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Abstract. The equations of generalized thermoelasticity for an anisotropic medium
are derived. Also, a uniqueness theorem for these equations is proved. A variational
principle for the equations of motion is obtained.

1. Introduction. The theory of linear coupled thermoelasticity has been studied by
many authors. Biot [1] has presented a unified treatment of the subject and Weiner [2]
has proved a uniqueness theorem for the isotropic case.

Two generalizations of the equations of coupled thermoelasticity have arisen in the
last decade. These generalizations eliminate the paradox of infinite speed of propagation
of heat and elastic disturbances inherent in the coupled thermoelasticity theory.

The first generalization, due to Lord and Shulman [3] and Fox [4], modifies the
well-known Fourier law of heat conduction but was until now restricted to isotropic
homogeneous media.

The second generalization, due to Green and Lindsay [5], does not violate Fourier's
law of heat conduction when the body under consideration has a center of symmetry,
and was derived for both isotropic and anisotropic media. Green [6] supplemented this
theory by proving a uniqueness theorem for a body which has a center of symmetry.

2. Derivation of the fundamental equations. We shall use the following notation:
V arbitrary material volume bounded by a closed and bounded surface S
<3f, heat conduction vector
U internal energy per unit mass
t] entropy per unit mass
T absolute temperature = T0 + 9
T0 initial temperature
9 small temperature increment
o{j components of stress tensor
ei} components of strain tensor
Ui components of displacement vector
Vj components of velocity vector
p density assumed independent of time
F'i external forces per unit mass

* Received June 27, 1979.
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M; components of unit outward normal vector to the surface
k{J thermal conductivity tensor
t time
We use the summation convention throughout. A superposed dot denotes differentia-

tion with respect to time while a comma is used for material derivatives.
In the most general anisotropic medium, the equations of state relating stress, defor-

mation and temperature are written as

au = cih,eki~ flu6- (2-1)
The first law of thermodynamics takes the form

4 | [?VtVi + U]p dV = | pF^i dV + ( (ajiVi - q^rij dS. (2.2)
at*y Jy s

Using the divergence theorem and the equations of motion

Oji,j + pFi = PVi, (2.3)

aij = aji' (2-4)

we get the pointwise form of (2.2)
-1i,i = pU ~ OiAj- (2-5)

Using the entropy equation

Qi.i = -pTt], (2.6)
we get

pdr} = jdU-jOijdeij.

This can be written as

rt sin =
TdT T\de,
pSU Jrr 1 IdU . .Pd* = dT + ^hrr ~ °'j\ de'j■ij

The second law of thermodynamics requires that dtj be an exact differential in T and e0;
therefore

Jl 1 dU
p^=, = -^=, (2.8)dT TdT

drj 1 / dU
P deu T\deu

-ffy). (2.9)

Using the identity
d2ti d2ti

dT detJ deij dT
together with Eqs. (2.8) and (2.9), we get

LIdU
T\de.

°ij)=Pij- (2.10)
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Substituting from (2.10) in (2.7), we get

p^dU
TdT

Let

pdti = -—dT + PiJdeij. (2.11)

C-% (2.12)

be the specific heat per unit mass in the absence of deformation (assumed independent of
T in the neighborhood of the equilibrium state T = T0). Substituting from (2.12) in
(2.11), we obtain after integration

pt] = pcE log T + PijCij + constant. (2-13)

In (2.13) we choose the constant such that tj = 0 when T = T0 and etj = 0. Eq. (2.13),
with this choice, takes the form

pri = pcE log11 + + Pijeij ■ (2.14)

Expanding log(l + (9/T0)) in a power series of 9/T0 and neglecting higher orders of 6/T0
than the first we get

pT0r] = pcE0 + ToPijetj. (2.15)

The linearized form of Eq. (2.6) is

4;,;= -pT0fl- (2.16)
By using Eq. (2.15) this reduces to

<?;,i = ~PCEb - ToPijeij. (2.17)
We assume a generalized heat conduction equation of the form

4; + T0<7i= -M.J- (2-18)
Now, taking divergence of both sides of (2.18) and using Eq. (2.17) and its time deriva-
tive, we arrive at

rs

pcE(0 + T0'd) + ToPu^ij + t 0e,j) = — (kijOj). (2.19)

To get an equation satisfied by the displacements Uf we substitute from Eq. (2.1) in
(2.3) and use the definition of strain

= + (2.20)

and the symmetry condition

cijki = ckiij- (2.21)
We get

^ (cijkiuk, /) - Jr (M) + PFi = PUi ■ (2-22)
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It is worth noting that for the case of isotropic material, Eqs. (2.19) and (2.22) reduce
to the familiar form obtained by Lord and Shulman, namely

kTu = pcE(T + t0 f) + PT0(ekk + z0ekk)

and
piii = (A + n)Uj ij + nuitjj - PT, + pF

where P = (3A + 2p)a, X, p being Lame's constants and a being the coefficient of linear
expansion.

3. Uniqueness theorem. As usual, to prove uniqueness we assume there exist two
sets of functions and a\j\ e\j1 and e\j\ etc., and let

au = oij' - ff<02)> eu = e!v' - eij]' etc-

Theorem. Given a regular region of space V + S with boundary S then there exists at
most one set of single-valued functions au(xk,) and etj(xktt) of class C(1), ut(xk ,) and
T(xk ,) of class C(2) in V + S, t > 0 which satisfy the following equations in V, t > 0:

a jij = PUi, (3.1)

(kij9j) = Pce(@ + ^09) + ToPu^ij + to'eij), (3.2)

9i.i= ~pT0ri, (3.3)

the following equations in V + S, t > 0:

pT0ti = pcE0 + lo/Jygy, (3.4)

eij = l("i, j + uj, .)> (3-5)

Oij = cijklekl - (3.6)

the following equations on the boundary S, t > 0:

T = 0, on S, (3.7)

U: = 0, on S,,
(3.8)Pi = Ojirij = 0, on S — Sj;

and the following equations in V, t = 0:

7 = 0, u, = 0, m,. = 0, (3.9-3.11)
where we assume that the elasticities satisfy the symmetry condition

cijkl = cklij (3-12)

and where the positive definiteness condition

c,jt,e,A, > cZijtij (3.13)
is satisfied for all non-zero tensors £tj and for some positive constant c. We also assume
that

essinf p(xk) > 0, T0 > 0, cE > 0. (314)
neK+S



GENERALIZED THERMOELASTICITY 5

Proof. Consider the integral

| aiien dv= f °ij»i.Jdv- P-15)
JV V

Using integration by parts and (3.7) we get

[ aij^ij dV = -f aij.jiiidV. (3.16)
Jy Jy

Upon insertion of (3.1) in (3.16) the latter reduces to

[o-yCy + put'uj dV = 0. (317)

Using Eqs. (3.6) and (3.12), Eq. (3.17) can be written in the form

d
dt {ipu.u,- + jcijkleklei}) dV - \ dV = 0. (3.18)

J w.

Substituting for /J0etj from Eq. (3.2) in (3.18), we get, after integration by parts and using
(3-7),

jt [ JipMi",- + jcijkleijekl + e2 J dV

+ ^|f kijOjOj dV + pcET0 f 98 dV + T0T0 f ^ dv\ = 0. (3.19)
i0 Vv Jv *V I

We now use the second law of thermodynamics in the form [4]
-<7. 0, > 0.

Integrating this inequality and using (3.7), we get

6qUidV> 0. (3.20)

Substituting for qUi from Eq. (2.18) in (3.20) we get

l9
v

T0?i, i + (kij@,j) dv> 0. (3.21)

Using Eq. (2.17) in (3.21) we get, after integration by parts,

pz0cE [ 6'6 dV + t0 T0 I Pij'etj dV + | kdV > 0. (3.22)
Jy Jy Jy

From (3.22) and (3.19) we get

d f li • ■ , i , Pce,
dt

By using condition (3.13) this reduces to

d

| p"i"; + ^imeUeu + j~92jdV< 0.

jt j pMi + iceijeij + ~ 621 dV < 0. (3.23)
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The integral on the left-hand side of (3.23) is initially zero, since the difference functions
satisfy homogeneous initial conditions. By inequality (3.23), however, this integral either
decreases (and therefore becomes negative) or remains equal to zero. Since the integral is
the sum of squares, however, only the latter alternative is possible, that is

| lpuiui +cetjeij + ^dAdV = 0, t > 0. (3.24)
•VI Jo i

It follows from (3.24) that the difference functions are identically zero throughout the
body for all time. This completes the proof.

4. A variational principle. We introduce two invariants V and The first invariant
is the thermoelastic potential i'" defined by

r = I
'V 2 T0

dV (4.1)

where W is the isothermal mechanical energy given by

W=$cijkleijek,. (4.2)

In order to formulate the variational principle, the integrand W + (pcE/2To)02 must
be expressed in terms of two vector fields. One is the displacement field

Ui = (ux,uy,uz) (4.3)

of the solid. The other is defined in terms of a vector S, which represents the amount of
heat flown in a given direction divided by the absolute temperature T0. We call it the
entropy flow after Biot [1], S, is given by

Si = qi/T0. (4.4)
Eqs. (2.16) and (4.4) give

T0SUi = -pT0t], (4.5)

Combining Eqs. (4.5) and (2.15), we get

T0Si,i = —pcE0 - ToPijUt j (4.6)

which gives

0= - — (St.i + PijUuj). (4.7)
PCE

In obtaining (4.6) we assume that
The second invariant is given by

T0ld ds=-i\i,+'°i?Hi"s<s>dv (48>• V

where , the resistivity matrix, is the inverse of the thermal conductivity ktj. It is
convenient to modify somewhat the expression for & by writing, instead the operational
expression,

®=1f(p + T0p2)\lijSiSjdV (4.9)• V
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where p = d/dt. When calculating the variation, the operator p is treated as a constant
and it is only in the final differential equations that it is replaced by an actual differential.

The variational principle is written as

Sr +5@= | [p, Sui - 0nt <5Sf] dS + f p[F, - tij 8u, dV. (4.10)
■s ' V

The variation applied to all six components of the two vector fields and S;, pt is the
boundary force per unit area in the xrdirection given by

Pi = a jiti j. (4.11)

Indeed, we have

51~ + d3>= ) ^ciJklekl Setj +yi0S0 + ~(p + z0p2)lijSj SS^dV

= | {cijk,ekl - 0/y 5uUj dV - 6 SSudV + T0(p + zoP2) | AySj SSt dV.
Jy «y Jy

Using integration by parts, we get

5y + bQ) = j [cijki ekl — 0Pij]nj Su^ dS — j dSt dS
Js 'S

- f [cijk,ekl - OftJj 5u( dV + | [0 ( + T0(p + zoP2%jS^ <5S; dV. (4.12)
Jy Jy

By substituting from (4.12) in the variational principle (4.10) the surface integrals cancel
out and we are left with the condition that the surface integrals vanish identically. This
implies two equations:

(cijkieki - ePulj + pFi = piii, (4.13)
0,i + To(p + zop2)XijSj = O. (4.14)

Eq. (4.14) can be written in the equivalent form

M.. + To(P + To P2)Sj = 0

Wj+Up + Zop^S—O. (4.15)
In obtaining (4.15) we used the symmetry condition = k^. Differentiating (4.15) with
respect to x{, we get, after using Eq. (4.6),

q
-fa (kije.j) = Pce(0 + TO0) + ToPifaj + T0i?ij). (4.16)

Eqs. (4.13) and (4.16) are the basic equations of motion for anisotropic generalized
thermoelasticity.
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