module, then R is a right
Artinian ring if and only if R satisfies DCC on small right ideals. Thus a right
perfect ring which satisfies DCC on small right ideals is a right Artinian ring.

Let M be a module. M is called a lifting module if for any submodule N of
M , there exists a direct summand K of M such that K ≤ M and N/K � M/K ,
equivalently, for every submodule N of M there exist submodules K , K′ of M
such that M = K ⊕ K ′, K ≤ N and N ∩ K ′ � K ′. M is called a quasi-discrete
module if M is lifting and has (D3) (i.e., for any pair of direct summands K, L of
M with M = K + L, K ∩ L is a direct summand of M ).

Theorem 2.19. Let M be a module with ACC on small submodules. Then

(1) M is a GAS-module and every generalized supplement is a direct summand
of M if and only if M is a lifting module.

(2) M satisfies (P ∗) if and only if M is a lifting module.
(3) If M is a π-projective GS-module, then M is a quasi-discrete module.

Proof. (1) “ =⇒ ” Let M = A + B. Since M is a GAS-module, there
exists C ≤ B such that M = A + C and A ∩ C ≤ Rad(C). Since M satisfies
ACC on small submodules, Rad(C) is Noetherian by [2, Proposition 2], and hence
Rad(C) is finitely generated. Thus Rad(C) � C by [7, Corollary 9.1.3], and [12,
19.3] and C is a supplement of A. Therefore M is an amply supplemented module.
Since every supplement submodule is a generalized supplement submodule, every
supplement is a direct summand of M by assumption. Thus M is lifting.

“ ⇐= ” Since M is lifting, M is an amply supplemented module, and hence
M is a GAS-module. Let A be a generalized supplement submodule, i.e., there
exists B ≤ M such that M = A + B and A ∩ B ≤ Rad(A). By an argument
analogous to that of “ =⇒ ”, we know that A is a supplement of B. So A is a
direct summand of M by assumption, as desired.

(2) “ ⇐= ” is clear.

“ =⇒ ” It suffices to prove that every factor module of M satisfies ACC on
small submodules. Let A be any submodule of M and B1/A ≤ B2/A ≤ · · · where
each Bi/A � M/A. From the proof of (1), we know that M is a supplemented
module. Let C be a supplement of A in M . Then M/A = (A+C)/A � C/(A∩C).
Since Bi/A is small in M/A, Bi/A � Di/(A∩C) � C/(A∩C) for some Di. Next
we prove that Di � M . Let Di + E = M . Then (Di + (E + A∩C))/(A∩C) =
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M/(A∩C). Hence E + A∩C = M and E = M . Thus we have D1 ≤ D2 ≤ · · ·.
Since M satisfies ACC on small submodules, there exists n such that Dk = Dk+1

for all k ≥ n. Thus Bk/A = Bk+1/A for all k ≥ n. Therefore M/A satisfies ACC
on small submodules, as required.

(3) From the proof of (1), we know that M is a supplemented module. The rest
is obvious.

Remark 2.20. Let M be a GS (GAS)-module and Rad(M) be Noetherian
(or M satisfies ACC on small submodules). Then M is a supplemented (an amply
supplemented) module.

Example 3.21. Let R be an incomplete rank one discrete valuation ring with
quotient field K. Then the module M = K ⊕ K is a GS-module but not a GAS-
module. In fact, if M is a GAS-module, it is an amply supplemented module by
Remark 2.20 (for M is Noetherian). This is a contradiction (see [9, Lemma A. 5]).

3. WGS-MODULES

In this section, we define the concept of a weakly generalized supplemented
module (or briefly a WGS-module) and prove that a ring R is semilocal if and only
if every cyclic module is a WGS-module.

Definition 3.1. A module M is said to be a generalized weakly supplemented
or briefly a WGS-module if for any submodule N ≤ M , there exists L ≤ M such
that M = N + L and N ∩ L ≤ Rad(M).

Let P and M be modules. An epimorphism f : P −→ M is called a cover
(see [10, 13]) of M in case Kerf � P . An epimorphism f : P −→ M with
Kerf � P is called a projective cover of M in case P is projective.

Proposition 3.2. Let M be a WGS-module. Then

(1) Every supplement submodule of M is a WGS-module.
(2) If f : N −→ M is a cover of M , N is also a WGS-module.
(3) Every factor module of M is a WGS-module.

Proof. (1) Let K be a supplement in M . For any submodule N ≤ K ,
since M is a WGS-module, there exists L ≤ M such that M = N + L and
N ∩ L ≤ Rad(M). Thus K = K ∩ M = K ∩ (N + L) = N + (K ∩ L) and
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N ∩ (K ∩ L) = N ∩ L = K ∩ (N ∩ L) ≤ K ∩ Rad(M) = Rad(K) by Lemma
1.1. Therefore K is a GWS-module.

(2) Let f : N −→ M be a cover of M . For any L ≤ N , we have f(L) ≤ M .
Since M is a WGS-module, there exists P ≤ M such that f(L) + P = M and
f(L) ∩ P ≤ Rad(M). Thus N = f−1(M) = f−1(f(L) + P ) = Kerf + L +
f−1(P ) = L + f−1(P ) (for Kerf � N ) and f−1(Rad(M))≥ f−1(f(L)∩P )≥
L∩f−1(P ). By [3, Proposition 9.15], f−1(Rad(M))=Kerf+Rad(N )=Rad(N ).
Therefore L ∩ f−1(P )≤Rad(N ), as required.

(3) Let N be any submodule of M and L/N any submodule of M/N . For
L ≤ M , there exists K ≤ M such that L + K = M and K ∩ L ≤ Rad(M) since
M is a WGS-module. Thus M/N = L/N + (K + N )/N . Let f : M → M/N
be a canonical epimorphism. Since K ∩ L ≤ Rad(M), (L/N ) ∩ ((K + N )/N ) =
(L∩(K+N ))/N = (N +(K∩L))/N = f(L∩K) ≤ f(Rad(M)) ≤ Rad(M/N ),
this completes the proof.

Corollary 3.3. Let M be a module and N � M . Then M is a WGS-module
if and only if M/N is a WGS-module.

Proof. It follows from Proposition 3.2.

Proposition 3.4. Let M be finitely generated. Then M is a WGS-module if
and only if M is a weakly supplemented module.

Proof. “ ⇐= ” is clear.
“ =⇒ ” For any submodule N of M , there exists L ≤ M such that N +L = M

and N ∩ L ≤ Rad(M) since M is a WGS-module. Since M is finitely generated,
Rad(M) � M . Thus N ∩ L � M , as desired.

Proposition 3.5. Suppose M is finitely generated and f : P −→ M a
projective cover of M . If M is a weakly supplemented module, then so is P .

Proof. Since P/Kerf � M is finitely generated, there is a finitely generated
submodule P ′ of P such that P ′ + Kerf = P . Since Kerf � P , P ′ = P . Thus
P is finitely generated. By Propositions 3.2 and 3.4, P is a weakly supplemented
module.

Lemma 3.6. Let K, M1 ≤ M and M1 be a WGS-module. If M1 + K has a
generalized weak supplement in M , then so does K.

Proof. By assumption, there exists N ≤ M such that (M1 +K)+N = M and
N ∩ (M1 + K) ≤ Rad(M). Since M1 is a WGS-module, there exists a submodule
L ≤ M1 such that M1 ∩ (N +K)+L = M1 and L∩ (N +K) ≤ Rad(M1). Thus
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M = K +N +L and K ∩ (N +L) ≤ (K +M1)∩N +L∩ (N +K) ≤ Rad(M),
that is, N + L is a generalized weak supplement of K in M .

Proposition 3.7. Let M = M1 + M2. If M1 and M2 are WGS-modules, then
M is a WGS-module.

Proof. Let N be a submodule of M . Since M1 + M2 + N = M trivially has
a generalized supplement in M , M2 + N has a generalized supplement in M by
Lemma 3.6. Thus N has a generalized supplement in M by Lemma 3.6 again. So
M is a WGS-module.

Theorem 3.8. Let M be a module and Rad(M) � M . The following
statements are equivalent.

(1) M is a WGS-module.

(2) M/Rad(M) is semisimple.

(3) There is a decomposition M = M1 ⊕ M2 such that M1 is semisimple,
Rad(M) ≤e M2 and M2/Rad(M) is semisimple.

Proof. (1) =⇒ (2) Let L be any submodule of M containing Rad(M).
Since M is a WGS-module, there exists N ≤ M such that N + L = M and
N ∩L ≤ Rad(M). Thus M/Rad(M) = L/Rad(M)+ (N + Rad(M))/Rad(M)
and L/Rad(M)∩ (N +Rad(M))/Rad(M) = (L∩N +Rad(M))/Rad(M) = 0.
So M/Rad(M) = L/Rad(M)⊕ (N + Rad(M))/Rad(M), as required.

(2) =⇒ (1) For any submodule N ≤ M , since M/Rad(M) is semisimple,
there exists a submodule L ≤ M containing Rad(M) such that M/Rad(M) =
(N + Rad(M))/Rad(M) ⊕ L/Rad(M). Thus M = N + Rad(M) + L. Since
Rad(M) � M , M = N + L. N ∩ L ≤ Rad(M) is obvious.

(2) =⇒ (3) Let M1 be a complement of Rad(M) in M . Then M1 �
(M1 ⊕ Rad(M))/Rad(M) is a direct summand of M/Rad(M), and hence it
is semisimple. Therefore, there exists a semisimple submodule M2/Rad(M) such
that (M1 ⊕ Rad(M))/Ra

d(M) ⊕ M2/Rad(M) = M/Rad(M). Thus M1 + M2 = M and M1 ∩ M2 ≤
Rad(M) ∩ M1 = 0 implies M = M1 ⊕ M2. Since M1 ⊕ Rad(M) ≤e M =
M1 ⊕ M2, Rad(M) ≤e M2 by Lemma 1.2.

(3) =⇒ (2) is clear.

Theorem 3.9. Let R be a ring. The following statements are equivalent.

(1) R is semilocal.
(2) Every module with small radical is a WGS-module.
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(3) Every finitely generated module is a WGS-module.
(4) Every cyclic module is a WGS-module.

Proof. (1)=⇒(2) Since for any module M there exist a set Λ and an epimor-
phism f : R(Λ) −→ M with f(Rad(R(Λ))) ≤ Rad(M) and R(Λ)/Rad(R(Λ)) �
(R/J(R))(Λ), we obtain an epimorphism δ : R(Λ)/Rad(R(Λ)) −→ M/Rad(M).
Thus M/Rad(M) is semisimple, and so M is a WGS-module by Theorem 3.8.

(2)=⇒ (3) =⇒ (4) are clear.
(4) =⇒ (1) It is known that a ring R is semilocal if and only if RR is weakly

supplemented. The rest is obvious by Proposition 3.4.

The following example shows that a WGS-modules need not be a GS-module.

Example 3.11. Consider the ring R = Zp,q={ a
b | a, b ∈ Z, b �= 0, p � b and

q � b}, where R is a commutative uniform semilocal Noetherian domain. Thus RR

is a WGS-module by Theorem 3.10. Since RR is Noetherian, it satisfies ACC on
small submodules. If RR is a GS-module, then RR is a supplemented module by
Remark 2.20, this is a contradiction (see [1, Example 2.17]).
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