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Abstract. The equations of generalized thermoelasticity for an anisotropic medium
are derived. Also, a uniqueness theorem for these equations is proved. A variational
principle for the equations of motion is obtained.

1. Introduction. The theory of linear coupled thermoelasticity has been studied by
many authors. Biot [1] has presented a unified treatment of the subject and Weiner [2]
has proved a uniqueness theorem for the isotropic case.

Two generalizations of the equations of coupled thermoelasticity have arisen in the
last decade. These generalizations eliminate the paradox of infinite speed of propagation
of heat and elastic disturbances inherent in the coupled thermoelasticity theory.

The first generalization, due to Lord and Shuiman [3] and Fox [4], modifies the
well-known Fourier law of heat conduction but was until now restricted to isotropic
homogeneous media.

The second generalization, due to Green and Lindsay [5], does not violate Fourier’s
law of heat conduction when the body under consideration has a center of symmetry,
and was derived for both isotropic and anisotropic media. Green [6] supplemented this
theory by proving a uniqueness theorem for a body which has a center of symmetry.

2. Derivation of the fundamental equations. We shall use the following notation:
V  arbitrary material volume bounded by a closed and bounded surface S

g; heat conduction vector

U internal energy per unit mass

®n  entropy per unit mass

T absolute temperature = T, + 6

T, initial temperature

0 small temperature increment

o;; components of stress tensor

e;; components of strain tensor

u; components of displacement vector
v; components of velocity vector

p  density assumed independent of time
F; external forces per unit mass

* Received June 27, 1979.
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n; components of unit outward normal vector to the surface

k;; thermal conductivity tensor

t time

We use the summation convention throughout. A superposed dot denotes differentia-
tion with respect to time while a comma is used for material derivatives.

In the most general anisotropic medium, the equations of state relating stress, defor-

mation and temperature are written as

0ij = Cyjy, @ ﬂu (2-1)

The first law of thermodynamics takes the form

;tJ;/[%v,-v,» + Ulp dV = J;/pF,-v,- av + L(aﬂv,- — g;)n; ds. (2.2)
Using the divergence theorem and the equations of motion
o, ;+ pFi= pi;, (2:3)
0= 0ji, (24)
we get the pointwise form of (2.2)
—qi.i=pU — 0,8, (25)
Using the entropy equation
4= —pTy, (2.6)

we get

1

This can be written as

p@U

pdn =137

U
dT + T( o a,.,) de;. 2.7)

The second law of thermodynamics requires that dn be an exact differential in T and ¢;
therefore

U’

(317 1 oU

6T ToT’ (28)
n (GU )
il 29
P e, The, % (29)
Using the identity
on o’
OT dey; 66 oT

together with Eqgs. (2.8) and (2.9), we get

: (j£ - ) = 8, (2.10)

ij
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Substituting from (2.10) in (2.7), we get

_poU
pdn= TT dT + B;; dey;. (2.11)
Let
oUu
=— 2.12
Cg oT ( )

be the specific heat per unit mass in the absence of deformation (assumed independent of
T in the neighborhood of the equilibrium state T = T). Substituting from (2.12) in
(2.11), we obtain after integration

pn = pcg log T + B;;e;; + constant. (2.13)

In (2.13) we choose the constant such that # =0 when T = T, and ¢; = 0. Eq. (2.13),
with this choice, takes the form

9) + Bijei;- (2.14)

= pcg log[1 + —
pn = pcg Og( T

Expanding log(1 + (6/7;)) in a power series of 6/T, and neglecting higher orders of /T,
than the first we get

pTon = pced + Ty Bijey;. (2.15)
The linearized form of Eq. (2.6) is
gi.:= —pTon. (2.16)
By using Eq. (2.15) this reduces to
qi.:= —pcb — T, Bije;;. (2.17)
We assume a generalized heat conduction equation of the form
q: + Toq; = —k;0 ;. (2.18)

Now, taking divergence of both sides of (2.18) and using Eq. (2.17) and its time deriva-
tive, we arrive at

peel0 + 100) + ToBijles; + toéy) = 6% (ki;0.;). (2.19)

To get an equation satisfied by the displacements u; we substitute from Eq. (2.1) in
(2.3) and use the definition of strain

ey =3+ uj.:) (2.20)
and the symmetry condition
Cijit = Cutij - (2.21)
We get
0 0 .
o (Cijathi, 1) — E{J (B:;6) + pF: = pi;. (2.22)

J
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It is worth noting that for the case of isotropic material, Eqs. (2.19) and (2.22) reduce
to the familiar form obtained by Lord and Shulman, namely

kT = pee(T + 10 T) + BTo(ew + Toéw)
and
pit; = (A + uu; i; + pw; j; — BT, + pF;,

where = (34 + 2u)a, A, p being Lame’s constants and « being the coefficient of linear
expansion.

3. Uniqueness theorem. As usual, to prove uniqueness we assume there exist two

sets of functions ¢!}’ and o{}’, ¢{}’ and €2, etc., and let

= g (2) = 1) (2)
O’,-j—O'ij _aij’ e,'j—eij —e,-j,etC.

THEOREM. Given a regular region of space V + S with boundary S then there exists at

most one set of single-valued functions o,i(x, ,) and e;;(x, ,) of class C, uy(x, ,) and
T(x; ,) of class C'¥ in V + S, t > 0 which satisfy the following equations in V, t > 0:

Oji.j = Pl (3.1)
0 , . . .
E (kljg.j) = pCE(B + 709) + Toﬂu(eu + Toeij), (3.2)
gi.i= —pTon, (3.3)
the following equations in V + S, t > 0:
pTon = pcg0+ T, ij€ij» (3'4)
e,-j = %(ui,j + uj‘ i)’ (35)
0ij = Cimen — Bi;0; (3.6)
the following equations on the boundary S, ¢t > 0:
T=0, on S, (3.7
u; =0, on §,,
(3.8)
pi=o;n;=0, onS—3Sy;
and the following equations in V, t = 0:
T=0, u; =0, i, =0, (3.9-3.11)
where we assume that the elasticities satisfy the symmetry condition
Cijki = Cuiij (3.12)

and where the positive definiteness condition
CijurSiju = &y (3.13)

is satisfied for all non-zero tensors &;; and for some positive constant ¢. We also assume
that
essinf p(x,) > 0, To>0, ¢>0. (3.14)

xxeV+S
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Proof. Consider the integral
f Uijéij dV = J’ Gijai.j dV.
Vv 1 4
Using integration by parts and (3.7) we get
[ oyeyav=—] oy i av.
v Vv
Upon insertion of (3.1) in (3.16) the latter reduces to
Vv

Using Egs. (3.6) an 2), Eq. (3.17) can be written in the form

d (3.1
d
d— "V{Zpu u + 2cl]klek1eu} v — j Hﬂue dv =0.

(3.15)

(3.16)

(3.17)

(3.18)

Substituting for B;;¢;; from Eq. (3.2) in (3.18), we get, after integration by parts and using

3.7),

d - s
Efy{%pufu.- + Hmeyen + 5 Eoz}dv

To{[ oy e,dV+chz0f90dV+ Torojﬂ,,e dV}

We now use the second law of thermodynamics in the form [4]
-q0;=0
Integrating this inequality and using (3.7), we get

j 0q;; dV > 0.
V
Substituting for g; ; from Eq. (2.18) in (3.20) we get
( B[Toéli,i (ku ;)
v

Using Eq. (2.17) in (3.21) we get, after integration by parts,

av = 0.

procEj90dV+rOT(,fﬂ,,e,,dV+fk 9.0.dV > 0.

ijyv,iv,j

From (3.22) and (3.19) we get
d [ {2!’“ i + 5Cijueien + _92=dV <0.
By using condition (3.13) this reduces to

yr f .zpuu + ce;ie;; +—02 dv <0.

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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The integral on the left-hand side of (3.23) is initially zero, since the difference functions
satisfy homogeneous initial conditions. By inequality (3.23), however, this integral either
decreases (and therefore becomes negative) or remains equal to zero. Since the integral is
the sum of squares, however, only the latter alternative is possible, that is

’ =puu + ce;je;; +—02}dV 0, t>0. (324)

It follows from (3.24) that the difference functions are identically zero throughout the
body for all time. This completes the proof.

4. A variational principle. We introduce two invariants ¥ “and <. The first invariant
is the thermoelastic potential ¥ ~defined by

%=|
vV

PCE o
— vV 4.
W+2%0]d (4.1)

where W is the isothermal mechanical energy given by
W= %Cijkleijekl' (4-2)

In order to formulate the variational principle, the integrand W + (pci /2T,)0* must
be expressed in terms of two vector fields. One is the displacement field

i = (s uy, u;) (43)

of the solid. The other is defined in terms of a vector S; which represents the amount of
heat flown in a given direction divided by the absolute temperature T,. We call it the
entropy flow after Biot [1]. S; is given by

u

Si=q/T,. (4.4)
Egs. (2.16) and (4.4) give
IpS:.i= —pTon. (4.5)
Combining Egs. (4.5) and (2.15), we get
ToSii= —pcpl) — ToBiju (4.6)
which gives
T
0=——£(H+ﬂﬂu) (4.7)
PCE

In obtaining (4.6) we assume that f;; = 8;;.
The second invariant is given by

s S.dV .
v = dt+ 02 )‘iS,de (4.8)

where A;;, the resistivity matrix, is the inverse of the thermal conductivity k;;. It is
convenient to modify somewhat the expression for & by writing, instead the operational
expression,

T .
V= 70 (P +200%) | 4;5:S;dV (4.9)
AN
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where p = d/dt. When calculating the variation, the operator p is treated as a constant
and it is only in the final differential equations that it is replaced by an actual differential.
The variational principle is written as

81"+ 6 = | [p; Su; — On, 5S)dS + | p[F; — ii;] Su; dV. (4.10)
°S vV

The variation applied to all six components of the two vector fields and S;, p; is the
boundary force per unit area in the x,-direction given by

pi=an;. (4.11)

Indeed, we have

i

: , T,
31+ 67 = | {c,.jk,e,,, 5e,.j+%0 50 + =2 (p + 70p* VS, 5S:dV
Vv 0

= [ {eiuen — 0B} ou, ; dV — | 038, dV + To(p + 10p?) | 1;8; 58, dV.

ij*j
‘v
Using integration by parts, we get

51 ' + 5.(/ = " [Cij“ekl - Oﬁll]nl 5“,‘ dS - “ 6”,‘ 5S, dS
s °s

— | [emaeu — 0B); 0u; AV + [ [0, + To(p + 10p?)Ay;S;) S; AV, (4.12)
V vV

By substituting from (4.12) in the variational principle (4.10) the surface integrals cancel
out and we are left with the condition that the surface integrals vanish identically. This
implies two equations:

(cijuen — 0B;) ; + pFi = pit;, (4.13)
0+ To(p + 1op*)A;;S; = 0. (4.14)
Eq. (4.14) can be written in the equivalent form
kis8: + Tolp + rOpZ)Sj =0
or
ki;0 ; + To(p + 1op?)S; = 0. (4.15)
In obtaining (4.15) we used the symmetry condition k;; = k. Differentiating (4.15) with
respect to x;, we get, after using Eq. (4.6),
0
ax,

Egs. (4.13) and (4.16) are the basic equations of motion for anisotropic generalized
thermoelasticity.

(kij0 ;) = pee(® + 1o8) + ToBijley; + 102y). (4.16)

REFERENCES

[1] M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys. 27, 240-253 (1956)
[2] J. H. Weiner, A uniqueness theorem for the coupled thermoelastic problem, Quart. Appl. Math. 15, 102-105
(1957)



8 RANIJIT S. DHALIWAL AND HANI H. SHERIEF

[3] H. W. Lord and Y. Shulman, 4 generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids 15,
299-309 (1967)

[4] N. Fox, Generalized thermoelasticity, Int. J. Engng. Sci. 7, 437-445 (1969)

[5] A. E. Green and K. A. Lindsay, Thermoelasticity, J. Elast. 2, 1-7 (1972)

[6] A. E. Green, A note on linear thermoelasticity, Mathematika 19, 69-75 (1972)




