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Abstract

In this paper we study the distribution of the location, at time t , of a particle moving
U time units upwards, V time units downwards, and W time units of no movement
(idle). These are repeated cyclically, according to independent alternating renewals. The
distributions of U , V , and W are absolutely continuous. The velocities are v = +1
upwards, v = −1 downwards, and v = 0 during idle periods. Let Y+(t), Y−(t),
and Y 0(t) denote the total time in (0, t) of movements upwards, downwards, and no
movements, respectively. The exact distribution of Y+(t) is derived. We also obtain
the probability law of X(t) = Y+(t)− Y−(t), which describes the particle’s location at
time t . Explicit formulae are derived for the cases of exponential distributions with equal
rates, with different rates, and with linear rates (leading to damped processes).
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1. Introduction

Integrated telegraph processes have been studied by many authors. In particular, see
Orsingher [15], Di Crescenzo [4], Di Crescenzo and Pellerey [7], and others. Zacks [19]
studied a generalized process in which the times of motion up or down followed a general
alternating renewal process. Stadje and Zacks [18] studied an integrated telegraph process in
which at every turn, the particle followed different velocities chosen at random from a set of
possible velocities.

In the present paper, denoting by V (t), t ≥ 0, the velocity of a particle at time t , we
consider a telegraph process such that either V (t) = +1 (up movement), V (t) = −1 (down
movement), or V (t) = 0 (no movement). More precisely, we consider a stochastic process in
which V (0) = 1 and the velocity does not change for a random length of time U1. At U1, we
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Figure 1: A sample path of X(t).

have V (U1) = −1 until the random time U1 + V1. Then we have V (U1 + V1) = 0 until the
random timeU1+V1+W1. This process repeats itself cyclically, following alternating renewals
of {(Ui, Vi,Wi); i = 1, 2, . . . }. The ith renewal cycle is of length Ui + Vi +Wi . A sample
path of X(t) is provided in Figure 1. Here {U1, U2, . . . } are independent and identically
distributed (i.i.d.) random times of movements upwards, {V1, V2, . . . } are i.i.d. random times
of movements downwards, and {W1,W2, . . . } are i.i.d. random times of no-movement delays.
Thus, the position of the particle after n such cycles is

X

( n∑
i=1

(Ui + Vi +Wi)

)
=

n∑
i=1

(Ui − Vi),

where X(t), t ≥ 0, denotes the position of the process at time t . More precisely,

X(t) =
∫ t

0
1{V (s)=1} ds −

∫ t

0
1{V (s)=−1} ds, t ≥ 0.

Let us now introduce the total sojourn times in (0, t). We thus set

Y+(t) =
∫ t

0
1{V (s)=1} ds, t ≥ 0, (1.1)

Y 0(t) =
∫ t

0
1{V (s)=0} ds, t ≥ 0,

and

Y−(t) =
∫ t

0
1{V (s)=−1} ds, t ≥ 0. (1.2)

Obviously, for all t ≥ 0, the following identities hold:

Y+(t)+ Y 0(t)+ Y−(t) = t, X(t) = Y+(t)− Y−(t).

In the following section we develop the marginal distribution of the ancillary process Y+(t).
This will yield, in Section 3, the distribution of X(t). Finally, Section 4 is devoted to the
analysis of various special cases obtained by specifying the probability laws of the random
times Ui, Vi,Wi . The instances of exponential distributions with equal rates, with different
rates, and with linear increasing rates (leading to damped processes) are investigated in detail.

It should be mentioned that random motions characterized by three cyclically alternating
velocities have attracted the attention of various researchers. Indeed, Orsingher [16] provided
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a thorough investigation of the equations governing the probability law of a three-valued
telegraph process. Di Matteo and Orsingher [9] extended Orsingher’s investigation to the
conditional distributions and the means of the process. More recently, Leorato et al. [14]
studied the distributions of a one-dimensional motion with stops, viewed as the marginal of
a two-dimensional motion with four cyclic velocities, whereas Leorato and Orsingher [13]
considered a planar continuous-time random walk that moves with constant velocity along three
possible directions. A planar random motion with three directions has also been studied by
Cesarano and Di Crescenzo [3] and Di Crescenzo [5]. The more general case of cyclic random
motions in R

d with n directions has been considered by Lachal [12]. In the above papers an
approach based mainly on analytic methods or on order statistics is employed, whereas the
present contribution is grounded on a renewal theory basis.

2. The distribution of Y+(t)

Let Ui , Vi , and Wi (i = 1, 2, . . . ) have absolutely continuous distributions FU , FV , and
FW , respectively, and denote by fU , fV , and fW their corresponding densities. Let us set

Ti = Vi +Wi, i = 1, 2, . . . , (2.1)

so that the distribution of Ti is FT = FV ∗ FW , where, as usual, ‘∗’ denotes the convolution
operator. Hence,

FT (t) =
∫ t

0
fV (x)FW (t − x) dx, t ≥ 0. (2.2)

Let SU0 = 0 and SUn = ∑n
i=1 Ui, n = 1, 2, . . ., and define

NU(ω) = max{n ≥ 0 : SUn ≤ ω}, ω ≥ 0. (2.3)

We construct a new compound renewal process, namely,

TU(ω) =
NU(ω)∑
n=0

Tn, ω > 0, (2.4)

with T0 = 0. Hence, if TU(ω) = t − ω, 0 < ω ≤ t , this states that during (0, t) the particle
moves up for ω time instants and moves down or stays in place for t − ω time instants. Let us
now note that process (1.1) identifies with the stopping time

Y+(t) = inf{ω > 0 : TU(ω) ≥ t − ω}.
Note also that TU(Y+(t)) ≥ t − Y+(t) for t > 0, where TU(Y+(t)) is the total time in (0, t)
that the particle moves down or stays in place, i.e. TU(Y+(t)) = Y−(t)+ Y 0(t). In particular,
for a fixed time t > 0, we have

(i) TU(Y+(t)) = t − Y+(t) when the particle is moving upwards at time t ,

(ii) TU(Y+(t)) > t − Y+(t) when the particle is either moving downwards at time t or
staying in place at time t .

Figure 2 shows Y+(t) for an instance in which case (ii) holds, where SUn = ∑n
i=1 Ui .

We remark that the cumulative distribution function (CDF) of TU(ω) can be expressed as

FTU (y;ω) := P[TU(ω) ≤ y] =
+∞∑
n=0

pn(ω)F
(n)
T (y), (2.5)
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Figure 2: Sample paths of TU (ω) and Y+(t).

where

pn(ω) := P[NU(ω) = n] = F
(n)
U (ω)− F

(n+1)
U (ω), ω > 0, n ≥ 0, (2.6)

and φ(n) denotes the n-fold convolution of any function φ, with φ(0) = 1. Note also that TU(ω)
is a nondecreasing process. Therefore, making use of (2.5) and (2.6), the following result is
straightforward.

Theorem 2.1. The probability law of Y+(t) is given by

P[Y+(t) > y] = FTU (t − y; y) =
+∞∑
n=0

pn(y)F
(n)
T (t − y), 0 < y < t, (2.7)

and
P[Y+(t) = t] = 1 − FU(t), t > 0.

From Theorem 2.1, hereafter we immediately obtain the density of the absolutely continuous
component of Y+(t), denoted as ψ+(y; t), and an integral form of the moments of Y+(t).

Corollary 2.1. (i) The density of Y+(t) is given by

ψ+(y; t) = fU(y)−
+∞∑
n=1

[f (n)U (y)− f
(n+1)
U (y)]F (n)T (t − y)

+
∞∑
n=1

[F (n)U (y)− F
(n+1)
U (y)]f (n)T (t − y), 0 < y < t. (2.8)

(ii) The moments of Y+(t), t > 0, are

E[Y+(t)n] = n

∫ t

0
xn−1FTU (t − x; x) dx, n = 1, 2, . . . .

The distribution of Y−(t) and its moments can be derived in a similar manner.
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3. The distribution of X(t)

Aiming to determine the distribution of X(t), we recall that X(t) = Y+(t)− Y−(t), where
Y+(t) and Y−(t) are defined in (1.1) and (1.2). Hence, we have

P[X(t) ≤ x] = E[P[Y−(t) ≥ Y+(t)− x | Y+(t)]]. (3.1)

We have therefore to derive the conditional probability P[Y−(t) ≥ z | Y+(t) = y], 0 < y < t .
Note that P[Y−(t) = 0 | Y+(t) = t] = 1. For deriving this conditional probability, define the
compound process

SV (ω) =
NV (ω)∑
n=0

Wn, ω > 0,

where W0 = 0. Moreover, we let SVn = ∑n
i=1 Vi and NV (ω) = max{n ≥ 0 : SVn ≤ ω}. The

CDF of SV (ω) is

FSV (y;ω) = P[SV (ω) ≤ y] =
∞∑
n=0

[F (n)V (ω)− F
(n+1)
V (ω)]F (n)W (y).

Note that FSV (0;ω) = 1 − FV (ω). We set, for t > y,

Ỹ (t − y) = inf{ω > y : SV (ω − y) ≥ t − ω}
(see Figure 3 for an example). Since {Ui}, {Vi}, and {Wi} are mutually independent, and
SV (ω) is an increasing process, we have Ỹ (t − y) d= Y−(t)+ y, where ‘

d=’ denotes equality in
distribution. Moreover, for 0 < z < t − y, we have

P[Y−(t) ≥ z | Y+(t) = y] = P[Ỹ (t − y) ≥ z+ y | Y+(t) = y] = FSV (t − y − z; z). (3.2)

U2

V 2

W2

t

W1

W1

W2
V 2

V 1U1
V 1

t
ω

ω( )UT

Y t( )+ y�
y� +D

y−Y t( ) Y t( )−
0

Figure 3: The stopping times Y+(t) and Ỹ (t − y).
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In the following theorems we obtain the general form of the distribution function of X(t),
denoted as FX(x; t), and its mean.

Theorem 3.1. The CDF of X(t) is given by

FX(x; t) = P[Y+(t) ≤ x] +
∫ (t+x)/2

x

ψ+(y; t)FSV (t − 2y + x; y − x) dy (3.3)

if 0 < x ≤ t and by

FX(x; t) =
∫ (t+x)/2

0
ψ+(y; t)FSV (t − 2y + x; y − x) dy (3.4)

if −t < x ≤ 0.

Proof. According to (3.1) we have

FX(x; t) =
∫ β

0
P[Y−(t) ≥ y − x | Y+(t) = y]ψ+(y; t) dy,

but P[Y−(t) > t − y | Y+(t) = y] = 0. Hence, for the conditional probability of {Y−(t) ≥
y − x}, given that {Y+(t) = y} is positive, we must have β = (t + x)/2. Now, P[Y−(t) >
0 | Y+(t) = y] = 1. Accordingly,

FX(x; t) =
∫ x

0
ψ+(y; t) dy +

∫ (t+x)/2

x

ψ+(y; t)FSV (t − 2y + x; y − x) dy.

Also,
∫ x

0 ψ
+(y; t) dy = P[Y+(t) ≤ x]. This proves (3.3). Finally, for all −t < x ≤ 0,

y − x > 0 for all y. This yields (3.4).

Theorem 3.2. For all t > 0, we have

E[X(t)] =
∫ t

0
FTU (t − x; x) dx −

∫ t/2

0
ψ+(y; t)

∫ y

0
FSV (t − 2y + x; y − x) dx dy

−
∫ t

t/2
ψ+(y; t)

∫ y

2y−t
FSV (t − 2y + x; y − x) dx dy

−
∫ t/2

0
ψ+(y; t)

∫ 0

2y−t
FSV (t − 2y + x; y − x) dx dy. (3.5)

Proof. It is well known that

E[X(t)] =
∫ t

0
F̄X(x; t) dx −

∫ 0

−t
FX(x; t) dx, (3.6)

where F̄X(x; t) = 1 − FX(x; t). According to (3.3), for x > 0, we have

F̄X(x; t) = P[Y+(t) > x] −
∫ (t+x)/2

x

ψ+(y; t)FSV (t − 2y + x; y − x) dy.

Moreover, ∫ t

0
P[Y+(t) > x] dx =

∫ t

0
FTU (t − x; x) dx. (3.7)
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Also, ∫ t

0

∫ (t+x)/2

x

ψ+(y; t)FSV (t − 2y + x; y − x) dy dx

=
∫ t/2

0
ψ+(y; t)

∫ y

0
FSV (t − 2y + x; y − x) dx dy

+
∫ t

t/2
ψ+(y; t)

∫ y

2y−t
FSV (t − 2y + x; y − x) dx dy. (3.8)

Finally, ∫ 0

−t

∫ (t+x)/2

0
ψ+(y; t)FSV (t − 2y + x; y − x) dy dx

=
∫ t/2

0
ψ+(y; t)

∫ 0

2y−t
FSV (t − 2y + x; y − x) dx dy. (3.9)

Substituting (3.7)–(3.9) into (3.6) we have (3.5).

4. Special cases

In this section we consider some cases of interest arising when the random timesUi , Vi , and
Wi have exponential distribution with equal rates, unequal rates, and linear increasing rates.
We obtain explicit expressions for the density ψ+(y; t) and, if possible, for the distribution
function and the mean of X(t).

4.1. Exponentially distributed times with equal rates

We assume that Ui , Vi , and Wi are i.i.d. exponentially distributed random variables with
parameter λ. Hence, recalling (2.6) we have, for n = 0, 1, . . . ,

pn(t) = e−λt (λt)n

n! , t ≥ 0. (4.1)

Proposition 4.1. If Ui , Vi , and Wi are exponentially distributed with parameter λ, then the
density of Y+(t), for 0 < y < t , is given by

ψ+(y; t) = λe−λt{λ2y(t − y) 0F2
[{}; 3

2 , 2; 1
4λ

3y(t − y)2
]

+ λ(t − y) 0F2
[{}; 1, 3

2 ; 1
4λ

3y(t − y)2
]

+ 0F2
[{}; 1, 1

2 ; 1
4λ

3y(t − y)2
]}
, (4.2)

where 0F2[{}; c, d; z] is the generalized hypergeometric function.

Proof. Equations (2.5) and (4.1) yield

FTU (y; t) = e−λt
+∞∑
n=0

(λt)n

n!
γ (2n, λy)

(2n− 1)! = 1 − e−λ(t+y)
+∞∑
n=1

(λt)n

n!
2n−1∑
j=0

(λy)j

j ! , (4.3)

where γ (s, x) denotes the lower incomplete gamma function, and use of the following relation
has been made:

F
(n)
T (y) = γ (2n, λy)

(2n− 1)! = 1 − e−λy
2n−1∑
j=0

(λy)j

j ! .
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The corresponding probability density function of (4.3) is given by

fTU (y; t) = λe−λ(t+y)
+∞∑
n=1

(λt)n

n!
(λy)2n−1

(2n− 1)! = e−λ(t+y)λ3ty 0F2
[{}; 3

2 , 2; 1
4λ

3ty2]

for y > 0. From this we have

P[Y+(t) > y] = 1 − e−λt
+∞∑
n=1

(λy)n

n!
2n−1∑
j=0

[λ(t − y)]j
j ! . (4.4)

Hence, after some calculations we obtain the density (4.2).

In Figure 4 we present the densityψ+(y; t), expressed in Proposition 4.1, for various choices
of λ and t .

Proposition 4.2. If Ui , Vi , and Wi are exponentially distributed with parameter λ, then the
distribution function of X(t) is given by

FX(x; t) = e−λx
+∞∑
n=1

(λx)n

n!
�(2n, λ(t − x))

(2n− 1)!

+ e−λt
+∞∑
n=1

n∑
k=0

(λx)n−1−k

(n− k)!
[λ(t − x)]k+1

2k+1k!

×
2n−1∑
l=0

(−1)l

2l l! (2n− 1 − l)!
+∞∑
s=0

[λ(t − x)]s
s∑
r=0

[λ(t − x)]r
2r r!

(k + l + r)!
(k + l + r + s + 1)!

× 1F1
[
k + l + r + 1; k + l + r + s + 2; 1

2λ(t − x)
]

× {λxe−λ(t−x)[λ(t − x)]2n−1

+ (n− k − λx)[λ(t − x)]l�(2n− l, λ(t − x))} (4.5)

for 0 < x ≤ t and by

FX(x; t) = e−λt
+∞∑
n=1

[λ(t + x)]n+1

2n+1n!
+∞∑
s=0

[λ(t + x)]s
s∑
r=0

r∑
k=0

(−λx)r−k
(r − k)!

[λ(t + x)]k
2kk!

×
2n−1∑
l=0

(−1)l[λ(t + x)]l
2l l! (2n− 1 − l)!

(k + l + n)!
(k + l + n+ s + 1)!

× 1F1
[
k + l + n+ 1; k + l + n+ s + 2; 1

2λ(t + x)
]

× {e−λt (λt)2n−l−1 − �(2n− l, λt)}

+ e−λt
+∞∑
n=1

[λ(t + x)]n
2n(n− 1)!

+∞∑
s=0

[λ(t + x)]s
s∑
r=0

r∑
k=0

(−λx)r−k
(r − k)!

[λ(t + x)]k
2kk!

×
2n−1∑
l=0

(−1)l[λ(t + x)]l
2l l!

�(2n− l, λt)

(2n− l − 1)!
(k + l + n− 1)!
(k + l + n+ s)!

× 1F1
[
k + l + n; k + l + n+ s + 1; 1

2λ(t + x)
]

(4.6)

for −t < x ≤ 0, where �(s, x) is the upper incomplete gamma function and 1F1[a; b; z] is the
confluent hypergeometric function of the first kind.
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Figure 4: Density (4.2) for λ = 0.5, 1, 2, 3 (from bottom to top near the mode) for t = 3 (left) and
t = 10 (right).

Proof. In the present special case

FSV (y;ω) =
+∞∑
n=0

pn(ω)[1 − P(n− 1, λy)] =
+∞∑
n=0

pn(y)P (n, λω), (4.7)

where pn(·) is given in (4.1) and we have set

P(n, x) = e−x
n∑
k=0

xk

k! . (4.8)

Thus, according to (3.2),

P[Y−(t) ≥ z | Y+(t) = y] =
+∞∑
n=0

pn(t − y − z)P (n, λz).

Hence, due to Theorem 3.1, (4.2), and (4.4), making use of Equations 3.383.1 and 3.384.2 of
[10], and recalling that Whittaker’s function is given (cf. [11] or Equation 13.1.32 of [1]) by
Ml,m(z) = zm+1/2e−z/2

1F1[m− l+ 1
2 ; 2m+1; z], the proof follows after some straightforward

calculations.

Some plots of the distribution functions obtained in Proposition 4.2 are given in Figure 5.
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Figure 5: Distribution functions (4.5) and (4.6) for λ = 1
2 , 1, 2, 3 (from bottom to top when x > 0) for

t = 3 (left) and t = 10 (right).
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Proposition 4.3. If Ui , Vi , and Wi are exponentially distributed with parameter λ, then the
mean of X(t) is given by

E[X(t)] = t − te−λt
+∞∑
n=1

2n−1∑
j=0

(λt)n+j

(j + n+ 1)!

+ te−2λt
+∞∑
n=1

(λt)n

2n

+∞∑
s=0

(λt)s
s∑
r=0

(λt)r

2r r!
+∞∑
h=0

(λt)h

2hh!

×
{
− (λt)2n

2n(2n− 1)!
n∑
k=0

1

2kk!
(h+ k + r)!

(h+ k + r + s + 1)!
(h+ k + 2n+ r + s)!
(h+ 3n+ r + s + 1)!

× 2F1[1 − 2n, 1 + s;h+ k + r + s + 2; −1]
× 1F1[1 − k + n; 2 + h+ 3n+ r + s; λt]

+ 1

n!
2n−1∑
k=0

(λt)k+1

2k+1k!
1

(h+ k + n+ r + s + 2)

(h+ n+ r)!
(h+ n+ r + s + 1)!

× 2F1[−k, 1 + s;h+ n+ r + s + 2; −1]
× 1F1[1; 3 + h+ k + n+ r + s; λt]

+
n−1∑
k=0

2n−1−k

k!
2n−1∑
j=0

(λt)j

2j j !
(h+ k + r)!

(h+ k + r + s + 1)!
(h+ k + j + r + s + 1)!
(h+ j + n+ r + s + 2)!

× 2F1[−j, 1 + s;h+ k + r + s + 2; −1]
× (λt 1F1[1 − k + n; 3 + h+ j + n+ r + s; λt]

− (2 + h+ j + n+ r + s)

× 1F1[−k + n; 2 + h+ j + n+ r + s; λt])
}

− te−λt
+∞∑
n=1

(λt)n

2n+1n!
+∞∑
s=0

(λt)s
s∑
r=0

(λt)r
r∑
k=0

1

2kk!

×
2n−1∑
l=0

(−1)l

2l l!
(k + l + n− 1)!

(2n− 1 − l)!(2 + l + n+ r + s)!
× {

e−λt (λt)2n(k + l + n) 1F1
[
k + l + n+ 1; l + n+ r + s + 3; 1

2λt
]

− (λt)l�(2n− 1, λt)

× (
λt (k + l + n) 1F1

[
k + l + n+ 1; l + n+ r + s + 3; 1

2λt
]

− 2n(2 + l + n+ r + s)

× 1F1
[
k + l + n; l + n+ r + s + 2; 1

2λt
])}
. (4.9)

In Figure 6 we present some plots of E[X(t)].
4.2. Exponentially distributed times with unequal rates

We suppose that Ui , Vi , and Wi have exponential distributions. Precisely, let Ui , Vi , and
Wi be i.i.d. random variables with respective parameters λ, µ, and ν. The three parameters are
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Figure 6: Mean (4.9) for λ = 1, 2, 3 (from top to bottom).

all unequal. Hence, (4.1) holds. Moreover, due to (2.2),

FT (t) = µ(1 − e−νt )
µ− ν

+ ν(1 − e−µt )
ν − µ

, t ≥ 0.

The density f (n)T (t) can be obtained as the convolution of two gamma densities with parameters
µ and ν, so that

f
(n)
T (t) =

∫ t

0

µe−µx(µx)n−1

(n− 1)!
νe−ν(t−x)[ν(t − x)]n−1

(n− 1)! dx

= (µν)nt2n−1

(2n− 1)! e−νt
1F1[n; 2n; (ν − µ)t], t > 0. (4.10)

From (4.10) we also have

F
(n)
T (t) =

(
1 − µ

µ− ν

)n n−1∑
k=0

(
n+ k − 1

k

)(
µ

µ− ν

)k
[1 − P(n− k, µt)]

+
(

1 − ν

ν − µ

)n n−1∑
k=0

(
n+ k − 1

k

)(
ν

ν − µ

)k
[1 − P(n− k, νt)],

where P(n, x) is defined in (4.8).

Proposition 4.4. If Ui , Vi , and Wi are exponentially distributed with parameters λ, µ, and ν,
respectively, then the density of Y+(t) is given, for 0 < y < t , by

ψ+(y; t) = λe−λy

− λe−λy
∞∑
n=1

[
(λy)n−1

(n− 1)! − (λy)n

n!
]

×
{(

1 − µ

µ− ν

)n n−1∑
k=0

(
n+ k − 1

k

)(
µ

µ− ν

)k
[1 − P(n− k, µ(t − y))]

+
(

1 − ν

ν − µ

)n n−1∑
k=0

(
n+ k − 1

k

)(
ν

ν − µ

)k
[1 − P(n− k, ν(t − y))]

}
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+ e−λy
∞∑
n=1

[
(λy)n

n!
]{

e−µ(t−y)(−2µν)n

2(n− 1)! (µ− ν)2n−1 θn−1

[
(µ− ν)(t − y)

2

]

+ e−ν(t−y)(−2µν)n

2(n− 1)! (ν − µ)2n−1 θn−1

[
(ν − µ)(t − y)

2

]}
,

(4.11)

where

θn(x) =
n∑
k=0

(2n− k)!
(n− k)! k!

xk

2n−k

is the reverse Bessel polynomial (see [2] for instance).

Proof. Recalling (2.5), we obtain

FTU (y; t) = e−λt + e−λt
+∞∑
n=1

(λt)n

n!
(

1 − µ

µ− ν

)n n−1∑
k=0

(
n+ k − 1

k

)(
µ

µ− ν

)k

× [1 − P(n− k, µy)]

+ e−λt
+∞∑
n=1

(λt)n

n!
(

1 − ν

ν − µ

)n n−1∑
k=0

(
n+ k − 1

k

)(
ν

ν − µ

)k

× [1 − P(n− k, νy)],

with FTU (0; t) = e−λt and, for y > 0, the density of FTU (·) is

fTU (y; t) = e−µy

2

+∞∑
n=1

e−λt (λt)n

n!
(−2µν)n

(n− 1)! (µ− ν)2n−1 θn−1

[
(µ− ν)y

2

]

+ e−νy

2

+∞∑
n=1

e−λt (λt)n

n!
(−2µν)n

(n− 1)! (ν − µ)2n−1 θn−1

[
(ν − µ)y

2

]
.

Finally, due to (2.7), the density of Y+(t), on (0, t), is given by (4.11).

We remark that the following symmetry property of ψ+(y; t) immediately follows from
(4.11):

ψ+(y; t)|µ=c1, ν=c2 = ψ+(y; t)|µ=c2, ν=c1

for all 0 < y < t and c1, c2 > 0.
Some plots of the density ψ+(y; t), obtained in Proposition 4.4, are given in Figure 7 for

various choices of λ, µ, ν, and t .
Applying reasoning similar to that used in the proof of Proposition 4.2, and recalling that in

the present case

FSV (y;ω) = e−νy
+∞∑
n=0

(νy)n

n! P(n,µω),

it is possible to obtain the distribution function ofX(t) by means of straightforward calculations.
However, we omit the expression since it is very cumbersome. Some plots are shown in Figures 8
and 9.
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Figure 7: Density (4.11) for t = 3 (left) and t = 10 (right); the values of λ, µ, and ν are indicated.
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Figure 8: The distribution function of X(t) given in Proposition 4.4, with λ = 1
2 , 1, 2, 3 (from bottom

to top), µ = 1
3 , and ν = 1

4 , for t = 3 (left) and t = 10 (right).

4.3. Damped process

In this section we assume thatUi ,Vi , andWi are independent random variables, exponentially
distributed with parameter λi (i = 1, 2, . . . ). A similar choice has been considered by
Di Crescenzo and Martinucci [6] and Di Crescenzo et al. [8], who studied a damped telegraph
process and a damped geometric telegraph process, respectively. Since the parameters λi
are linear increasing in i, the process X(t) exhibits a damped behavior, in the sense that its
sample paths are composed of line segments that become stochastically smaller and smaller.
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Figure 9: Same as Figure 8, with µ = 3.5 and ν = 4.

The assumption that the parameters of Ui , Vi , and Wi are λi implies that the random times
separating consecutive velocity reversals have the same distribution of the intertimes of a simple
birth process (see [17] for instance).

Due to Equation (11) of [6], the density and the distribution function of then-fold convolution
U(n) for n ≥ 1 are given by

f
(n)
U (x) = nλe−λx(1 − e−λx)n−1,

F
(n)
U (x) = (1 − e−λx)n. (4.12)

We now set
ζk(j, n; z) = 2F1[1, j + k; n+ 1; 1 − eλz],

where 2F1[a, b; c; z] denotes the Gauss hypergeometric function.

Proposition 4.5. If Ui , Vi , and Wi are exponentially distributed with parameters λi, i =
1, 2, . . . , then the density of Y+(t) is given, for 0 < y < t , by

ψ+(y; t) = λe−λy − λe−λy(1 − e−λ(t−y))

×
∞∑
n=1

[(1 − e−λy)(1 − e−λ(t−y))]n−1[(n+ 1)e−λy − 1]

×
n∑
j=0

(
n

j

)
(−1)j ζ0(j, n; t − y)

+ λ

∞∑
n=1

n[e−λy(1 − e−λy)(1 − e−λ(t−y))]n
n−1∑
j=0

(
n− 1

j

)
(−1)j ζ1(j, n; t − y).

(4.13)

Proof. Due to Equation 3.196.1 of [10], the following identity holds:∫ z

0
f
(n)
V (v)f

(n)
W (t − y − v) dv

= nλ(1 − e−λz)n
n−1∑
j=0

(
n− 1

j

)
(−1)j e−λ(j+1)(t−y−z)ζ1(j, n; z). (4.14)
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Figure 10: Density (4.13) for t = 3 (left) and t = 10 (right); the values of λ are indicated.

Making use of (4.14) and recalling (2.1), we thus obtain

f
(n)
T (t) = n2λ2e−λt

∫ t

0
[(1 − e−λx)(1 − e−λ(t−x))]n−1 dx

= n2λ2e−λt
n−1∑
j=0

(
n− 1

j

)
(−1)j

∫ t

0
[(1 − e−λx)]n−1e−λj (t−x) dx

= nλ(1 − e−λt )n
n−1∑
j=0

(
n− 1

j

)
(−1)j ζ1(j, n; t),

and, recalling (2.2),

F
(n)
T (t) = (1 − e−λt )n

n∑
j=0

(
n

j

)
(−1)j ζ0(j, n; t).

Moreover, due to (2.6) and (4.12), we also have

pn(t) = (1 − e−λt )n − (1 − e−λt )n+1 = e−λt (1 − e−λt )n,

so that, recalling (2.8), the density of Y+(t) is given, for 0 < y < t , by (4.13).

In conclusion, some plots of the density ψ+(y; t), obtained in Proposition 4.5, are given in
Figure 10 for various choices of λ and t .
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