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Generalized synchronization (GS) of two chaotic systems is a generalization of identical syn-
chronization. Usually, the manifold of GS is much more complex than the driven system and
the driving system. In this paper, we study a special case of GS in which the synchronization
manifold is linear (linear GS for short). In a theorem, we present the necessary and sufficient
conditions under which a linear GS can be achieved between two chaotic systems. In particular,
we study the linear GS of two Chua’s circuits.

1. Introduction

In view of the potential applications of chaotic syn-
chronization [Yang & Chua, 1996a, 1996b; Yang
et al., 1997], many different chaotic synchroniza-
tion methods have been developed recently. Among
them are: Identical synchronization (synchroniza-
tion in the usual sense) [Carroll & Pecora, 1991]
impulsive synchronization [Yang & Chua, 1997a,
1997b; Yang et al., 1998] and general synchroniza-
tion (GS) [Yang & Chua, 1996b; Hunt et al., 1997].
The so-called generalized synchronization can give
much richer dynamics than identical ones. Even
some desynchronized cases (in the usual sense) due
to the parameter mismatches [Wu et al., 1996], dis-
tortions in transmitting channels [Chua et al., 1996]
and some other distortions can be regarded as GS.
Applications of GS may be wider or more practi-
cal than those of identical synchronization because
there always exist parameter mismatches and dis-
tortions in the physical world. For example, one
recent application of GS is the design of a channel-
independent chaotic secure communication system
[Yang & Chua, 1996b]. In this paper, we present
the theoretical results which give the conditions for
a specific kind of GS whose synchronizing manifold
is linear (we call it linear GS for short). We use a

standard chaotic system, Chua’s circuit, to demon-
strate the validity of our theoretical results.

2. Linear Generalized Synchronization

Consider two dynamical systems
{

ẋ = f(x) ← driving system
ẏ = g(y, h(x)) ← driven system

(1)

where x ∈ Rn, y ∈ Rm, h : Rn 7→ Rm is an arbi-
trary function.

Definition 1. Generalized synchronization (GS)
[Yang & Chua, 1996b]

The two systems in (1) are said to be in a state
of generalized synchronization, henceforth referred
to as GS, if there exist a transformation H : Rn 7→
Rm, a manifold M = {(x, y)|y = H(x)}, and a set
B ⊂ Rn ×Rm with M ⊂ B such that all trajecto-
ries of (1) with initial conditions in B approach M
as t→∞.

Remark. Synchronization in the normal sense
(identical synchronization) is a special case of GS
with m = n, and H(x) = x.
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Assume that a chaotic system can be decom-
posed into two parts1

ẋ = Ax+ ψ(x) (2)

where A is an n×n constant matrix and ψ : Rn 7→
Rn. Assume that we transmit the signal ψ(x) to
the driven system and consider the following unidi-
rectional synchronization scheme:
{

ẋ = Ax+ ψ(x) ← driving system
ẏ = Ay +Λψ(x) ← driven system

. (3)

Theorem 1. If the matrix Λ commutes with A,
then the two dynamic systems in Eq. (3 ) are in a
state of GS via the following GS transformation

y(∞) = H(x) = Λx (4)

if and only if A is negative definite.

Proof. Let z = y−Λx, then the stability of the GS
between the two dynamical systems in Eq. (3) via
the GS transformation y = H(x) = Λx is equiva-
lent to that of the origin of the following system:

ż = [Ay +Λψ(x)] − [ΛAx+Λψ(x)]

= Ay − ΛAx

= A(y − Λx) (since Λ commutes with A)

= Az . (5)

z = 0 is asymptotically stable if and only if A is
negative definite. �

Remark. When the GS is achieved, the state vari-
ables of the driving system and the driven system
are connected by a linear transformation. This is
why we call this kind of GS as linear GS.
The matrices which commute with an n × n

matrix A are solutions of the following matrix
equation:

AX = XA (6)

where X is an n × n matrix variable. Since the
above equation has an infinite number of solutions,
this provides us with several methods to construct

linear GS between two chaotic systems. In the fol-
lowing sections, we present some results to demon-
strate this fact.

3. Linear Generalized Synchronization
of Two Chua’s Circuits

In this section we study the linear GS of two Chua’s
circuits. A Chua’s circuit [Madan, 1993; Chua,
1994], which consists of two linear capacitors C1 and
C2, a linear inductor L, two linear resistors R and
R0, and a piecewise-linear negative resistor called
a Chua’s diode, is described by the following state
equation:







































dv1
dt
=
1

C1
[G(v2 − v1)− f(v1)]

dv2
dt
=
1

C2
[G(v1 − v2) + i3]

di3
dt
= −

1

L
[v2 +R0i3]

(7)

where G = 1/R and f(·) is the piecewise-linear
characteristics defined by

f(v1) = Gbv1 +
1

2
(Ga −Gb)(|v1 +E| − |v1 −E|)

(8)

where E is the breakpoint voltage of the Chua’s
diode. The corresponding circuit is shown in Fig. 1.
The block diagram of the circuit implementation of
Chua’s circuit and the parameters can be found in
[Kennedy, 1992].
Let x = (v1 v2 i3)

T , then Chua’s circuit can be
decomposed as
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(9)

1It should be noticed that this decomposition is very general in the sense that for a given chaotic system ẋ = f(x) and a
prescribed matrix A, we can always have: ẋ = Ax + (f(x) − Ax). If we let ψ(x) = (f(x) − Ax) we then get this kind of
decomposition.
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(a)

(b)

Fig. 1. (a) Block diagram of Chua’s circuit. (b) Piecewise-
linear characteristic of Chua’s diode.

Since ψ2(x) = ψ3(x) = 0 it is not necessary to as-
sign them to the driven system. What we needed to
send is the signal ψ1(x) = −1/C1f(v1). Since C1 in
our simulations is considered as a constant, we only
need to send the signal f(v1), which is the current
through the Chua’s diode in the driving system.
In this section, we present two simulation re-

sults. The parameters of Chua’s circuits are chosen
as follows: C1 = 5.56 nF, C2 = 50 nF, G = 0.7 mS,
L = 7.14 mH, Ga = −0.8 mS, Gb = −0.5 mS,
E = 1 and R0 = 0. Under these conditions,
the eigenvalues of A are all located in the open
left-hand plane. The fourth-order Runge–Kutta
method with 5 µs fixed step size is used. The ini-
tial conditions for the driving Chua’s circuit and
the driven Chua’s circuit are given respectively by
(v1(0), v2(0), i3(0)) = (−0.2 V, −0.2 V, −1 mA),
and (ṽ1(0), ṽ2(0), ĩ3(0)) = (−0.2 V, −0.2 V, 1 mA).

3.1. Simulation 1

In this simulation, we let

Λ =









λ 0 0

0 λ 0

0 0 λ









(10)

where λ 6= 0. Observe that ΛA = AΛ. This is a very
simple case that had been used in [Yang & Chua,
1996b] for building a channel independent chaotic
secure communication system. The driven Chua’s
circuit is given by











































dṽ1
dt
=
1

C1
[G(ṽ2 − ṽ1)− λf(v1)]

dṽ2
dt
=
1

C2
[G(ṽ1 − ṽ2) + ĩ3]

d̃i3
dt
= −

1

L
[ṽ2 +R0ĩ3]

. (11)

The simulation result is shown in Fig. 2(a). We
choose λ = 0.5. Observer that the attractor of the
driven system is a scaled version of that of the driv-
ing system with a scale factor 0.5.

3.2. Simulation 2

In this simulation, we choose

Λ = A =





















−
G

C1
−
G

C1
0

G

C2
−
G

C2

1

C2

0 −
1

L
−
R0
L





















. (12)

Observe that ΛA = AΛ = A2. In this case, the
driven Chua’s circuit is given by
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(13)

If the GS between the driving and the driven Chua’s
circuits is achieved, the following relations should
be satisfied.
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(a)

(b)

Fig. 2. Linear GS of two Chua’s circuits. The attractor of the driving system is shown in red and that of the driven system
is shown in blue. (a) Result of simulation 1. (b) Result of simulation 2.

ṽ1 = −
G

C1
v1 +

G

C1
v2

ṽ2 =
G

C2
v1 −

G

C2
v2 +

1

C2
i3 ĩ3 = i3/L

(14)

The simulation result is shown in Fig. 2(b). The
attractor of the driving system is scaled by a con-
stant vector (105, 104, 105). Although the shapes of
these two attractors are different, the linear trans-
formation of the GS in Eq. (14) is satisfied.
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4. Conclusions

In this paper, we present the theoretical results on
linear GS between two chaotic systems. We also
develop a method for decomposing chaotic systems
in a special manner such that the linear GS can
be achieved. Especially, we use Chua’s circuits
to demonstrate the validity of the theoretical re-
sults. The theoretical results can be used to de-
sign proper linear GS between two chaotic systems.
They can also be used to interpret the behavior of
the driven system. We observed that GS is a very
robust phenomenon to parameter mismatch and
noise. The potential application of GS to channel-
independent chaotic secure communication was pre-
sented in [Yang & Chua, 1996b].
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