# Generalized Synthesis Methodology of Nonlinear Springs for Prescribed Load-Displacement Functions

Christine Vehar Jutte Sridhar Kota



## **Nonlinear Spring Applications**



## **Nonlinear Spring Parameterization**



#### Input constrained along path

- Forces spring to stretch/compress (axial mode)

#### **Curvilinear members**

- Longer effective length
- Greater strain energy absorption
- Larger displacements and rotations
- Fewer stress concentrations



## **Problem Statement**

Problem Statement



- Scope
  - Planar springs
  - Elastic range
  - No buckling

## **New Design Parameterization**

Topology



12/10/07

## **New Design Parameterization**

• Each design has 96 variables that describe...

#### <u>Topology</u>

- Number of splines
- Connection of splines
- Boundary conditions

#### <u>Shape</u>

Shape of the splines

#### <u>Size</u>

In-plane thickness of the splines



# **Design Examples**

#### 3 Nonlinear Springs (+ 1 Linear Spring)

| Shape-function                 | J-curve              | S-curve              | Constant-force      |
|--------------------------------|----------------------|----------------------|---------------------|
| Load-range                     | 10N                  | 75N                  | 150N                |
| Displacement-range             | 20mm                 | 80mm                 | 150mm               |
| N <sub>up</sub> (Scaling)      | 1.2                  | 1.5                  | 2.0                 |
| Square design space size (L)   | 100mm (10cm)         | 500mm (0.5m)         | 1000mm (1m)         |
| Material modulus (material)    | 115MPa<br>(Titanium) | 115MPa<br>(Titanium) | 70MPa<br>(Aluminum) |
| Maximum stress (safety factor) | 830MPa (1)           | 415MPa (2)           | 275MPa (1)          |
| Out-of-plane thickness         | 4mm                  | 20mm                 | 60mm                |
| In-plane thickness             | 0.4-0.7mm            | 1-3mm                | 2-5mm               |

**Design Space** 



Genetic Algorithm Population: 96 Crossover rate: 70% Mutation rate: 3%



# **Nonlinear Spring Applications**

 Automotive seat cushion (hardening spring)



 Constant-force applications (softening spring)



Un-deformed

Deformed



## **Automotive Seat Cushion**



Rigid Seat Pan *Multi-piece stamped and welded steel pan* (No foam or cover shown)



### **Passenger Comfort**



Ford's force-displacement data measured at the center of the seat cushion. [1]

4-inch foam cushion



## **Problem Definition**



12/10/07

## **Functional Description**



### **Functional Description**

**Final Spring Design's Assembly in Prototype** 





### **Functional Design**

#### Validation



#### Nonlinear spring assembly (No foam included)



## **Functional Design**



#### Nonlinear spring assembly (Foam included)



## Conclusions

- Specifications where met only using 2-inches of foam
- Prescribed load-displacement function is sensitive to buckling
  - Original FEA design slightly buckled
  - Prototype did not buckle
    - Rotation of spring 2° accounts for discrepancy





#### **Test Assembly**



#### **Results**





## **Results and Conclusions**



