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Abstract A graph drawing is called a generalized thrackle if every pair of edges
meets an odd number of times. In a previous paper, we showed that a bipartite graph
G can be drawn as a generalized thrackle on an oriented closed surface M if and only
if G can be embedded in M . In this paper, we use Lins’ notion of a parity embedding
and show that a non-bipartite graph can be drawn as a generalized thrackle on an
oriented closed surface M if and only if there is a parity embedding of G in a closed
non-orientable surface of Euler characteristic χ(M) − 1. As a corollary, we prove a
sharp upper bound for the number of edges of a simple generalized thrackle.

Keywords Graph drawing · Thrackle

1 Introduction

Let G be a finite graph with n vertices and m edges. A drawing of G on a surface
M is called a thrackle if every pair of edges of the drawing meets precisely once,
either at a vertex or at a proper crossing. Conway’s Thrackle Conjecture is that for
every thrackle in the plane, m ≤ n [19]. The conjecture has apparently been verified
for n ≤ 11; an upper bound m ≤ 3

2 (n − 1) was proved in [5, 15]. We conjectured in
[5] that m ≤ n + 2g for thrackles on a closed oriented surface of genus g. To date,
this conjecture has only been verified for graphs with ≤ 5 vertices; see [6].

A natural generalization of the notion of a thrackle is obtained by relaxing the
condition that each pair of edges meets precisely once and assuming instead only
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that each pair of edges meets an odd number of times. The resulting notion of a gen-
eralized thrackle was introduced by Woodall in 1972 [20]. The following result of
[5], which was established in the planar case in [15], effectively classifies general-
ized thrackles of bipartite graphs, by reducing the problem to a classical embedding
problem:

Theorem 1 [5] A finite bipartite graph G can be drawn on an orientable surface M

as a generalized thrackle if and only if G can be embedded in M .

The aim of this paper is to present an analogous theorem for non-bipartite graphs.
This may be regarded as the sequel to [5] and in some sense, a completion of the
classification of generalized thrackles.

In order to present the main result, recall that a closed curve γ on a surface M is
two-sided (resp. one-sided) if the local orientation of the surface is preserved (resp.
reversed) as we make one complete circuit of γ . Recall (see [14, 22]):

Definition 1 A parity embedding is a graph embedding G → M which maps circuits
of even length to two-sided curves, and circuits of odd length to one-sided curves.

Clearly, if a graph G is not bipartite, the image of a parity embedding of G lies on
a non-orientable surface. We have:

Theorem 2 A finite connected non-bipartite graph G can be drawn as a generalized
thrackle on an oriented closed surface M if and only if G admits a parity embedding
in a non-orientable closed surface N with Euler characteristic χ(N) = χ(M) − 1.

This gives the following result which is the generalized thrackle version of Con-
way’s thrackle conjecture:

Corollary 1 For a generalized thrackle drawing of a finite simple graph G with n

vertices and m edges on a closed orientable surface M of genus g, we have m ≤
2n − 2 + 4g.

This bound was conjectured in [5], where it was established for bipartite graphs;
it is sharp, provided that n is reasonably large; see the examples at the end of Sect. 5.

The paper is organized as follows. In Sect. 2, we review some basic terminology
and background results. The forward direction of Theorem 2 is proved in Sect. 3, and
the converse direction is proved in Sect. 4. Corollary 1 is treated in Sect. 5, and the
special case of planar generalized thrackles is treated in Sect. 7. Theorem 2 leaves
open the question as to whether the existence of a generalized thrackle has a formu-
lation in terms of embeddings, rather than parity embeddings. We give two results
in this direction. Firstly, in Sect. 6, we give a number k, which depends only on the
graph G, for which the following holds (see Theorem 3): if there is a generalized
thrackle drawing of G on a closed orientable surface M , then there is an embedding
of G in a closed orientable surface of Euler characteristic χ(M) − k, and moreover,
if there is an embedding of G in a closed orientable surface M , then there is a gen-
eralized thrackle drawing of G on a closed orientable surface of Euler characteristic
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χ(M)−k. The number k is even and is the rank of a certain 2-form that is trivial when
G is bipartite. Secondly, in Sect. 8, we observe that every non-bipartite graph G has
a natural bipartite double-cover Ĝ and prove a result which can be roughly described
as follows: G can be drawn as a generalized thrackle on a closed orientable surface
M if and only if there is an embedding of Ĝ, with a certain property, in a closed
orientable surface of Euler characteristic 2χ(M) − 2; see Theorem 5 for details.

Since submitting this paper we have become aware of a preprint by Perlstein and
Pinchasi [17]. This interesting paper has several new and original ideas on generalized
thrackles. In particular, our Corollary 3 is also proved in [17], by different means.

2 Terminology and Background Results

We consider a finite connected (not necessarily simple) graph G. By a drawing we
mean a smooth immersion of the underlying topological space of G into a surface
such that at every vertex v, the incident edges have pairwise distinct tangents at v.
All the drawings of G will be assumed to be “good” in the sense of [15]; that is, the
edges are represented by smooth simple curves which are disjoint from the vertex
set, every pair of edges in the drawing has only a finite number of intersections, and
these are all transversal crossings. It is convenient to define the edges as being open
but to define the number of points at which two edges meet as the number of their
common crossing points plus the number of any common adjacent vertices (with the
convention that the latter number is taken to be zero if at least one of the edges is a
loop).

Let V and E denote the spaces of formal linear combinations of the vertices (resp.
edges) of G with coefficients from Z2; throughout the paper, all the linear spaces,
homologies, operators and forms are considered over the field Z2. The boundary
operator ∂ : E → V is the Z2-linear operator assigning to each edge the sum of its
endpoints. Elements of the subspace H1(G) = ker ∂ ⊂ E are called (homological)
cycles. This is the usual meaning of cycle in algebraic topology, but cycle has several
other distinct meanings in graph theory. In particular, the word cycle is often used for
the edge set of an undirected closed path without repeated vertices; to avoid possible
confusion, we will call this a circuit, as in [7]. It is easy to see that H1(G) is spanned
by circuits. Thus each cycle is a sum of circuits, and topologically, a cycle may be
regarded as a union of edge-disjoint circuits. Let l : E → Z2 be the length 1-form,
assigning to a set of edges its cardinality modulo 2. Using l, we can define even and
odd paths and circuits in the obvious way. Thus l defines a map from H1(G) to Z2
which we also denote l.

We now recall the intersection form on a closed surface M . For closed curves
γ1, γ2 ⊂ M in general position, �M(γ1, γ2) ∈ Z2 is the number (mod 2) of times γ1
crosses γ2. For arbitrary closed curves γ1, γ2 ⊂ M , one first deforms the curves so
as to place them in general position; in this way, the number �M(γ1, γ2) is well
defined and is homotopy-invariant. In fact, as �M takes its values in an abelian
group, �M(γ1, γ2) actually depends only on Z2-homology classes represented by
γ1, γ2, rather than on their homotopy classes. This defines a bilinear form �M :
H1(M) × H1(M) → Z2, which is called the Z2-intersection form of M [9, 23]. The
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intersection form �M is symmetric and if the surface M is orientable, it is alternating;
i.e., �M(γ,γ ) = 0 for all closed curves γ . Irrespective of whether M is orientable,
one has the following standard result, which follows directly from the classification
of closed surfaces [18, Theorem 4.4]:

Proposition 1 For a closed surface M , the Euler characteristic χ(M) = 2 − rk�M .

Remark 1 The definition of the rank rk� of a form � is not entirely universal; there
are two conventions that are adopted in different contexts. For example, consider a
symplectic form � on a vector space of dimension 2k. On one hand, as a bilinear
form, it is common to say that � has rank k since � can be written as the sum of k

terms. This is the meaning of rank used in [5]. On the other hand, the rank of a form
is often taken to be the rank of the associated matrix, in which case � has rank 2k. In
this paper we take rank to be the matrix rank. Note that the rank of a non-alternating
form may be odd.

Given a drawing D : G → M , let ωD denote the pull-back of the form �M to
H1(G); i.e., ωD(c1, c2) = �M(D(c1), D(c2)) for all cycles c1, c2 on G. Note that
this is a common use of the term pull-back in exterior algebra and differentiable
geometry (see for example [3, 10]), not to be confused with its other uses, in bundle
theory or category theory for example. The following obvious fact could be taken as
the definition of a parity embedding:

Lemma 1 An embedding E of a connected graph G in a closed surface M is a parity
embedding if and only if ωE (c, c) = l(c) for every circuit c in G.

Remark 2 To someone who has not worked with intersection forms before, it may
be confusing that for a circuit c, the number ωE (c, c) may be nonzero. Does not it
count the number of intersections of c with itself? And is it not true that circuits
do not intersect themselves? The resolution of this apparent contradiction lies in a
careful reading of the definition of ωE (c, c), which is calculated as follows: take two
copies of c, then deform them slightly so that they are in general position and hence
only meet each other as transverse crossings. Then add the number of these crossing
modulo 2. One sees that ωE (c, c) = 1 precisely when c is orientation reversing.

On an oriented surface M , there is another useful alternating 2-form, which is
defined as follows. For every drawing D : G → M , there is an embedding E : G → S

into an oriented surface S, which has the same rotation systems as D; the surface S is
obtained by attaching a handle to S at each crossing of the drawing. (For information
on rotation systems, see [12] or [16].) The 2-form ωE depends only on D; we denote
it by σD . An explicit description of σD was given in [5]. We will require the following
result which was proved in [5, Lemma 1] (note that this formula still holds when G

is a non-simple graph):

Proposition 2 Let T be a generalized thrackle drawing of a finite graph G on an
oriented surface M . Then for every pair of cycles c1, c2 in G, one has:

ωT (c1, c2) = σT (c1, c2) + l(c1)l(c2) + l(c1 ∩ c2). (1)
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3 Proof of the Forward Direction of Theorem 2

Suppose that T : G → M is a generalized thrackle drawing of a connected non-
bipartite graph G on an oriented closed surface M . For every crossing point of T (G),
attach a handle to the surface M in a small neighbourhood of the crossing and reroute
the edges to avoid the crossing (as in [5, Fig. 6]). This gives an embedding T ′ of
the graph G in a closed oriented surface S (in general, having much bigger genus
than M). Take a small closed neighbourhood U ⊂ S of the set T ′(G). Then U is an
oriented compact surface (with boundary) which consists of small discs around the
vertices of G joined by narrow bands along the edges. Take each of these bands in
turn, cut across it and glue it back together with a half turn. In this way we obtain
a embedding of the graph G in a compact surface W with boundary. Finally, attach
discs to all the boundary components of W . This results in an embedding E of the
graph G in a closed non-orientable surface N . By construction, even circuits of E (G)

represent orientation-preserving loops on N , while odd circuits represent orientation-
reversing ones. So E is a parity embedding.

For a simple example which illustrates the above construction, consider an embed-
ding of the triangle in the sphere M = S

2. This is the simplest possible generalized
thrackle of a non-bipartite graph. In performing the above construction, there are no
crossings to be removed, and so the compact oriented surface U that we obtain is
just a cylinder. Cutting the three bands and regluing, the compact surface W obtained
is a Möbius strip. Finally, attaching a disc to the boundary gives N = RP

2, the real
projective plane.

Returning to the proof of Theorem 2, we will show that χ(N) ≥ χ(M) − 1. If
necessary, one can then cut out small discs and glue in Möbius strips, to reduce the
Euler characteristic of N to χ(M) − 1. To begin, consider the pull-backs ωT ,ωE of
the respective intersection forms �M,�N to H1(G).

Lemma 2 ωE = ωT + l ⊗ l.

Proof We must show that for every pair of circuits c1, c2 of the graph G,

ωE (c1, c2) = ωT (c1, c2) + l(c1)l(c2). (2)

Formula (2) follows from Lemma 1 when c1 = c2, since E is a parity embedding and
ωT is alternating as M is orientable. So we may assume that c1 and c2 are distinct.
To find the left-hand side of (2) we need to bring the loops E (c1), E (c2) into general
position and to count the number of their crossings mod 2. This can be achieved by a
small perturbation of E (c2) in a neighbourhood of the set E (c1 ∩ c2). The intersection
c1 ∩ c2 is a disjoint union of paths p1, . . . , ps and isolated vertices v1, . . . , vq . So we
perturb E (c2) in a family of disjoint domains, homeomorphic to discs, surrounding
the points E (vi) and the arcs E (pj ) on the surface N for i = 1, . . . , q, j = 1, . . . , s.

Now consider the closed oriented surface U described in the construction in the
first paragraph of this section. By construction, there is an embedding P : G → U

with the same rotation systems as the drawing T of G in M . Consider the pull-back
ωP of the intersection form �U to H1(G). One has ωP = σT . So by Proposition 2,
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we have:

ωT (c1, c2) + l(c1)l(c2) = ωP (c1, c2) + l(c1 ∩ c2).

So (2) is equivalent to

ωE (c1, c2) = ωP (c1, c2) + l(c1 ∩ c2). (3)

At every isolated vertex vi of c1 ∩ c2, the loops E (c1) and E (c2) on N touch or
cross in the same manner as P (c1) and P (c2) do on U . So the contribution of each
vi to both sides of (3) is the same.

For each path pj , the band on N surrounding E (pj ) makes l(pj ) half-turns rel-
ative to the same band on U . Therefore, the number of crossing points of the loop
E (c1) and the perturbed loop E (c2) in the band on N is l(pj ) more than the corre-
sponding number of crossings on U . In other words, for the path pj , the contribution
to the right-hand side of (3) is l(pj ) more than the corresponding contribution to the
left-hand side of (3). This establishes (3) and completes the proof of the lemma. �

By construction, rkωT ≤ rk�M . So, as χ(M) = 2 − rk�M by Proposition 1, we
have χ(M) ≤ 2− rkωT . Since the embedding E is cellular, χ(N) = 2− rkωE . Thus,
in order to establish χ(N) ≥ χ(M) − 1, the following elementary exercise in linear
algebra will suffice.

Lemma 3 Given an alternating bilinear form ωT and a 1-form l, in a vector space
L over Z2, set ωE = ωT + l ⊗ l. Then either rkωE = rkωT or rkωE = rkωT + 1.

Proof If l = 0, there is nothing to prove. Otherwise, let p = dimL and choose a basis
c1, . . . , cp of L such that c1, . . . , cp−1 span the kernel of l. As ωT is alternating, the
restriction ω′

T of ωT to ker l is also alternating. In particular, rk(ω′
T ) is even. Set

rkω′
T = 2k and consider the standard 2k × 2k Z2-symplectic matrix Jk :

Jk =

⎛
⎜⎜⎜⎝

J 0 . . . 0
0 J . . . 0
...

...
. . .

...

0 0 . . . J

⎞
⎟⎟⎟⎠ , where J =

(
0 1
1 0

)
,

which consists of k copies of J down the main diagonal and zeros elsewhere. By [13,
Theorem 2.10], since ω′

T is alternating, we can specify the vectors c1, . . . , cp−1 in
such a way that the matrix representation of ω′

T is:

(
Jk 0
0 0

)
.

Thus the matrix representations of ωT and ωE are respectively
⎛
⎝

Jk 0 αt

0 0 βt

α β 0

⎞
⎠ and

⎛
⎝

Jk 0 αt

0 0 βt

α β 1

⎞
⎠
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for some α = (α1, . . . , α2k), β = (β1, . . . , βp−2k−1). Changing cp to cp + α1c2 +
α2c1 + · · · + α2k−1c2k + α2kc2k−1, we obtain matrices of the same form with the αi

replaced by zeros. If βj = 0 for all j , then rkωE = rkωT + 1. If at least one of the
βj is nonzero, rkωE = rkωT . This completes the proof of Lemma 3 and the forward
direction of Theorem 2. �

4 Proof of the Converse Direction of Theorem 2

We will show that the construction of the previous section can be reversed; i.e., for
each parity embedding of G in a closed non-orientable surface N of odd Euler char-
acteristic χ(N), there is a generalized thrackle drawing of G in an orientable closed
surface M with χ(M) ≥ χ(N) + 1.

Assume that E : G → N is a parity embedding of a graph G in a closed surface N .
Consider a small closed neighbourhood W ⊂ N of E (G). So W is a compact surface
with boundary, consisting of discs around the vertices of G and bands around the
edges. Cut each of these bands across and then glue back with a half turn. This gives
an orientable surface U with boundary and an embedding P : G → U . Attach discs
to each of the boundary component. The resulting closed surface S is orientable, with
the graph G embedded by a map S : G → S. In general, we cannot control the Euler
characteristic of S. However, the forms ωS and ωE are closely related.

Lemma 4 For every pair of cycles c1, c2 in G,

ωS (c1, c2) = ωP (c1, c2) = ωE (c1, c2) + l(c1 ∩ c2). (4)

Proof The first equation of (4) follows from the fact that the embedding S is cellular.
The second one trivially holds when c1 = c2, by the definition of a parity embedding.
If c1 
= c2, perturb the images E (c1), E (c2) ⊂ N in a neighbourhood of E (c1 ∩ c2)

to bring them into general position. Then ωE (c1, c2) is the number of crossings of
the resulting loops modulo 2. Under the embedding P , the images of cycles c1, c2
acquire additional crossings, one for every edge the cycles have in common. Thus,
arguing as in the proof of Lemma 2, one has ωP (c1, c2) = ωE (c1, c2) + l(c1 ∩ c2). �

In what follows, the strategy is not to attempt to construct the required drawing
T : G → M by performing surgery on S but rather to construct M from scratch, so
to speak, using only the rotations systems of S : G → S. We will use the following
proposition, which is a converse to Proposition 2.

Proposition 3 Let D be a drawing of a finite graph G on an oriented surface M , and
suppose furthermore that for every pair of cycles c1, c2 in G, one has:

ωD(c1, c2) = σD(c1, c2) + l(c1)l(c2) + l(c1 ∩ c2). (5)

Then there exists a generalized thrackle drawing T : G → M with the same rotation
diagram and the same homologies of cycles as in the drawing D.
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We first complete the proof of Theorem 2 assuming Proposition 3. Consider the
alternating two-form ω defined on H1(G) by

ω(c1, c2) = ωS (c1, c2) + l(c1 ∩ c2) + l(c1)l(c2) (6)

for cycles c1, c2 in G. Set 2g = rkω and let M be a closed oriented surface of genus g.
Choose an epimorphism φ : H1(G) → H1(M) � Z

2g

2 such that ω = φ∗�M ; that is,
ω(c1, c2) = �M(φ(c1),φ(c2)) for all cycles c1, c2. This is always possible since �M

is non-degenerate; see [13, Theorem 2.10]. We now construct a drawing D of G on
M with the following properties:

(1) the rotation diagram of D is the same as that of the embedding S of G in S,
(2) for every cycle c, D(c) represents φ(c) in H1(M).

To construct such a drawing, we start by embedding a spanning tree of G respecting
the rotation diagram and then add the remaining edges respecting both the rotation
diagram and homologies of cycles.

Applying Proposition 3, since ωS = σD , we can redraw D to get a generalized
thrackle drawing T : G → M . By (4) and (6), ω(c1, c2) = ωE (c1, c2)+ l(c1)l(c2) for
cycles c1, c2 in G; in other words, ωE = ω + l ⊗ l. Hence by Lemma 3, rkω ≤ rkωE .
Thus χ(M) = 2 − rkω ≥ 2 − rkωe = χ(N). So, as χ(M) is even and χ(N) is odd,
χ(M) ≥ χ(N) + 1, as required.

It remains to give the:

Proof of Proposition 3 Consider an arbitrary edge e and vertex v of G. Define an
(e, v)-operation on the drawing D as shown in Fig. 1. Since an (e, v)-operation
changes neither rotation diagrams nor homologies, it leaves (5) unchanged. We pro-
pose to turn D into a generalized thrackle in a finite number of (e, v)-operations.

Consider the boundary map ∂ : E → V between the edge and vertex spaces of G.
We introduce an alternating Z2-bilinear 2-form η on E as follows: η(e, e) = 0 for all
edges e, and for distinct edges e1, e2,

η(e1, e2) = 1 + #
(

D(ei) ∩ D(ej )
) + #

(
∂(e1) ∩ ∂(e2)

)
(mod 2).

As usual, edges are by definition open edges, so the intersection D(e1) ∩ D(e2) does
not include endpoints; the number of common endpoints is counted in the third term
#(∂(e1)∩∂(e2)) (which we take to be zero if at least one of the edges e1, e2 is a loop).
Notice that the drawing D is a generalized thrackle if and only if η ≡ 0.

Lemma 5 For an arbitrary graph drawing D and for all cycles c1, c2 of G,

η(c1, c2) = l(c1)l(c2) + l(c1 ∩ c2) + ωD(c1, c2) + σD(c1, c2) (mod 2).

Proof If Ai denotes the set of indices j for which edges ej form part of ci , then
modulo 2,

η(c1, c2) =
∑

i∈A1,j∈A2
i 
=j

1 + #
(

D(ei) ∩ D(ej )
) + #

(
∂(ei) ∩ ∂(ej )

)
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Fig. 1 An (e, v)-operation

= #
(
∂(c1) ∩ ∂(c2)

) +
∑

i∈A1,j∈A2
i 
=j

1 + #
(

D(ei) ∩ D(ej )
)

=
∑

i∈A1,j∈A2
i 
=j

1 + #
(

D(ei) ∩ D(ej )
)

= l(c1)l(c2) + l(c1 ∩ c2) +
∑

i∈A1,j∈A2
i 
=j

#
(

D(ei) ∩ D(ej )
)

= l(c1)l(c2) + l(c1 ∩ c2) + ωD(c1, c2) + σD(c1, c2),

where the last line uses the fact that, by the definition of ωD and σD , ωD(c1, c2) +
σD(c1, c2) is the number (mod 2) of crossings of D(c1) with D(c2) that occur in the
interior of the edges. �

Notice that by the above lemma, the hypothesis of Proposition 3 reads as follows:
η(c1, c2) = 0 for all cycles c1, c2. The subspace of cycles in E is just the kernel of the
boundary map ∂ : E → V. So the condition that η(c1, c2) = 0 for all cycles c1, c2 can
be rephrased as: ker ∂ is totally isotropic for the alternating form η.

Label the vertices v1, . . . , vn and edges e1, . . . , em and take these as bases for V
and E respectively. Relative to these bases, let d be the matrix representation of ∂, and
let D be the matrix representation of η. Notice that the (ei, vj )-operation adds the j th
row of d to both the ith row and the ith column of D. Take a Z2-matrix P with m rows
and n columns and perform the (ei, vj )-operations on each pair (ei, vj ) such that
Pij = 1. Then the matrix D for the resulting drawing has the form D + Pd + (Pd)t .
So Proposition 3 is equivalent to the following fact of matrix algebra:
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Lemma 6 If the kernel of an n × m-matrix d is totally isotropic for an alternating
m × m-matrix D, then there exists an m × n-matrix P such that

D + Pd + (Pd)t = 0. (7)

Proof By change of basis in Z
m
2 and Z

n
2 , we may assume that the matrix d has the

form d = (
Ir 0
0 0

)
, where r = rkd, and Ir is the r × r identity matrix. Then D =( D1 D2

Dt
2 0

)
, where the r × r matrix D1 is alternating, and D2 is an r × (m − r)-matrix.

Thus (7) holds with P = ( P1 0
Dt

2 0

)
, where P1 is the strictly upper-triangular r × r matrix

having the same elements above the diagonal as D1. �

This completes the proof of the lemma, Proposition 3, and Theorem 2. �

5 Proof of Corollary 1 and the Sharpness of the Inequality

Suppose that T : G → M is a generalized thrackle drawing, where M is a closed
orientable surface of genus g. Then by Theorem 2, there is a parity embedding
E : G → N , where χ(N) = χ(M) − 1 = 1 − 2g. Further, by reducing the genus
if necessary, we can assume that E is cellular. For each face F of E , the boundary ∂F

of F is a 2-sided curve and so, as E is a parity embedding, the boundary ∂F must
consist of an even number of edges; i.e., F is a 2m-gon for some m. (We remark in
passing that it is possible that an edge may occur twice in the boundary of a given
face, as for example in the case of the parity embedding of the triangle in RP

2 de-
scribed in Sect. 3. In this example, there is a single hexagonal face.) Hence, if G is a
simple graph, the faces of N all have at least 4 edges. It follows from Euler’s formula
that m ≤ 2n − 2 + 4g, where n is the number of vertices of G, and m is the number
of edges. This establishes Corollary 1.

Applying Theorem 2, we can now show the sharpness of the bound given in Corol-
lary 1. First take a minimal genus embedding of a complete bipartite graph K4,2q ,
q ≥ 1 in a closed orientable surface M of genus g. Then m = 8q,n = 2q + 4 and
g = q − 1 [12]. So m = 2n + 4g − 4. All the faces of the embedding are quadrilater-
als. Let D be one of the faces and v1, v2, v3, v4 its vertices. Cut the face D out and
attach a Möbius band along the boundary circle of D. We can draw two arcs v1v3

and v2v4 on this band such that the resulting drawing is still an embedding. More-
over, this embedding is a parity embedding. The resulting graph G has m′ = m + 2
edges and n′ = n vertices and is parity embedded in a surface of Euler characteristic
1 − 2g. By Theorem 2, we can redraw G as a generalized thrackle on a closed ori-
entable surface of Euler characteristic 2 − 2g. This results in a generalized thrackle
with m′ = 2n′ + 4g − 2.

Note that having a generalized thrackle for which the equality sign in Corollary 1
is attained, we can produce new generalized thrackles on the same surface without
violating the equality. This can be done by adding 2-paths as shown in [5, Fig. 10].
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6 Embedding Conditions

For an arbitrary finite graph G, let � denote the 2-form on H1(G) defined by:

�(c1, c2) = l(c1)l(c2) + l(c1 ∩ c2) (mod 2)

for all cycles c1, c2. It is clear that � is Z2-bilinear and alternating.

Theorem 3 If there is a generalized thrackle drawing of G in a closed orientable
surface M , then there is an embedding of G in a closed orientable surface of Euler
characteristic χ(M)− rk(�) and moreover, if there is an embedding of G in a closed
orientable surface S, then there is a generalized thrackle drawing of G in a closed
orientable surface of Euler characteristic χ(S) − rk(�).

Proof First suppose that T : G → M is a generalized thrackle drawing, where M

is a closed orientable surface. Let E : G → S be an embedding in a closed oriented
surface S with the same rotation systems as T . Then ωE = σT . So by Proposition 1,
ωE = ωT +� and hence rk(ωE ) ≤ rk(ωT )+rk(�). Moreover, arguing as in the proof
of [5, Lemma 3], we can choose S to have minimal genus so that rk(ωE ) = rk(�S).
Then by Proposition 1,

χ(S) = 2 − rk(�S) = 2 − rk(ωE ) ≥ 2 − rk(ωT ) − rk(�) = χ(M) − rk(�).

Conversely, suppose that E : G → S is an embedding of G in a closed oriented
surface S. Arguing as in Sect. 4, there is a generalized thrackle drawing T : G → M

with σT = ωE , where M a closed oriented surface with χ(M) = 2 − rk(ωE ). Then
by Proposition 2, ωT = ωE + �. Hence rk(ωT ) ≤ rk(ωE ) + rk(�), and so

χ(M) = 2 − 2 rk(ωT ) ≥ 2 − rk(ωE ) − rk(�) = χ(S) − rk(�),

as required. �

Notice that if G is bipartite, then � ≡ 0. Thus Theorem 3 is a generalization of
Theorem 1.

7 Planar Generalized Thrackles

Theorem 2 has the following immediate corollary:

Corollary 2 A finite connected non-bipartite graph G can be drawn as a generalized
thrackle in the plane if and only if G admits a parity embedding in RP

2.

There is a Kuratowski-type classification theorem for embeddings of graphs in
the projective plane [1], but there is no analogous result for parity embeddings [21].
Of course, the condition that there is a parity embedding a graph G in RP

2 is much
stronger than the condition that G embeds in RP

2. Indeed, it is easy to construct
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graphs which are planar (and hence embed in RP
2) but which do not possess a parity

embedding in RP
2; see Sect. 8.

Consider the following construction: if G is a graph and c an even circuit in G,
define the equivalence relation ∼c on G which identifies opposite edges and opposite
vertices of c and is trivial outside c. We have:

Theorem 4 There is a parity embedding of a finite connected non-bipartite graph G

in the projective plane RP
2 if and only if there exist a planar bipartite graph G′ and

a circuit c ⊂ G′ of length 2 (mod 4) bounding a face in a plane embedding of G′
such that G = G′/ ∼c.

Proof If there is a parity embedding of G in RP
2, then by Corollary 1, G can be

drawn as a generalized thrackle in the plane. Conway doubling on an odd circuit
gives a planar generalized thrackle of a graph of the required form G′ (see [19]).
Moreover, G′ is bipartite [5, Lemma 2]. Hence G embeds in the plane, by [15] (see
Theorem 1).

Conversely, suppose that G′ is a planar bipartite graph and c′ is a circuit of length
2 (mod 4) bounding a face D in an embedding F : G′ → S

2. Since c′ is a circuit, the
complement S

2 \ D is a disc. Cut the face D out and identify the opposite points of
its boundary circle c′. We obtain an embedding E of the graph G = G′/ ∼c′ in RP

2.
It remains to show that E is a parity embedding. By construction, the diagram

G′
F

π

S
2

p

G
E

RP
2

is commutative with π : G′ → G the projection operator defined by the equivalence
relation ∼c′ and p the projection from S

2 to RP
2. The induced maps in homology

give the commutative diagram:

H1(G
′)

F∗

π∗

0

p∗

H1(G)
E∗

Z2

Let c denote the odd circuit in G that results from c′; that is, π(c′) = c. As π : c′ → c

is a double-cover, π∗(c′) = 0; in fact, it is easy to see that the kernel of π∗ is the
one-dimensional subspace spanned by c′. Let n (resp. n′) and m (resp. m′) denote
respectively the number of vertices and edges of G (resp. G′). Recall that for an
arbitrary connected graph K with v vertices and e edges, one has rkH1(K) = e −
v + 1, the cyclomatic number of K ; see [11]. Since n − m = n′ − m′, one has
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Fig. 2 Conway doubling for
parity embeddings

rkH1(G
′) = rkH1(G). Since π maps edges onto edges, the homomorphism π∗ re-

spects parity; i.e., on H1(G
′), l ◦ π∗ = l, which is identically zero, as G′ is bipartite.

Thus, the cycles in Im(π∗) are even. Hence c /∈ Im(π∗), and it follows that H1(G) is
spanned by Im(π∗) and c. Consequently, the even cycles in G all lie in Im(π∗) and
are therefore zero in H1(RP

2), by the above commutative diagram. The odd circuit
c represents an orientation-reversing loop, and is therefore nontrivial in homology.
Thus, as every odd circuit has the form c + γ , where γ ∈ Im(π∗), all odd circuits are
nontrivial in homology; i.e., they are 1-sided. So E is a parity embedding. �

Note that in the first part of the above proof, we could have argued directly without
recourse to the results of [5]. Indeed, given an parity embedding E : G → RP

2, one
can perform a construction which may be regarded as a form of “Conway doubling”
for parity embeddings: choose an odd circuit c in G. Double each of the vertices and
edges of c, as shown in Fig. 2. In this way, since c is single sided, c is replaced by
a circuit c′ of twice the length as c; let G′ denote the resulting graph. The circuit
c′ bounds a Möbius strip; cutting this out and replacing it by a disc we obtain an
embedding of G′ in S

2, and clearly G = G′/ ∼c. The only work that remains is to
show that G′ is bipartite; this requires an argument similar to that in [5, Lemma 2].

8 Parity Embeddings

We conclude the paper with some comments concerning parity embeddings. First re-
call that if G is a non-bipartite connected graph, then there is a natural bipartite graph
Ĝ and a fixed point free action of the two element group Z2 on Ĝ with G = Ĝ/Z2
(see [2]). The graph Ĝ is called the bipartite double-cover of G; it is analogous to
the orientation double-cover of a non-orientable surface and is constructed as fol-
lows: consider the length function l : π1(G) → Z2 on the fundamental group π1(G).
Clearly l is a group homomorphism, and it is nontrivial as G is non-bipartite. Let
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Fig. 3 The complete graph K4
and its bipartite double-cover

p : Ĝ → G denote the Galois covering of the topological space G corresponding to
the homomorphism l. (Recall that a covering is said to be Galois or regular if it is
defined by a free action of a group [8, Chap. 3.I].) Then Ĝ inherits a structure of a
graph from G, which is clearly bipartite by construction, and the monodromy action
of Z2 on Ĝ is the required Z2 action. From a practical point of view, Ĝ can be con-
structed as follows: remove from G the minimum possible number of edges so as to
make the resulting graph bipartite. Take two copies G1,G2 of this bipartite graph and
two copies of the removed edges and reattach the edges to their original vertices but
in such a way that each attached edge joins G1 with G2. The graph thus constructed
is Ĝ.

In the planar case, Theorem 2 can be rephrased as follows:

Corollary 3 A finite connected non-bipartite graph G can be drawn as a generalized
thrackle on the plane if and only if its bipartite double-cover Ĝ can be embedded in
the complex plane in such a manner that the monodromy map is the antipodal map
z �→ −1/z∗.

For example, consider the graph G = K4, shown on the left of Fig. 3. Its bipartite
double-cover Ĝ is the cube; the planar embedding of Ĝ, shown on the right of Fig. 3,
is to be regarded as being centred at the origin in the complex plane C, and the
monodromy map is the antipodal map z �→ −1/z∗. So by Corollary 3, G can be
drawn as a generalized thrackle in the plane; see [5, Fig. 10].

Notice that in general, if there is a parity embedding of a graph G in a surface
N , then taking the orientation double-covering N̂ of N , one obtains an embedding
of the bipartite double-cover Ĝ in N̂ . However, the converse statement is false; if Ĝ

embeds in N̂ , then it does not necessarily follow that G embeds in N . Indeed, the
graph G shown on the left of Fig. 4 has the property that its bipartite double-cover Ĝ

is planar (Ĝ is shown on the right of Fig. 4; here the monodromy map is σ(z) = −z).
Hence Ĝ embeds in the sphere S

2. However G does not admit a parity embedding
in the real projective plane RP

2. Indeed, if it did, the two triangles would both be
represented by one-sided curves and hence both nontrivial in homology, and thus,
as H1(RP

2) = Z2, they would be homologous curves. But in this case, they would
necessarily have nontrivial intersection, which is impossible as they as disjoint.

In general, the problem is that given an embedding of Ĝ in a surface N̂ , it is not
always possible to extend the action of the monodromy element σ from Ĝ to a fixed
point free involution of N̂ . Nevertheless, there is a partial result. Let G be a connected
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Fig. 4 The graph G (on the left) and its bipartite double-cover Ĝ

non-bipartite graph, let Ĝ denote its bipartite double-cover and let σ : Ĝ → Ĝ be the
corresponding monodromy involution. Notice that if Rv is rotation system at some
vertex v ∈ Ĝ, then the map σ defines a rotation system σ(Rv) at σ(v); we call σ(Rv)

the image of Rv under σ . We have:

Theorem 5 A finite graph G admits a cellular parity embedding in a closed surface
N if and only if there is a cellular embedding of the bipartite double-cover Ĝ in the
orientation cover N̂ of N with the following property: for each vertex v of Ĝ, the
rotation system at σ(v) is opposite to the image under σ of the rotation system at v.

Proof One direction is obvious. Suppose therefore that there is a cellular embedding
Ê : Ĝ → N̂ with the property stated in the theorem. Notice that since the embedding
is cellular, we can extend the involution σ of Ĝ to an orientation reversing involutive
homeomorphism σ̂ of N̂ by coning σ on each face. Our task is to show that σ̂ is
fixed point free, since then G = G′/σ embeds in the closed surface N = N̂/σ , and it
is easy to see that this is a parity embedding and that N̂ is the orientation cover of N .

Since σ̂ maps faces to faces, and since σ has no fixed point on Ĝ, it suffices to
show that σ̂ preserves no face of N̂ . Arguing by contradiction, suppose that a face
F is preserved by σ̂ . Since F is homeomorphic to a disc, and since σ̂ is orientation
reversing, σ̂ induces an orientation reversing homeomorphism σ̂ |∂F on the boundary
∂F ∼= S

1 of F . Thus σ̂ |∂F has a fixed point (in fact, 2 fixed points), contradicting the
fact that σ has no fixed point on Ĝ. �

Remark 3 If G can be drawn as a generalized thrackle on a closed orientable surface
M , then by Theorem 2, G admits a parity embedding in a non-orientable closed
surface N with Euler characteristic χ(N) = χ(M) − 1. We can then apply The-
orem 5; notice that as the resulting surface N̂ is a double cover of N , we have
χ(N̂) = 2χ(N) = 2χ(M) − 2; see, for example, [4, Proposition IV.13.5].
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