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ABSTRACT 

Previous analyses have shown that if a point x is to be a core 

of a majority rule voting game in Euclidean space, when preferences 

are smooth, then the ut�lity gradients must satisfy certain 

restrictive symmetry conditions. In this paper these results are 

generalized to the case of an arbitrary voting rule1, and necessary and 

sufficient conditions, expressed in terms of "pivotal" coalitions, are 

obtained. 



GENERALIZED SYMMETRY CONDITIONS AT A CORE POINT 

R. D. McKelvey and N. Schofield 

1. INTRODUCTION 

It is now well known that if the set of alternatives, W, can 

be represented as a subset of Euclidean space, and individual 

preferences are smooth, then the individual utility gradients at a 

point in the majority core must satisfy strong symmetry conditions 

[9]. The necessity that these symmetry conditions be satisfied can be 

used to prove the generic non-existence of core points in certain 

situations [7]. The same symmetry conditions can be used to show that 

if the majority rule core is empty, then it will generally be the case 

that voting trajectories can be constructed throughout the space. 

This paper generalizes the Plott symmetry conditions to deal 

with arbitrary social choice functions, obtaining restrictions on the 

gradients at a point which are necessary and sufficient for that point 

to be in the core. The generalized gradient restrictions that we 

identify show the central role of what we term the "pivotal" 

collections of coalitions in determining when core points exist. 

Specifically, we define a coalition, M, to be pivotal in a subset L of 

the voters, if it is the case that whenever we partition L-M into two 

subsets, at least one of these subsets, together with the members of 

M, constitutes a decisive coalition. Our symmetry conditions specify 
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that for x to be a core point, the utility gradients of the members of 

any subset, L, of voters must satisfy the following condition: For 

every pivotal coalition M in L, the set of voters, M•, whose gradients 

lie in the subspace spanned by those in M, must positively span 0 (the 

zero vector). Taking L ,to be the set of non-satiated voters, it is 

easily shown that the Plott symmetry conditions for the existence of a 

majority core point are implied by this condition. The pivotal 

gradient condition can also be applied to get necessary conditions for 

a point to be in the constrained core, and hence for a point to be in 

the cycle set. 

Because of the effect of constituencies or party systems, 

political decision processes cannot in general be identified with 

simple majority rule. Early results [9, 16] on the analysis of the 

core of voting games have focused on majority rule, and as a 

consequence, these characterizations have not been applicable to a 

wide class of political phenomena. The generalized symmetry 

conditions which we present here give a technique for analyzing a much 

broader class of voting mechanisms. See [15] for example. 

2. DEFINITION AND NOTATION 

We let W c JR w represent the set of alternatives. Let 

N = {1,2,,.,,n} be a finite set indexing voters. Let U denote the set 

of smooth, real valued functions on W, and let u = (u1,.,,,un) s Un, 

with ui representing the utility function for voter i, Throughout 

this paper, we consider only a fixed u s Un, and call such a u s Un a 



smooth profile. 

For any binary relation Q � W X W, we use the standard 

notation xQy <=> (x,y) e Q. We write Pi for the binary relation on w 

defined by xPiy <=> ui(x) > ui(y), and for any C !;; N, write 

Pc = n Pi· 
isC 

We are given a set ID of subsets C !;; N, called the set of 

decisive coalitions, which is assumed to satisfy 

(a) C s ID and C !;; c• � c• e ID (ID is monotonic). 

( b) C e ID � N - C t ID (ID is proper) • 

We can then define the social order P � W X w by 

xPy <=> xP cY for some C s ID. 

For any binary relation, Q � W X W, and x s W, define 

Q(x) = (y e X:yQx}, and write Q1(x) = Q(x). For any integer j 2 1, 

define Qj(x) = (ye W:yQz for some z s Qj-l(x)}. Then define 

Q•(x) = U Qj(x). 
j=l 

Also, for any V � W, and Q � W X W, define 

QIV Q 0 (V XV) to be the binary relation Q, restricted to V. We 

can then define the core, or global optima set to be the set of 

socially unbeaten alterantives in V: 

GO(V:ID) {x a V:(P l v><x> = d}, 

and the local optima set on V by 

LO(V: ID) {x e V:x e GO(V' :ID) for some neighborhood V' of x in V}. 

We define the global cycle set to be the set of points which are 
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elements of a cycle in V, under the social order: 

GC(V:ID) = (x 8 V: x 8 (P l v>•(x)}, 

and the local cycle set by 

LC(V :ID) (x e V:x e GC(V' :ID) for all neighborhoods, V' of x in V}. 

When �here is no fear of ambiguity we write GO(V), LO(V) etc. for 

these sets. We will also write GO = GO(W), LO = LO(W), etc. and call 

these the global or local optima sets with respect to ID • Clearly, 

GO !;; LO and LC � GC. 

3. CONSTRAINTS ON GRADIENTS AT A CORE POINT 

In this section, we define the critical optimal set, IO(W:ID), 

give its relation to the global and local optimal sets, and 

characterize this set in terms of conditions on the utility gradients 

of members of decisive coalitions. 

For any x e W, and i e N, let pi(x) = V'ui(x) e lRw represent 

voter i's utility gradient at the point x, For C !;; N, let 

Pc(x) = (y e  lRw:y = f Qipi(x), Qi 2 O Vi a C and 3i e C st Qi f. 0}
fee 

be the semi-positive cone generated by (pi(x)l i  s C J ,  and let 

spc(x) = (y s lRw:y = 'f Qipi(x) with ai s lR} be the subspace spanned 
fee 

by (pi(x):i e CJ . 

We use the notation Int W to refer to the interior of W in the 

standard topology on lRw, and write aw = W\Int W for the boundary of

4 



W. We also make the assumption that W c clos Int W where clos means 

the closure in the topology on ]lw, This eliminates the possibility 

that W includes isolated points. Define the preference cone of 

coalition C s;;: N at x by 

+ Hc(x) = {y e W:pi(x) • (y - x) > o \Ii e C}

Define the infinitesimal (or critical) optima set on V s;;: W 

with respect to ID by 

IO(V:ID) (x e V:V t'1 H�(x) = <J \IC e ID} 

The critical optima set for ID may be thought of as the analogue, for 

a social order, of the set of critical points of a smooth function, 

It is the set of points which, on the basis of "first derivative" 

information are candidates for global optima. Thus the critical 

optima set contains the global optima set, but may also contain other 

points. We shall obtain necessary and sufficient conditions on the 

utility gradients at x for x to belong to IO(W:ID). Consequently 

these conditions will be necessary for a point to belong to the core. 

Under some conditions the critical and global optima sets coincide, 

and in this case, our conditions are necessary and sufficient for a 

point to belong to the core, 

Say the smooth profile (u1, • • •  ,un) is strictly pseudo-concave 

iff \Ii e N, any x,y e W it is the case that ui(y) 2 ui(x) implies 

that pi(x)(y - x) > O. More generally say the preference profile is 

semi-convex iff \Ii e N, any x e W 
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It is an easy matter to show that if the profile is strictly pseudo-

concave then it is semi-convex in the above sense, and then 

GO(W) = IO(W:ID). 

LEMMA 1: (i) GO(W) c LO(W) c IO(W:ID). Moreover if preferences are 

semi-convex then these sets are identical. 

(ii) If x e Int W then a necessary and sufficient condition 

for x e IO(W:ID) is that 

0 e n Pc(x). 
CeID 
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Proof: Using Taylor' s Theorem, it is a simple matter to prove that if 

H�(x) F II>, for some C e ID, then in any neighborhood V of x, � y e V 

such that YPcx (see (13], Lemma 4.19 for example), Thus xi IO(W:ID) 

implies xi LO(W) and hence xi GO(W). When preferences are semi-

convex, then for any C s;;: N, 

Thus 

+ x i GO(W) � HC(x) F <J for some C e ID 

� x d IO(W:ID) 

(ii) From a standard argument (see for example (10], (12]) if 

x e Int W then for any C !;'. N, 
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<J iff o e Pc<x> 

Q.E.D. 

Thus a necessary condition for x e Int W n GO(W) is that 

O e Pc(x) Ve e JD. We now show that this latter condition is 

equivalent to a condition on pivotal rather than decisive coalitions, 

4, SYMMETRY CONDITIONS FOR A CORE 

In this section we define the notion of "pivotal" coalitions 

and use this notion to develop symmetry conditions, similar to the 

Plott symmetry condition for majority rule, which characterize 

IO(W:JD) for a fixed smooth profile, u. 

DEFINITION 1: Given any family JD of subsets of N and any L � N, we 

define the set of pivotal coalitions for JD in L, written JEL(JD). as 

the set of1 all coalitions M £ L such that for every binary partition 

(C,DJ of L-M, either MU C e JD or MUD e JD, We write 

JE (JD) = JEN( JD), We also sometimes write JE L for EL (JD) when there 

is no danger of confusion, 

It is easy to see that since JD is monotonic so is JE L' I.e., any 

superset of a pivotal coalition is also pivotal, 

DEFINITION 2: Let x e W. We say x satisfies the pivotal gradient 

restrictions (PGR) with respect to JD iff, for every L s; N and every 
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where M• = {i e L:pi(x) e sPM(x)J . 

We offer a loose interpretation of the above definition: Say 

that the pivotal coalition, M e JE L is "blocked" if 0 e PM•(x). If M 

is blocked, then there are other members of L, whose g radients lie in 

the same subspace as those of M, but not in the same half space. See 

Figure 1. Thus, the members of M• cannot agree on any common 

direction to move. The PGR condition, then, simply specifies that 

every pivotal coalition, in every subset L of N, must be blocked in 

the above sense. 

[Insert Figure 1 here] 

THEOREM 1: If x e Int W then a necessary and sufficient condition for 

x e IO(W:JD) is that x satisfies PGR with respect to JD. 

Proof: (i) Let L £ N and suppose, for some M e  JEL' that 0 t PM•(x), 

Suppose that dim [sp(M)] = w. Then M• = L. But since M e  JEL' then L 

contains some decisive coalition, C say, But then 0 t PM•(x) implies 

0 t Pc(x), a contradiction. Suppose that dim[sp(M)] w. Then 

3 fl e lR w with fl • pi (x) = O for all i e M•, and fl • pi(x) F O for 

i B L - M•. Let A = (i B L:fl • pi (x) > OJ and 

B (i e L:fl • pi(x) < OJ . But since M e  JEL' and M• ;;;, M, we have 

M• s JEL, Hence M• U A e JD or M• U B e  JD, W.l.o.g., assume

M• U As JD, Now if 0 t pM•(x), then by the separating hyperplane 

theorem, 3a e sPM•(x) = sPM(x) with a • pi (x) > O for all i e M•, 

Now pick Ii s lR + with (fl + lia)pi (x) > 0 for all i e A and set

all 
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y = � +&a, Then y • p1(x) > O for all i e M• U A. But then 

0 t Pc(x) where C = M• U A e ID, By Lemma 1, x ;, IO(Int W: ID), Hence 

PGR is a necessary condition. 

(ii) To prove sufficiency, note that for any M e ID if we set 

L M then M e  JEL and M* = M. Hence PGR implies that 

0 e PM(x) VM e ID , 

Q, E, D. 

COROLLARY 1: PGR is a necessary condition for an interior point of W 

to belong to GO(W). Moreover, with semi-convex preferences the 

condition is also sufficient. 

Proof: This follows directly from Theorem 1 together with Lemma 1. 

5, APPLICATIONS TO GENERAL RULES 

We now show how the PGR conditions can be applied to 

Q, E, D. 

particular social choice functions, and how for majority rule, the 

conditions imply the Plott symmetry conditions. 

Note that the PGR conditions specify symmetry conditions that 

must hold for every L £ N. However, if pi(x) = 0 for some i e L, then 

the PGR symmetry conditions are trivially satisfied for that L. Hence 

the most useful gradient restrictions are obtained by setting 

L £ (i e N : pi (x) F OJ , In particular, a necessary condition for x to

be a core point is that the PGR symmetry conditions be met for the set 

L = (i e N : pi(x) F OJ , 

With these preliminaries, we now show how the Plott [9] 

symmetry conditions for the existence of a majority rule core obtain 

as a special case of the above theorem. Specifically, the Plott 

conditions deal with the case when n is odd and when no two voters 

have common satiation points. The conditions specify 

(PO): pj(x) = O for some j e N, and for all i e N - (jJ , 

3 k e N - (i,kJ with pi (x) = -�pk(x) for some ak > O. 

However, if PID is majority rule, with n odd, and if no two voters 

have common satiation points, then it is easily verified that the 

pivotal gradient restrictions imply condition PO. To see this, set 

L = (i e N : pi(x) F OJ , and note: 
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(a) If ILi = n, then d e  JEL' and d* = d, implying 0 e spd(x), a 

contradiction, So x ;, IO(W:ID). 

(b) If ILi = n - 1, then L = N - (jJ for some j e N (i.e., 

pj(x) = 0), and lEL = (C � N - (jJ : l c l  2. 1J . Hence, for all 

i e N - (j}, (iJ e lEL. Hence 0 e spi•(x), which implies 

that 3 k e N - (i,jJ with pi (x) = -akpk(x) for some � > O. 

This gives Plott's theorem as an immediate corollary of Theorem 1. 

COROLLARY 2: Let PID be majority rule, with n odd, and assume x e W 

satisfies I Ci e N:pi(x) = oJ I � 1. Then x e Int W n GO implies that 

condition PO is met. 

Note that in the case with n odd, and under the assumption that at the 

point x it is the case that I Ci e N: pi(x) = OJ I� 1 then x satisfies 



PGR with respect to the class of majority coalitions if and only if 

the Plott condition is satisfied. 

As a second application, consider a g-rule, whose decisive 

coalitions are given by ID = {Cc N:lcl} q), The q-rule contains 
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majority rule (with n odd or even) as a special case. Supra-majority 

rules of this kind have been studied by a number of writers (e.g., 

[2], [3], [8], [16], [17]). To obtain the core symmetry conditions 

for such a rule, assume that q < n and define w(n,q) = 2q - n - 1. 

Then it is easy to verify that 

if ILi 

if ILi 

n, then :JEL =CM!; N:IMI} e(n,q)J 

n - 1, then :JEL = (M !; L:IMI i e(n,q) + 1). 

Thus, as above, we set L (i e N:pi(x) F 0), and obtain 

necessary conditions for a point x to be a core point when no more 

than one person is satiated at x: Either no one is satiated at x, and 

all coalitions of size w(n,q) are blocked, or one person is satiated 

at x, and all coalitions of size w(n,q) + 1 (among the remaining 

individuals) are blocked. (Compare to Slutsky [17],) 

For a general social order it is useful to introduce the 

notion of a structurally stable core. We say that the set IO(W:ID) is 

structurally stable at the profile u if and only if IO(W:ID) is non-

empty at u and there exists a neighborhood U of u in the Whitney 

topology on smooth profiles [see 11, 18] such that IO(W:ID) is non-

empty to all u' in U. Conversely the set IO(W:ID) is structurally 

unstable at u if an arbitrary smally smooth perturbation of u is 

12 

sufficient to render IO(W:ID) empty. If IO(W:ID) is structurally 

unstable then say GO(W:ID) is also structurally unstable. If IO(W:ID) 

is structurally stable at a semi-convex profile u then we shall say 

the core, GO(W:ID), is structurally stable (see also [15]), As an 

application of this notion, observe that if (x) = GO(W:ID) and 

I (i e N:pi(x) =OJI } 2 then GO(W:ID) must be structurally unstable. 

Since we are interested in the existence of a structurally stable core 

we may apply the pivotal gradient restrictions in the cases where 

L = (i e N:pi(x) F 0) is of cardinality n or n - 1. For example, as 

we have shown elsewhere [7], the core for a q-rule can never be 

structurally stable if the dimension w satisfies 

w} w(n,q) + 3(= 2q - n + 2), 

To show how Theorem 1 may be used in the general case, we let 

n = 5 and consider a social choice rule with the following decisive 

coalitions (we only list the minimal decisive sets): 

ID = ({1,2,5),(1,3,5),(2,3,4),(2,3,5),(4,S}}, Then we compute the 

pivotal sets for ILi 2 4 as follows (we only list the minimal pivotal 

sets): Let Li = N - (i}, and write :JE L. = :JE i :t 

L Pivotal Sets 

{(1},(2),(3},(4},(5}} 
( (2). (3). (4}. (5}} 
{(1,3), (4), (5}} 
{(1,2), (4), (5)} 
{(1,2),{1,3),{5)} 
{(2,4},(3,4},(2,3}) 

• 
wi (instability) 

dimension) 

2 
2 
2 
2 
2 
3 



Thus, as above, setting L = (i e N:pi(x) � O}, we obtain 

necessary conditions for x to be a core point if no more than one 

individual is satiated at x: Either no individual is satiated, and 
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all coalitions in :JEN are blocked, or individual i is satiated and all 
• 

coalitions in :JE i are blocked. The instability dimension, wi' gives 

the lowest dimension in which these symmetry conditions are 

structurally unstable. • For w < wi' there is an open set of profiles 

• 
for which the condition can be met, whereas for w 2 wi' the conditions 

can be met only on a nowhere dense set of profiles. The rule as a 

whole, therefore, can have a structurally stable core (at player S's 

most preferred point) in two dimensions, but only a structurally 

unstable core if w 2 3. Figure 2 illustrates how a structurally 

stable core can occur in two dimensions, and Figure 3 illustrates how 

a structurally unstable core can occur in three dimensions. In these 

figures, we assume, for ease of illustration, that each player has a 

"Type I" or Euclidean preference of the type ui (x) = -1/2 I Ix - x; l 12 

on lR 3 where 11 II is the standard Euclidean norm. 
• 

"bliss point" of player i, where pi (xi) o • 

• 
Here xi is the 

• 
To illustrate, in Figure 3, if x

S 
is the core, then this point 

• • • 
must belong to the set A, def ined to be the convex hull of Cx2,x3,x4J .

Transversality arguments [7] show that for an open dense set of 
• 

profiles, the objects {xs} and A are respectively zero- and two-

dimensional and do not intersect in JR3• Thus the core in Figure 3 is 

structurally unstable. On the other hand, in the two dimensional case 

of Figure 2, the pivotal gradient restrictions are robust under small 
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perturbations and so the core is structurally stable. 

[Insert Figures 2 and 3 here] 

The results of section 4 and these examples above are valid 

when the set of alternatives is unconstrained. Political institutions 

frequently impose feasibility constraints on social choice, and in the 

following section we show how there can be incorporated in more 

generaJ. pivotal gradient restrictions. 

6. SYMMETRY CONDITIONS AT A CONSTRAINED CORE 

In this section we use Theorem 1 to characterize points in a 

constrained core. We fix x e W. Then for any v e lRw, define the v 

restriction on W by 

(y e W:y • v 2 x • v}. 

Say that x is a v  constrained core, whenever x e GO(Wv>· I.e., x is a 

core in the constrained set Wv• 

Another way of thinking of a constrained core is that we 

introduce another voter, say voter "n + 111, who has utility gradient 

v, and who must be included in any winning coalition. Using this 

motivation, we define a new set Nv = N U (n + 1} of voters, and the 

corresponding set, ID v of decisive coalitions by 

{C � Nv:n + 1 e C and C - {n + 1} e ID}. 

Given ID v' and any L � NV, then as before EL (ID v> is the set of 

pivotal coalitions for IDv in L. Then Theorem 1 immediately gives the 
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following corollary. 

COROLLARY 3 :  I f  x e Int W then x e IO(Wv:ID) iff x satisfies PGR with 

respect to ID v' 

Proof: From Theorem 1 it follows that x e IO(W:IDv) iff x satisfies 

PGR w.r.t. IDv• Hence we need only show that IO(Wv:ID) = IO(W:IDv>· 

By definition pn+l (x) = v. Hence x I. IO(W:IDv) <=> j y e W such that 

y e  H�(x) for some C e  IDv <=> j y e W such that (y- x)•v > 0 and 

+ 1 +( y B HB(x) for B = C\(n + 1) B ID � ::JY 8 WV such that HB x) n WV F <J 

for B e ID � x t IO(Wv:ID). On the other hand if x I. IO(Wv:ID) then

j y e Wv such that y e H;(x) for some B e ID. Since utilities are 

smooth, j y• e H;(x) such that (y' - x) ·v > O. 

some C a IDV, and so x /. IO(W:IDV). 

+ Hence Hc(x) f <J for 

Q.E.D. 

Lemma 1 then immediately gives the following corollary, 

COROLLARY 4: If x e Int W then a necessary condition for x to be a 

v-constrained core is that x satisfies PGR w.r.t. IDv• If preferences 

are semi-convex then the condition is sufficient. 

Q, E, D. 

To illustrate, consider the case of majority rule with n odd. 

As we have noted, <J e lE = lEN(ID), so (n + 1) e lEN/IDv). Hence, it 

follows from the pivotal gradient restrictions that there exists k e N 

with Pk(x) = -).v for some ). e lR with ). > o. Now let L = Nv\(k). 

Then it follows that any set of the form M = (j,n + 1} is pivotal if 

j i {k,n + 1). It follows again, from the pivotal gradient 

conditions, that 0 e PM•(x), where M• = {i e L:pi(x) e spM(x)}, In 

particular, it follows that 3t e N\(j,k) with pi(x) a spM(x). But, 

if all gradients are non-zero, this is exactly the "joint symmetry" 

condition given by McKelvey [7] . Unlike the situation for an 

unconstrained majority rule core there is no requirement that 

pi(x) = 0 for some i e N. Similar symmetry properties for the 

constrained majority rule core with n even can also be obtained. 

The symmetry properties for a majority rule constrained core 
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which can be deduced from Corollary 4 are identical to those mentioned 

by Plott [9]. The corollary also shows how to obtain necessary 

symmetry properties at a constrained core for an arbitrary social 

order. Note also that Corollary 3 can be easily extended to the case 

where there exists a family of constraints at the point. 

7. SYMMETRY CONDITIONS AND THE CYCLE SET

The notion of a constrained core is also helpful in 

characterizing the cycle set LC(W). 

First of all define the critical cycle set [8) written IC(W) 

by x a IC(W) iff 

(i) 0 t Pc(x) for at least one C e ID 

and (ii) n Pc(x) where ID (x) = (C a ID :0 t Pc(x)}. 
CsID (x) 

Note that if x s W\IC(W) then either 

(i) 0 a n Pc(x) 
CsID 



or (ii) 3 a vector vx s JR w\ {0} such that v x 0 Pc(x), 
CaID (x) 
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The critical cycle set bears the same relation to the local 

and global cycle sets as the critical optima bear to the local and 

global are points. It is the set of points which, on the basis of 

"first derivative information," are candidates for the cycle sets. 

Earlier results have shown that IC(W) is open in W and 

IC(W) c: LC(W) c: clos IC(W) 

where clos IC(W) is the closure of IC(W) in W ( [10], [14]),

THEOREM 2: x e Int W \IC(W) iff there exists a vector vx 8 JRw\{O} 

such that x satisfies PGR with respect to ID vx' 

Proof: By definition there are two cases to consider. 

(i) 0 e 0 Pc(x), 
CeID 

But then x e IO(W:ID), Moreover, for any v e JRw\{O} it is 

the case that IO(W:ID) c: IO(Wv:ID), By Corollary 2, x must 

satisfy PGR w.r.t. IDv' 

(ii) 3 B s ID such that 0 t pB(x). In this case, since xi IC(W) 

there exists vx e JR w\{0} such that, for all B e ID either 

0 e pB(x) or -vx e pB(x). As before define Pn+l(x) = vx• 

let N v x 
= N U {n + 1) and let 

{C � Nv :n + 1 a C and C\{n + 1) e ID} , 
x 

Now for any B � N, B e ID <=> B' = B U {n + 1} e ID v • 

x 

Hence 0 e PB(x) or -vx e pB(x), VB e ID 

<=> 0 s pB,(x) VB' e IDv x 

<=> x satisfies PGR w.r, t. IDvx
' by Theorem 1. 
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Q, E.D. 

COROLLARY S: If LC(W) is empty then at every point in the interior of 

W, there exists a vector v e JRw such that x satisfies PGR w.r.t. x 

Proof: By previous results LC(W) is empty iff IC(W) is empty which 

implies that Int W n IC(W) is empty. The result follows by Theorem 2. 

Q. E.D. 

Early results by Cohen and Matthews [1], Matthews ( [4] , [5]),

McKelvey [6] and Schofield [12] were only valid for the analysis of 

the cycle set for majority rule. Theorem 2, together with Corollary S 

and the comments following Corollary 4, give the symmetry conditions 

which are necessary if a point is to lie outside the cycle set not 

just for majority rule but for an arbitrary social order. 

Notice that Plott [9, p, 793] in his analysis of majority rule 

observed that a constraint could be represented by an "invisible" veto 

player. For an arbitrary social order the new player (n + 1) 

introduced in the proof of Corollary 3 and Theorem 2 has precisely the 

same function. This means that LC = d effectively if and only if it 

is the case that at each point x, there exists an "invisible" veto 

player ix who in fact "represents" the social order, 



8. EXTENSIONS TO MANIFOLDS 

The analysis of the previous sections can immediately be 

extended to the case where W is a smooth manifold of dimension 

(dim(W)) equal to w. 

In this case the tangent space TxW at a point x in the 

interior of W is linearly isomorphic to :rnw. At a point on the 

boundary aw the tangent space is isomorphic to 
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for some v e Jllw\(O}. Here v may be thought of as normal to aw. The 

preference cone of C at x is now defined by 

where pi(x) is again the utility gradient of i. IO(W:ID) can then be 

defined in the obvious fashion. With this modification the proofs of 

Theorems 1 and 2 are also valid. Corollary 2 may then be applied to 

the case of a point on the boundary. 

COROLLARY 6: x e IO(aW:ID) iff x satisfies PGR with respect to IDV, 

where v 8 Jll w is "normal.. to aw. 

Finally, if x e aW\IC(W) then again one may define utility gradients 

restricted to the tangent space to aw, and show that there must 

satisfy appropriate pivotal gradient restrictions. 
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9. CONCLUSION 

A social choice rule defines a family of decisive coalitions, 

and is parametrized by the smooth profile u. The space of all smooth 

profiles on a smooth manifold has a natural topology, the Whitney 

topology ( [11], [18]), A property of the social order which is true 

for a residual, and thus dense, set of smooth profiles in this 

topology is called generic. The two theorems presented here can be 

applied to provide a generic classification of general voting rules. 

For example, consider a q-rule of the kind discussed in 

Section S .  A s  observed there, a coalition M of size a t  least w(n,q) 

is pivotal. Remember w(n,q) = 2q - n - 1. It can be shown [7] that 

if dim(W) l w(n,q) + 3 then it is generically the case that the 

pivotal gradient restrictions can apply at no point in W. Indeed if W 

has an empty boundary then the same is true if dim(W) l w(n,q) + 2. 

That is to say the core must be structurally unstable when these 

dimensionality conditions are satisfied, It is also shown that if 

dim(W) l w(n,q) + 3 then it is generically the case that there can be 

an invisible veto player only on nowhere-dense submanifolds of W. 

This immediately implies that IC(W) must be open-dense generically. 

Note that the "instability dimension," w(n,q) + 2, is either two or 

three in the case of majority rule, depending on whether n is odd or 

even. A later paper will attempt to,compute the instability dimension 

for an arbitrary social order, 
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(a) 
{i,j} blocked internally 

(b) 
{i,j}blocked by other players 

�.! 

Examples of ways in which {i,j} can be blocked 
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Figure l 
Example of Structurally Stable Core 

for lb in two dimensions 

* 
Figure 3 

Example of Structurally Unstable Core 
forD in three dimensions 

The ideal points x�, x�, xz, and ){_�
e
' are all in the subspace 

represented by the p�ane drawn, Tfi ideal point x� may be off the 
plane 




