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Abstract. Despite being routinely required in medical applications, deformable

surface registration is notoriously difficult due to large intersubject variability and

complex geometry of most medical datasets. We present a general and flexible de-

formable matching framework based on generalized surface flows that efficiently

tackles these issues through tailored deformation priors and multiresolution com-

putations. The value of our approach over existing methods is demonstrated for

automatic and user-guided cortical registration.

1 Introduction

Matching (or registration) of deformable surfaces is a fundamental problem in medical

image analysis and computational anatomy. One particularly challenging instance of the

problem arises in the field of human brain mapping, where deformable registration of

two cortical surfaces is required for intersubject comparisons and intrasubject analysis

of neuroanatomical surface data. Related studies include progression of disorders such

as Alzheimer’s disease, brain growth patterns, genetic influences [1] and the effects of

drug abuse on the structure and function of the brain [2]. The challenge in registering

two cortices lies in the wide inter-subject variability and the convoluted geometry of the

cortical surface, representing a real ”stress test” for any general deformable registration

technique. Various landmark-based and landmark-free methods have been developed

[3,4,5,6,7,8]. Parameterization-based techniques first find a mapping between the corti-

cal surface and a plane or a sphere, then align in the parameter domain cortical features

such as mean curvature [2,5,6] or sulcal landmarks [8,9]. The often large change in met-

ric due to the mapping needs to be accounted for while performing the alignment pro-

cess in the parameter domain [9,10], adding to the computational costs. Another class

of techniques operates directly in the ambient space by finding a 3D warping field that

aligns the cortical features. Most of these methods are volume-based, aiming to align

image features such as intensities [11] or invariant geometric moments [12], rather than

surfaces. As a result, their matching of the cortices often exhibits inaccuracies.

In this paper we present a new, general, and flexible computational framework for

deformable surface matching, based on the notion of generalized flows of discrete

surfaces. Generalized flows were introduced recently in [13] and [14] in the Eule-

rian setting (i.e., for implicit surface representations), and extended to the Lagrangian

(mesh-based) case in [15]. The proposed method iteratively deforms a 3D template
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Fig. 1. A white matter cortex and its corresponding Partially Flattened Surface (a), where the ma-

jor sulci are still clearly present. A basic Hausdorff gradient flow applied on a rotated, smoother

version (b) creates spurious deformations (c) due to lack of coherence and local minima, while

with a quasi-rigid deformation prior (d), it successfully recovers the transformation.

surface to match the target, until convergence criteria are met. As a result, the whole

deformation trajectory is available as a by-product for evaluation and determination of

the best fit.

The use of geometric flows in medical image analysis is not new: for instance, active

contours (or snakes) and deformable models have been widely applied to reconstruct

surfaces from volumetric images (e.g., [16]). The main drawback of these methods is

their sensitivity to local minima, which can become particularly severe when matching

of geometrically complex objects is sought. Here we show a way to systematically deal

with this issue using problem-specific prior knowledge. The contributions of this paper

are as follows:

- We present a computational framework for surface matching based on generalized

discrete geometric flows. By allowing custom deformation priors, the generalized

approach significantly helps avoiding local minima and provides additional flexibility

and control over the registration process, as well as robustness to noise.

- The proposed framework uses a triangle mesh (Lagrangian) representation for surface

matching. Compared to the Eulerian methodology, this approach is both topology-

preserving by definition and efficient by nature, confining computations strictly to

the object boundary. Moreover, this representation can provide point correspondences

between two surfaces at any chosen resolution.

- We formulate the alignment problem as a minimization process of a pseudo-Hausdorff

distance and show a practical application of the method to cortical matching.

- The basic algorithm is optimized using a surface multiresolution representation, al-

lowing efficient handling of complex models and faster convergence.

2 Method

A typical shape matching problem considers two 3D models—a template and an in-

stance—assumed to have some ”meaningful” but unknown mapping between them.

The matching problem is thus to find such a valid mapping between the two shapes,

generally involving a non-rigid mapping in medical applications. We start with a brief

overview of our approach to the problem of deformable shape matching, before pro-

ceeding to the specific (and challenging) case of cortical surface matching.
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2.1 Object Alignment as a Geometric Optimization

The task of aligning two objects is often cast as a geometric distance minimization

problem: a common approach to registration is to deform one of the shapes (typically,

the template) so as to minimize its “distance” to the other shape. Since an L2-type

distance measure is known to be too forgiving in comparing two shapes, we opt instead

for the symmetric Hausdorff distance which, for two surfaces S and T , is given by

d(S,T ) = max

[

max
p∈S

min
q∈T

‖p − q‖ ,max
q∈T

min
p∈S

‖p − q‖

]

.

Since this expression is not differentiable, we adopt a pseudo-Hausdorff distance

dH(X,Y) between two distinct meshes X = {xi}i=1..P and Y = {y j} j=1..Q, based on

a method introduced in [17] in the context of Level Sets, and adapted in [15] to handle

irregularly shaped polygonal meshes. This allows us to formulate distance minimiza-

tion as an iterative gradient descent procedure, where the template mesh X is evolved

(or flowed) at each step in the direction of the negative gradient of dH(X,Y), with Y

being the instance mesh. This process is known as gradient flow, and can be written as

the following PDE:
dX

dt
= −M−1 ∂ dH

∂X
(X,Y) , (1)

where M is a finite element lumped (diagonal) mass matrix [18] associated with the

mesh X to account for non-uniform sampling, and
∂dH (X,Y)

∂X
is given by

∂dH(X,Y)

∂xi

=
(dH(X,Y)+ ε)1−2α

P ·Q
Mx

ii ∑
j

xi − y j

dα+1
i j

M
y
j j( f −2

i + g−2
j ) , (2)

where dH(X,Y) =

[

1

P
∑

i

Mx
ii f −1

i +
1

Q
∑

j

M
y
j jg

−1
j

]
1

2α

− ε ,

and fi =
1

Q
∑

j

M
y
j jd

−α
i j , g j =

1

P
∑

i

Mx
ii d−α

i j , di j = |xi − y j|
2 + ε2

,

with Mx
ii and M

y
j j are elements of the mass matrices of X and Y, respectively, and ε > 0,

α ≥ 0 are parameters [15]. However, as illustrated by Figure 1 (right) such a naı̈ve min-

imization is unlikely to yield relevant correspondences between two dissimilar shapes,

as the energy landscape is too complex and non-linear to avoid getting stuck in one of

the numerous local minima.

2.2 Generalized Hausdorff Flow

One important detail is that the definition of the gradient in Eq. 1 is implicitly based on

the L2 inner product on the deformation space [13], which in fact can be replaced by

any valid inner product. In particular, given the L2 inner product and any self-adjoint

positive-definite linear operator L : U → U (U being the deformation space), a new

inner product can be defined by

〈u,v〉L = 〈u,Lv〉L2 = 〈Lu,v〉L2 . (3)
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This is a special type of inner product, as it is defined with respect to the L2 norm.

The advantage is that, given the L2-gradient ∇L2 of any surface energy functional E , the

generalized gradient [13] of E can be defined by

∇LE(X) = L−1∇L2E(X) . (4)

This leads to the definition of a generalized Hausdorff flow:

dX

dt
= −(ML)−1 ∂ dH

∂X
(X,Y) .

The operator L should be chosen so as to reflect prior knowledge about the nature of

a problem-specific deformation, and is therefore called a deformation prior (not to be

confused with probabilistic priors used in Bayesian estimation). Thus, this procedure

is of practical interest because it allows us to modify any existing L2 gradient flow.

Note that the energy itself is never altered by a prior—it is only the optimization path

that is. We will now show two particular priors useful in many deformable registration

contexts.

2.3 Deformation Priors

Sobolev Deformation Prior. As most conventional gradient flows are based on the L2

norm of vector fields which disregards the spatial coherence of a deformation, they

can produce highly irregular motion and are susceptible to noise and local minima. To

address these flaws, Sundaramoorthi et al. [14] proposed a regularizing inner product,

namely, a Sobolev norm, in the context of Eulerian (Level Sets) active contours. For

meshes, the Sobolev norm H1 derives from the following inner product:

〈u,v〉H1 =

∫

S

u(x) ·v(x)dx + λ
∫

S

∇u(x) ·∇v(x)dx .

Using Eq. 3 and integration by parts, we can show that this inner product corresponds

to the linear operator LH1(u) = u − λ Δu, where Δ is the discrete Laplace-Beltrami

operator [19], and λ is an arbitrary weighting factor. Equipped with this deformation

prior, we can define the H1-gradient of the pseudo-Hausdorff distance (or any other

surface energy E), and perform an explicit integration of the corresponding gradient

flow. This yields:

Xt+dt = Xt − dt (Id− λ Δ)−1 ∂ E

∂X
(Xt).

Thus, a step of Sobolev gradient flow is computed by solving the following linear sys-

tem:

(Id− λ Δ)Xt+dt = (Id− λ Δ − dt
∂ E

∂X
)Xt . (5)

Consequently, the solution of this sparse and symmetric linear system couples the mo-

tion of each vertex to the motion of the other vertices. This exemplifies the regulariza-

tion effect: vertices that move independently in an L2 flow will now move in concord.

For a stronger regularization effect, we can extend to above scheme to higher order

Sobolev-type norms. For instance, we can define a higher-order prior L(u) = u+µΔ 2u,
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Fig. 2. Automatically matching a template (grey) to the subject cortex (blue). Partially flattened

representations of both surfaces are iteratively aligned using a Hausdorff flow with a smoothing

prior. The obtained alignment yields a correspondence between the original surfaces. The final

color mix is due the fact that the surfaces lie on each other.

where Δ 2 = Δ ◦ Δ . With a slightly higher computational cost, the resulting scheme is

equivalent to regularizing the instantaneous deformation with a thin-plate spline energy

term (see e.g. [20]). In practice, we stick to the H1 prior in this work.

Quasi-rigid Deformation Prior. Since the two input shapes are generally given in sep-

arate coordinate frames, it is often desired to first bring them into a rigid alignment. For

that purpose we can use the quasi-rigid deformation prior LR (see [13,15] for the Eu-

lerian and Lagrangian derivations, respectively). Due to space constraints, we will not

reproduce its formulation here. In essence, it can be seen as a linear filter that boosts

the rigid component of a given motion field by a user-specified factor. As a result, an

arbitrarily-rigid surface flow can be obtained. Figure 1 shows a successful quasi-rigid

alignment of two cortices with this prior.

Note that since each of prior is given by a linear operator, we can also design a

combined LR,H1 prior which is a weighted combination of the two above operators,

such that the rigid motion is prioritized and the non-rigid residual is smoothed. The

result is a single prior that covers both phases of the registration process.

2.4 Matching Cortical Surfaces

Basic Algorithm We are now ready to apply the Hausdorff flow approach to match a

template cortical surface (e.g., a digital atlas of the cortex) to an instance surface, e.g.,

segmented from a MRI scan. One naı̈ve solution would be to perform the minimization

directly on the input surfaces, combined with the H1 deformation prior for regular-

ization. This process is still likely to get stuck in a local minimum due to the highly

convoluted geometry of the cortex. Even if we managed to get the two surfaces into a

complete alignment, the result would hardly be adequate, as intercortex correspondence

is in general not well-defined due to extreme variability of the cortical structures. In
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practice, quality of match is measured by the alignment of the major sulcal patterns that

can be consistently identified in all brains. Thus, minimum intersurface distance alone

is not a sufficient condition for an acceptable solution. In view if this problem, the use

of Partially Inflated Surfaces (PFS) has been advocated for cortical matching [6]. The

idea is to smooth out excessive surface detail through, e.g., Mean Curvature Smooth-

ing [21]); a limited amount of smoothing is performed in order to facilitate matching

while preserving the principal sulcal patterns—see Figure 1(a) for an illustration. We

adopt this approach, with one important difference. While correspondence between two

PFSs is typically computed by matching their maps in a common parameter domain,

we eliminate these intermediate mappings by aligning the PFSs directly. Our strategy is

summarized below, and illustrated in Figure 2:

ALGORITHM:

1. Partially flatten S and T , obtaining S
′

and T
′
, respectively.

2. Apply Generalized Hausdorff Flow to achieve an arbitrarily close alignment of S
′

with T
′
, yielding a correspondence map ϕ between the two.

3. Return S → S
′ ϕ
−→ T

′
→ T as a bijective map between S and T .

The first step can be done rapidly using Mean Curvature Smoothing (MSC), with im-

plicit time integration allowing an arbitrarily large time step. Note that MSC is a clas-

sical example of gradient flow, so our whole approach fits nicely into the flow-based

methodology. The crux of the algorithm lies in the second step, where the template PFS

S
′

(which can be precomputed for repeated use) is iteratively deformed to match T
′
.

To regularize the flow, we use the LR,H1 operator from Section 2.3. In practice, once the

rigid component of the motion vanishes, LR,H1 can be replaced with a simpler H1 prior

for efficiency. As the surfaces get closer, we switch to implicit time integration (Eq. 5)

to avoid oscillations and accelerate convergence.

Finally, to make the process even more efficient for high-resolution models, the ba-

sic minimization algorithm is cast in a multiresolution framework, yielding a speedup

of several orders of magnitude. A coarse match is first computed for simplified ver-

sions [22] of both PFSs, before refining them back to the original resolution (using

pyramid coordinates [23]) for final alignment. Thus, our approach applies multiscale

strategies to reduce both geometric and computational complexities: geometrically—

using partial flattening to find a mapping, and computationally—employing coarser

meshes to optimize performance.

Adding Constraints. As shown in Figure 3, the above procedure manages to automati-

cally align most sulci, but cannot guarantee a correct match when a strong sulcal vari-

ability is present. A common remedy is to incorporate constraints, i.e., expert-specified

sulcal curves, to control the mapping. In our case, adding constraints to the pseudo-

Hausdorff energy is quite straightforward. Indeed, matching of two curves on opposite

surfaces is just another distance minimization problem—this time, between sets of sur-

face points that lie on the two curves. Thus, we can reuse the same Hausdorff distance

approach, applying a separate, similar energy term to those mesh vertices that are inci-

dent on the curves (instead of the global Hausdorff potential). Adding point constraints,

if needed, is even simpler. Note also that the constrained deformation is still kept smooth

due to the use of the H1 prior.
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Fig. 3. a. Automatic matching of PFSs yields a close alignment for most sulcal curves. b. Con-

straining only 7 out of the 23 available curves reduces most misalignments, further improved by

using the full set of constraints (c). d. Corresponding sulcal alignment for the original cortical

surfaces. For clarity, a single cerebral hemisphere is shown.

3 Results

The proposed cortical matching algorithm was tested with a dataset of six subject brains,

segmented from MRI scans using the BrainSuite tool [24], each supplemented with a set

of sulcal curves marked by an expert according to the LONI Sulcal Tracing Protocol [1].

As illustrated by Figure 2, the algorithm automatically computes a near zero-distance

alignment for two partially inflated cortical surfaces, effectively yielding an intercortex

correspondence. It results in a reasonably close alignment for most sulcal curves, further

improved through the addition of constraints. Figure 3 shows that most sulci could be

matched automatically, and constraining only a subset of the sulcal curves is sufficient,

thus significantly reducing the amount of manual effort required.

Table 1 summarizes a limited evaluation of our algorithm (GHF), compared to

HAMMER [12], based on six pairs of subject brain images. Although the two meth-

ods operate on different modalities, distances between corresponding subject and de-

formed template sulcal curves can be measured in both cases. Even without resorting

to constraints (to make a fair comparison to the landmark-free HAMMER), our method

demonstrates a comparable quality of match, with clearly superior computation times:

under 5 min on a standard PC, as opposed to several hours. Note also that for PFS sulci,

registration error is even lower, which illustrates the quality of the core deformable

matching procedure.

Table 1. Quality of match between deformed template and subject brains as average L2 distances

between corresponding sulcal curves

Method / Data Mean L2 Distance Per Case (mm) Total Average

HAMMER / Original Sulci 4.67 4.62 4.79 5.05 5.13 4.90 4.87

GHF / Original Sulci 5.49 5.02 4.56 5.16 4.97 4.53 4.96

GHF / PFS Sulci 4.13 3.87 3.54 4.12 4.07 3.32 3.84

4 Discussion and Future Work

We have presented a practical and flexible multiresolution framework for deformable

surface registration, based on generalized geometric flows. In the case of cortical
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matching, initial evaluation indicated quality comparable to state of the art methods,

with near-interactive computation times. The presented solution is not without limita-

tions: for instance, self-intersections may occur during the deformation, e.g., in pres-

ence of constraints (in fact, one can design constrained configurations not having any

intersection-free solution). This shortcoming can be addressed through a special defor-

mation prior added to the constraint energy term, e.g., a prior that prioritizes tangential

motion. We are also investigating ways to generalize the definition of geometric distance

and design new priors to improve automatic matching of sulcal features. Using general-

ized flows to compute continuous morphs that follow geodesics in shape spaces [25,26]

is another exciting avenue of future work.
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