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This article presents a three-dimensional numerical framework for the simulation of fluid-fluid immiscible

compounds in complex geometries, based on the multiple-relaxation-time lattice Boltzmann method to model

the fluid dynamics and the color-gradient approach to model multicomponent flow interaction. New lattice

weights for the lattices D3Q15, D3Q19, and D3Q27 that improve the Galilean invariance of the color-gradient

model as well as for modeling the interfacial tension are derived and provided in the Appendix. The presented

method proposes in particular an approach to model the interaction between the fluid compound and the solid,

and to maintain a precise contact angle between the two-component interface and the wall. Contrarily to previous

approaches proposed in the literature, this method yields accurate solutions even in complex geometries and

does not suffer from numerical artifacts like nonphysical mass transfer along the solid wall, which is crucial

for modeling imbibition-type problems. The article also proposes an approach to model inflow and outflow

boundaries with the color-gradient method by generalizing the regularized boundary conditions. The numerical

framework is first validated for three-dimensional (3D) stationary state (Jurin’s law) and time-dependent

(Washburn’s law and capillary waves) problems. Then, the usefulness of the method for practical problems of

pore-scale flow imbibition and drainage in porous media is demonstrated. Through the simulation of nonwetting

displacement in two-dimensional random porous media networks, we show that the model properly reproduces

three main invasion regimes (stable displacement, capillary fingering, and viscous fingering) as well as the

saturating zone transition between these regimes. Finally, the ability to simulate immiscible two-component

flow imbibition and drainage is validated, with excellent results, by numerical simulations in a Berea sandstone,

a frequently used benchmark case used in this field, using a complex geometry that originates from a 3D scan

of a porous sandstone. The methods presented in this article were implemented in the open-source PALABOS

library, a general C++ matrix-based library well adapted for massive fluid flow parallel computation.

DOI: 10.1103/PhysRevE.95.033306

I. INTRODUCTION

Multiphase fluid flows in porous media finds its application
in several environmental and industrial fields, such as dense,
nonaqueous phase liquid (DNAPL) soils decontamination
[1], CO2 storage in natural porous reservoirs [2], enhanced
oil recovery [3], and migration of volcanic gas in evolved
magmatic systems [4,5].

Although the pore-scale physics underlying immiscible
multiphase fluid transport in porous media is essentially
well understood, several recent contributions still explore and
highlight interesting findings at this fundamental scale [6–8].
These advances contribute in important ways to filling the

*sebastien.leclaire@polymtl.ca

gaps of knowledge connecting the macroscopic Darcy scale to
pore-scale models.

In this respect, the development and improvement of
numerical tools capable of dealing with multiphase pore-
scale processes powerfully contribute to this field. On the
one hand, numerical simulation emerges as a flexible tool
for engineering applications, and allows us for example to
determine permeability curves for a given media [9]. On the
other hand, simulation is a highly valuable tool for fundamental
research in the field of multiphase fluid flows [10,11].

Popular methods for multiphase flow simulations include
the volume of fluid [12] and level set [13] methods. More
recently, the lattice Boltzmann technique, that belongs to the
class of phase field methods, has shown its potential in the
field of pore-scale multiphase fluid flow simulation [14].
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Historically, there exist three major classes of multiphase
lattice Boltzmann methods:

(1) the color-gradient model (CGM) from Gunstensen and
Rothman [15];

(2) the pseudopotential model from Shan and Chen [16];
and

(3) the free-energy model from Swift et al. [17].
The book of Huang et al. [18] offers an introduction to this

field, and also includes other types of multiphase lattice Boltz-
mann methods. Liu et al. [19] review the multiphase lattice
Boltzmann methods specifically in view of their application to
porous media. For the interested reader, various numerical
benchmarks are available that compare various multiphase
lattice Boltzmann methods to each other, in Refs. [19–22]. A
more general overview of the lattice Boltzmann methods can
be found in Refs. [23–25]. It should also be noted that lattice
Boltzmann methods for porous media flows were initially
proposed in Refs. [26,27].

Because of the simplicity of its underlying algorithm and its
theoretical relationship to microscopic physical phenomena,
the Shan-Chen method [16] is still the most popular LB
multiphase approach. Especially the multicomponent Shan-
Chen model using two particle distribution functions is widely
cited in the literature. However, in its traditional formulation
this model is limited to the investigation of capillary regimes,
where both density and viscosity differences between fluid
are negligible or very limited [28,29]. With the help of recent
improvements, the pseudopotential method can potentially be
extended to high density and viscosity ratios [30–33].

The oldest lattice Boltzmann (LB) multiphase model, the
CGM, has been improved in many different ways since
it was published in 1992. Among the most popular three-
dimensional versions available in the literature, we mention
the model proposed by Tölke et al. [34], the one by Liu et al.

[35], and the model by Li et al. [36]. While these models
overcome numerous deficiencies of the original CGM, they
still suffer from numerical artifacts. For example, they lack
Galilean invariance [37] to a certain extent and appear to
be physically inaccurate in multiphase flows with variable
density ratios. In practice, this leads to a violation of the
multiphase interface momentum jump condition (in the case
of a momentum-based scheme) or velocity continuity [38] (in
the case of a velocity-based scheme). Following Ref. [37],
Leclaire et al. [39] improved the Galilean invariance of the
CGM by proposing an enhanced version of the equilibrium
distributions. Although not a CGM, the three-dimensional
cascaded lattice Boltzmann model of Lycett-Brown et al. [40]
further improves the Galilean invariance and scheme stability.
However, the cascaded collision is not simple to work with,
as the postcollision distributions are provided through quite
complex expressions. This makes it difficult to incorporate
new physics into this model.

One goal of the present paper is to propose a generalized
three-dimensional two-phase lattice Boltzmann model which
overcomes weaknesses of past models and is physically sound
in a given range of parameters. It is based on the original
three-dimensional CGM of Gunstensen and Rothman [15],
but offers many additional improvements. More precisely, the
model is an extension of the more recent two-dimensional
model developed by Leclaire et al. [41]. We propose a

given generalization to the three-dimensional lattices D3Q15,
D3Q19, and D3Q27 of the enhanced equilibrium distribution
functions [39], the multiple-relaxation-time (MRT) collision
operator [42], and perturbation operator [43]. The model is
built for the purpose of simulating important viscosity and
density ratios between the immiscible phases, while respecting
Galilean invariance with limited, but sufficient accuracy. In
order to deal with Galilean invariance, the CGM proposed
here uses the same technique as the one suggested for the
free-energy method in Refs. [37,39]. The proposed CGM is
adequate for the simulation of “immiscible multiphase” or
“immiscible multicomponent” fluids. We use an isothermal
equation of state, and it should be pointed out that as a
consequence, the model is unable to reproduce multiphase
scenarios with a change of phase. Such scenarios are, however,
outside the scope of the present article. We emphasize that
an isothermal equation of state is satisfactory for a large
range of fully immiscible fluid flow situations. In this sense,
the proposed CGM can be opposed to free-energy methods
which usually seek to simulate phase-change and thus adopt a
thermodynamically consistent pressure tensor.

The kinematic viscosity ratio in the CGM can be very large,
reaching values of up to 1000 (see Ref. [19]). In particular,
the kinematic viscosity ratio can be much larger than in the
free-energy method, where it is restricted to values around
8 (see Ref. [19]). This makes the CGM a better choice than
the free-energy method when it comes to simulate immiscible
multicomponent fluids, where large differences of viscosity
between the two fluids can occur. The scheme is mass and
momentum conservative. It does not require the resolution of a
Poisson equation at each time step and is therefore efficient and
amenable to massive parallelization. The model does suffer
from a certain amount of spurious currents, but these are easily
controlled through a lattice refinement approach [44]. In the
CGM, the numerical interface thickness (in lattice units), is
constant in width in a simulation and controlled by a unique
parameter. In contrast with the pseudopotential model, the
CGM does therefore not suffer from interfaces that diffuse
during the time evolution of the simulation. Furthermore,
the numerical interface automatically converges toward a
zero-width physical interface thickness with lattice refinement.
We underline that the finite width of the fluid-fluid interface
in the multicomponent lattice Boltzmann method introduces
unphysical scales [45]. One approach to improve this issue is
to use low-order interpolations near the fluid-fluid interface,
and introduce boundary conditions that are discontinuous for
some of the hydrodynamic variables, as described by Spencer
et al. [45]. Our choice of the MRT collision operator, similar
to the one proposed by Premnath and Abraham [46], leads to
a model that is numerically very stable, yet much easier to
implement than the cascaded LBM scheme of Ref. [40]. One
of the most useful features of the model is that all physical
and numerical parameters can be chosen independently: the
interface thickness does for example not depend on the
interfacial tension, as it does in a pseudopotential model.
This makes the CGM very flexible and easy to use. One
potential drawback of the CGM is that the collision is not
completely local, as it requires nearest-neighbors information
for the computation of the gradients. However, these added
tasks add only little to the overall weight of interprocess
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communication, as compared to the influence of the standard
LBM streaming process. As a more severe restriction, we point
out that while the CGM can simulate high density ratios in
simple test cases, in complex setups it appears to be impractical
to simulate density ratios larger than approximately 20, as this
would require very small time steps and consequently long
simulation times. While it is still possible to simulate a high
density ratio with the CGM, it is clear that it still remains a
real challenge [42,47]. We believe that current state-of-the-art
CGMs are mostly suited for simulating liquid-liquid interfaces
in immiscible, incompressible, and isothermal Newtonian
multiphase flows [41], and in a limited sense for liquid-gas
interfaces at very low Reynolds numbers.

Another interesting method for dealing with multicom-
ponent fluids is the one proposed by Lishchuk et al. [48].
The interfacial physics is generated by adding a “hydrostatic”
immersed boundary force alongside a measured interfacial
curvature. This is different from the present CGM, which
adopts the approach of Reis and Phillips [43], applying
an immersed boundary force vector (divergence of a stress
perturbation) at the interface of the fluid. At low Reynolds
number, the first approach reduces the spurious currents
more efficiently than the second approach. However, the
correction to the fluid momentum in Lishchuk et al. [48]
requires the evaluation of the interface curvature. This leads to
an additional, non-negligible computational overhead, since
second-order derivatives need to be computed at each time
step. It is, furthermore, unclear how the approach by Lishchuk
et al. [48] could be applied to multiple immiscible fluids.

In lieu of a full review of the state of art for the CGM, we
now discuss below a few recent CGM publications applied to
porous media applications.

Li et al. [36] demonstrate that the CGM is well suited
for an implementation on graphical processing units (GPUs).
They investigate flows in porous media and find that the
residual oil saturation is affected by both interfacial tension
and solid wettability. This article does, however, not provide
any theoretical validation beyond a simple validation of the
Laplace law. Other articles show that this type of CGM may
not be able to solve flows adequately with nonunit density
ratio in complex test cases and require special adjustment to
improve their accuracy [39,49].

Gunde et al. [50] compute relative permeability curves
and obtain qualitative insights regarding the physics of
water flooding in naturally fractured reservoirs, using the
original two-color model from Gunstensen et al. [51] with the
recoloring algorithm from Latva-Kokko and Rothman [52].
This work is purely bidimensional. Furthermore, it does not
make use of recent improvements to the algorithm, like the use
of isotropic color gradients [53], which substantially improve
its accuracy.

Huang et al. [54] draw a complete phase diagram of the
dynamic viscosity ratio against the capillary number [55] using
the lattice Boltzmann method. This is an important step for the
understanding of multiphase flows in porous media. This work
is, however, also purely bidimensional. Furthermore, as shown
in the recent literature, the numerical method used in Huang
et al. must be treated with special care. Indeed, Huang et al.

use a technique for modeling contact angle based on imposing
fictitious densities on the walls, which is known to lead to

a severe lack of accuracy due to a nonphysical fluid transfer
along the solid wall [44]. This numerical deficiency is not
visible in the numerical experiments of Huang et al., because
in these cases, the periodic boundary condition guarantees a
balance of artificial mass flow along the walls. This is, however,
not the case in more general, nonperiodic problems. As an
example, the present article shows, in the Berea sandstone
benchmark, that the fictitious-density approach to contact
angles is insufficient for the simulation of multicomponent
imbibition flow through porous media.

Jiang et al. [56] investigate multiphase flows into a Berea
sandstone using a three-dimensional CGM implemented on
GPUs. They found that for a flow driven by a pressure gradient,
the physics of the fluid displacement can be described by
three distinct regimes, which highly depend on the interfacial
tension. As the interfacial tension force is increasing, the
authors observe viscous fingering to capillary fingering up
to a situation where the invading fluid failed to break through.
Indeed, that, if the interfacial tension force is high enough, the
overall pressure gradient might not be high enough to compen-
sate the Laplace pressure jump [57]. As further limitations, we
point out that Jiang et al. use the fictitious density approach
for contact angles which, as pointed out above, is limited.

Liu et al. [58] studied dual-permeability porous media
and compared them to randomly heterogeneous media. They
found, among other things, that the transition from capillary
fingering to viscous fingering appears at higher capillary
number in randomly heterogeneous media. Washburn’s law
was validated for cases in which both fluid viscosities are
non-negligible, which is an important validation of the CGM.
Their investigation is, however, also limited to bidimensional
flows and to unit density ratio. Furthermore, just like in
previous studies, the standard [44] and potentially inaccurate
fictitious-density boundary condition was used in this work.
In a more recent work and using the same model, Liu
et al. [59] studied multiphase flows in homogeneous pore
networks and compared them to randomly heterogeneous pore
networks. They found, similarly as Lenormand et al. [55], three
different displacement patterns: stable displacement, capillary
fingering, and viscous fingering.

Tsuji et al. [60] studied two-phase flow behaviors in
three-dimensional (3D) natural rocks, and classified the flow
patterns according to the phase diagram by Ref. [55]. They
demonstrated that a digital rock approach is suitable for
revealing pore-scale phenomena. Their study is based on the
CGM of Tölke et al. [61]. Again, the limited density ratio
between the fluid components seems to be the main limitation
of their approach. Indeed, the literature suggests that the Tölke
et al. model fails to model variable density ratios in simple
benchmark cases like Couette flows [62].

It is our opinion that all the methods and techniques
discussed above clearly illustrate the potential of the CGM
when it comes to modeling immiscible fluid flows at the pore-
scale level. The CGM can therefore be considered a mature
tool for both industry and academia for the characterization
of porous media. However, all the CGM methods described
above still suffer from some deficiencies, as they may lack
Galilean invariance to a certain extent and therefore may
be inaccurate for simulating flow with density ratio in many
practical situations [37,39,41,49,62]. Consequently, they can
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only simulate multicomponent flow through porous media with
a more limited ratio of dynamic viscosity. All these models
also generally use the fictitious-density boundary conditions
in situations of wetting fluids. Because of nonphysical mass
transfers, these wetting boundary conditions are, however,
only suitable when the invading fluid is nonwetting [44].
Consequently, there is a need for a fully three-dimensional
CGM with more accurate wetting boundary condition, able to
simulate density ratios that are large enough for describing a
vast range of fluid-fluid compounds.

The present article addresses the mentioned drawbacks of
previously used models and proposes several improvements.
First, we include a more robust three-dimensional wetting
boundary condition. While we have previously shown that
this type of CGM can simulate flows with variable density
ratios [39,41], we focus in the present article on validating our
wetting boundary condition against (1) Jurin’s law [63,64] and
(2) Washburn’s law [65]. The GCM fluid-fluid interaction is
also further validated against (3) three-dimensional capillary
waves [66] for variable density and viscosity ratios. After these
validations, we test the quality of our model for multiphase
pore-scale applications, studying first two-phase fluid flows
in two-dimensional random porous media networks. In this
case, we show that the model is capable of reproducing the
three major invasion regimes of nonwetting displacement in
porous media as well as the saturation zone transition (stable
displacement, capillary fingering, and viscous fingering) as
described by Lenormand et al. [55]. In order to be able to
simulate these cases with the CGM, and with variable density
ratios, we developed different density and velocity boundary
condition for the CGM. It is a generalization of the LB
regularized density and velocity boundary condition proposed
by Ref. [67]. We finally conclude our work with an application
of our method to concrete 3D application scenarios, by
running imbibition and drainage experiments through 3D
Berea sandstone digital images. In this context, we highlight
the importance of using our wetting boundary condition,
which we compare to the traditional one, using fictitious wall
densities. We provide open-source implementations of the
CGM described in this article to the scientific community
through the PALABOS library [68]. These extensions are
theoretically valid for all lattices D2Q9, D3Q15, D3Q19,
and D3Q27, although for the CGM, only the code for the
three-dimensional lattices is currently available.

II. LATTICE BOLTZMANN COLOR-GRADIENT METHOD

The contribution of the present article to the color-gradient
method concerns the three-dimensional generalization as well
as a different three-dimensional wetting boundary condition,
which is inspired from a previous two-dimensional wetting
boundary condition [44]. We also generalized the single-phase
regularized density and velocity lattice Boltzmann boundary
conditions [67] to LB models in which the zero-velocity
population has a variable weight. This generalization is
necessary for the multiphase CGM for nonunity density ratios,
because in these cases the weight of zero-velocity population
is used to implement density differences.

The proposed two-phase model is described in a general
way, for any given DmQn lattice. All the necessary notations,

constants, weights, stencils, connectivity vectors, indexes, and
matrices are supplied in the Appendix. We describe the model
in the so-called lattice units, which are for example introduced
in Ref. [69].

For each fluid, a set of colored distribution functions
N k

i (x,t) is described on a DmQn lattice XL, with lattice
connectivity vectors ci as provided in the Appendix. The
distribution functions are labeled with a superscript k, which
is equal to r for a red fluid and b for a blue fluid. The
subscript index i is related to the velocity space discretization.
The color-blind distribution function is denoted as Ni(x,t) =
N r

i (x,t) + Nb
i (x,t).

The various lattice sites are regrouped into two disjoint
sets XF and XS , representing fluid sites XF and solid sites
XS respectively. The sites XE ⊂ XF are associated with the
external boundary conditions, such as density or velocity
boundary conditions. The set XW ⊂ XF corresponds to the
fluid sites that have at least one solid neighbor, situated in XS .

The main loop of the proposed evolution algorithm from
time t to t + 1 is summarized as follows:

(1) external boundary condition: N k
i (x,t∗)=(�)(0)(N k

i (x,

t)),∀k,∀i and ∀x ∈ XE ;
(2) single-phase collision: |N (x,t∗∗)〉 = (�)(1)(|N (x,t∗)〉),

∀x ∈ XF ;
(3) wetting boundary condition: modification of the normal

vector to the fluid interface near the solid boundary ∀x ∈ XW ;
(4) multiphase collision (perturbation): Ni(x,t∗∗∗) =

(�)(2)(Ni(x,t∗∗)),∀i and ∀x ∈ XF ;
(5) multiphase collision (recoloring): N k

i (x,t∗∗∗∗) =
(�)(3)(Ni(x,t∗∗∗)),∀k,∀i and ∀x ∈ XF ;

(6) full-way bounce back boundary conditions [70]:
N k

i (x,t∗∗∗∗∗) = N k
opp(i)(x,t∗∗∗∗),∀k,∀i and ∀x ∈ XS ;

(7) streaming operator: N k
i (x + ci,t + 1) = N k

i (x,

t∗∗∗∗∗),∀k,∀i and ∀x ∈ XL where the symbol |.〉 denotes
the bra Dirac notation for an expansion in velocity space,
along the indexes i. The term opp(i) denotes the opposite
orientation.

A. Single-phase collision operator

The first operator (�)(1), is based on the standard MRT
operator of the single-phase LB model [71]. The moments
are relaxed towards a local equilibrium, in which K denotes a
diagonal matrix of relaxation coefficients, and M is the matrix
that shifts the domain from a distribution space to a moment
space,

(�)(1)(|N〉) = |N〉 − M−1KM(|N〉 − |N (e)〉) + |�N〉. (1)

The density of the fluid k is given by the first moment of the
distribution functions:

ρk =
∑

i

N k
i . (2)

The total fluid density is given by ρ =
∑

k ρk , while the total
momentum is defined as the second moment of the color-blind
distribution functions:

ρu =
∑

i

Nici, (3)

where u is the velocity of the color-blind distribution functions.
Based on Refs. [37,39], the general form of the DmQn
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equilibrium functions is defined by

N
(e)
i (ρ,u)

= ν[ψi(u · ∇ρ) + ξi(G : ci ⊗ ci)]

+ρ
[
φi + ϕiα + Wi

(
3ci · u + 9

2
(ci · u)2 − 3

2
u · u

)]
,

(4)

where ⊗ is the tensor product, the symbol “:” stands for the
tensor contraction, and the superscript (e) denotes equilibrium.
The tensor G is defined by

G = (u ⊗ ∇ρ) + (u ⊗ ∇ρ)⊺, (5)

where the superscript ⊺ is the transpose operator. The weights
ψi, ξi, φi, ϕi , and Wi are lattice dependent and are given in
Tables II–V in the Appendix. The methodology to derive these
weights is also described in the Appendix.

The term |�N〉 in Eq. (1) is a density distribution function
modification designed to add external forces. In this research,
this term is solely used to change momentum so that the fluid
acceleration such as gravity is taken into account:

|�N〉 = M−1|�m〉, (6)

where |�m〉 is a vector with all components equal to zero
except for the indexes corresponding to the momentum such
that

�mpx
= ρgx, (7)

�mpy
= ρgy, (8)

�mpz
= ρgz, (9)

where g = [gx,gy,gz] is the gravity acceleration and the
momentum indexes px, py , and pz are lattice dependent and
are given in Table VII.

As established in Ref. [72], the density ratio between the
fluids γ must be taken into account as follows to obtain a stable
interface:

γ =
ρ0

r

ρ0
b

=
1 − αb

1 − αr

, (10)

where the superscript “0” over ρ0
r or ρ0

b indicates the initial
value of the density at the beginning of the simulation.

In each homogeneous phase region, the pressure of the fluid
k is

pk = ρkζ (1 − αk) = ρk

(
ck
s

)2
. (11)

In the above expressions, only one αk is a free parameter
because of the constraint in Eq. (10). In general, we let the
blue fluid be the least dense, and we set the value of 0 < αb =
W0 < 1 so that the relation 0 < αb � αr < 1 is guaranteed to
hold. This relation needs to be respected to avoid nonphysical
negative pressure. Also, these parameters set the isothermal
sound speed ck

s in each fluid k. The weight ζ is also lattice
dependent and is given in Table VI. The parameters α in the
equilibrium Eq. (4) is the arithmetic density weighted average:

α =
ρr

ρr + ρb

αr +
ρb

ρr + ρb

αb. (12)

The MRT matrix M is lattice dependent and is given
in Tables IX–XII for various lattices. These matrices are

derived similarly as in Refs. [73–75]; the only difference
here concerns the ordering indexes i of the velocity space
which is different from these studies. It has been judged
pertinent to reproduce them in the present article so that all
the matrices and indexes are presented here with the same
ordering of the lattice connectivity vectors. The diagonal
matrix K is also lattice dependent and the diagonal coefficients
Kυ,υ are related to the viscosity of the fluids, so their values
are set to the usual effective relaxation parameter ωeff. The
indexes υ are given in Table VIII for various lattices. The
other diagonal coefficients are set to χωeff. The constant
factor 0 < χ � 1 may improve the stability of the model.
With χ = 1, the multiple-relaxation-time operator becomes a
single-relaxation-time operator; lowering the value of χ may
therefore make the model more stable [42]. However, lowering
this value too much may affect accuracy.

The effective relaxation parameter ωeff is defined so that the
fluid viscosity is consistent with the macroscopic equations
for a single-phase flow in the single-phase regions. When
the viscosities of the fluids are different, an interpolation is
applied to define the parameter ωeff at the interface. If νk is the
kinematic viscosity of the fluid k, we use the harmonic density
weighted average to define the viscosity ν at the interface
between the fluids:

1

ν
=

ρr

ρr + ρb

1

νr

+
ρb

ρr + ρb

1

νb

. (13)

Note that other viscosity interpolation schemes are possible
[62]. Then, the effective relaxation parameter is

ωeff =
2

6ν + 1
. (14)

B. Perturbation operator

The interfacial tension in the CGM is modeled by means
of the perturbation operator [43,51]. It may take the following
form:

(�i)
(2)(Ni) = Ni + �N

pert
i , (15)

where the perturbation term �N
pert
i is

�N
pert
i = A|F|

[
Wi

(F · ci)
2

|F|2
− Bi

]
(16)

in which the color gradient F approximates the normal to the
interface:

F = ∇

(
ρr − ρb

ρr + ρb

)
(17)

and Bi are lattice dependent weights given in Tables II–V.
Reis and Phillips [43] and Liu et al. [35] have shown that
this operator complies within the macroscopic limit, with the
capillary stress tensor present in the macroscopic equations
for two-phase flows if the weights Bi are well chosen. The
parameter A is space and time dependent and is chosen to fit
the interfacial tension σ at the fluid interface:

A = 9
4
ωeffσ. (18)

Although this operator generates the interfacial tension, it does
not guarantee the fluid’s immiscibility. To minimize mixing
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and segregate the fluids, the recoloring operator (�k
i )(3) needs

to be properly selected.

C. Recoloring operator

This operator is used to maximize the amount of fluid k at
the interface that is sent to the fluid k region, while remaining
consistent with the laws of conservation of mass and total
momentum. The recoloring operator presented here is based
on Refs. [52,76], and is as follows:

(
�r

i

)(3)
(Ni) =

ρr

ρ
Ni + β

ρrρb

ρ2
cos(ϑi)N

(e)
i (ρ,0), (19)

(
�b

i

)(3)
(Ni) =

ρb

ρ
Ni − β

ρrρb

ρ2
cos(ϑi)N

(e)
i (ρ,0), (20)

where β = β∗(�x/�x∗)η is a parameter controlling the
thickness of the numerical interface [77]. The spacing �x∗ and
�x are physical spacing steps, not spacing steps in lattice units.
The superscript “*” corresponds to a reference value, so that β∗

and �x∗ are the values that would be used on a coarse lattice.
The parameter η is linked to the rate at which the numerical
interface thickness is reduced in the physical space with lattice
refinement [77]. The angle ϑi corresponds to the one between
the color gradient F and the lattice connectivity vector ci .

D. Single-phase regularized density and velocity boundary

conditions with a variable zero velocity lattice weight

The modeling of isothermal multiphase immiscible flows
with density ratios and with the color-gradient method requires
us to adjust the zero velocity lattice weight αk . In the common
color-gradient algorithm, this weight is usually only linked
with the isothermal speed of sound ck

s . However, changing the
zero velocity weight αk results in changes of other underlying
lattice weights required for the implementation of the single-
phase regularized density and velocity boundary conditions.
Proper care needs to be taken to model the expected physics
of the regularized boundary conditions. We define the weights
in a way similar to Nourgaliev et al. [78], where two lattice

weights ϒ
(2)
k and ϒ

(4)
k , which depend on the lattice geometry,

need to be defined. The first weight ϒ
(2)
k is the usual square of

the color-gradient isothermal speed of sound:

ϒ
(2)
k =

(
ck
s

)2
. (21)

The weight ϒ
(4)
k , on the other hand, is linked to the constitutive

physics M = λρ [78]:

ϒ
(4)
k = λϒ

(2)
k , (22)

where λ is a constitutive physics coefficient, related only
to the fluid viscosity. This coefficient happens to have the
value λ = 1

3
for all lattice models D2Q9, D3Q15, D3Q19,

and D3Q27 (see the Appendix). This is a subtle consideration
that needs to be taken into account for the implementation
of the single-phase regularized density and velocity boundary
conditions with the color-gradient method. Indeed, usually
in the single-phase lattice Boltzmann method αk = W0 for
all lattices D2Q9, D3Q15, D3Q19, and D3Q27, leading to

ϒ
(2)
k = (ck

s )2 = 1/3 and ϒ
(4)
k = (ck

s )4 = 1/9. However, with a

FIG. 1. A boundary node example for the D2Q9 lattice. The

dashed arrows represent the unknown populations.

variable zero velocity weight αk �= W0, the weights are ϒ
(2)
k =

(ck
s )2 �= 1/3 and ϒ

(4)
k �= (ck

s )4. This is the main difference
accounted for in our extended single-phase regularized density
and velocity boundary conditions, allowing the usage of
the regularized boundary conditions with the color-gradient
method with variable density ratios.

The rest of this section briefly presents the regularized
boundary condition for the lattice Boltzmann method that
takes into account a variable zero velocity weight αk . For
more details on this boundary condition, we refer the reader
to Ref. [67]. For more information on boundary conditions in
general in the lattice Boltzmann method, the interested reader
is referred to Refs. [79–82].

In our algorithm, the regularized boundary conditions are
implemented at steps (1) ∀x ∈ XE . Therefore, on a boundary
grid node some populations are unknown before the single-
phase collision, since they are streamed “from outside” the
computational domain, as depicted (for simplicity this example
is done in two dimensions) in Fig. 1. Thus they have to be
computed in an ad hoc manner. In this paper, the regularized
boundary conditions are based on a reconstruction of popula-
tions with the help of their Chapman-Enskog expansion.

Note that we now omit the index “k” for the color of
the fluid, as we assume that all boundary nodes are covered
homogeneously by a single fluid component. However, the
value of ϒ (2) and ϒ (4) at the boundary node still depends on
the overall density ratio γ of the fluids.

The main idea is to reconstruct all the populations of the
boundary node according to their Chapman-Enskog formula-
tion:

Ni = N
(0)
i (ρbc,ubc) + N

(1)
i

(
P

(1)
bc

)
, (23)

where ρbc, ubc, and P
(1)
bc are the values of the density ρ,

the velocity u, and the deviatoric stress tensor P (1) on
the boundary node. The superscripts (0) and (1) denote
quantities computed from the equilibrium and off-equilibrium
distributions respectively.

We discuss two kinds of boundary conditions here:
(1) The velocity boundary conditions (or Dirichlet), where

ubc is imposed. In this case, in order to be able to use Eq. (23),

one must still compute ρbc and P
(1)
bc .
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(2) The pressure pbc (or density ρbc = pbc/c
2
s ) is imposed,

as well as the velocity components tangential to the boundary
(noted u‖). In this case, in order to use Eq. (23) one must
still compute u⊥ (the component of the velocity normal to the

boundary) and P
(1)
bc .

We first focus on the computation of ρbc or u⊥, which are
related through the equation presented in Ref. [83]:

ρbc =
1

1 + u⊥
(2ρ+ + ρ0), (24)

where u⊥ = ubc · n is the boundary velocity projected onto
the boundary outward normal unit vector n. The quantities ρ0

and ρ+ are defined as

ρ0 =
∑

i∈{i|ci ·n=0}

Ni, (25)

ρ+ =
∑

i∈{i|ci ·n>0}

Ni . (26)

At the leading order the off-equilibrium populations N
(1)
i

are related to the deviatoric stress through

N
(1)
i =

Wi

2ϒ (4)
Qi : P (1), (27)

where Qi = ci ci − ϒ (2) I , with I is the identity matrix. In the
usual regularized boundary condition (see Ref. [67]), the term
ϒ (4) is replaced by c4

s . The method proposed here is more
general, as it takes into account possible variations of the zero
velocity lattice weight.

Since Qi = Qopp(i) [where opp(i) labels the direction
opposite to the direction pointed by ci] one can impose the
following relation at leading order:

N
(1)
i = N

(1)
opp(i), ∀i|ci · n < 0. (28)

Then

P (1) =
∑

i

QiN
(1)
i (29)

and Ni can be reconstructed according to Eq. (23).

E. Wetting boundary condition

In this section, our methodology for imposing a wetting
boundary condition is described in detail. The idea is based
on the fact that, with this lattice Boltzmann method, a precise
contact angle can be imposed by changing only nc, the unit
normal to the fluid interface, near the boundary ∀x ∈ XW .
Equivalently, the contact angle is set by changing the current
orientation of the color gradient F = |F|nc, so that its angle
with the normal direction to the wall nw is equal to the
desired contact angle θc. This numerical procedure must be
executed at each time step right before the implementation
of the wetting boundary condition, which is right after the
a priori approximation of the color gradient F that would
be computed with finite differences, using only the currently
known information from the bulk fluid lattice sites. Overall,
this is a kind of Dirichlet boundary condition only for the
orientation of the color gradient F, because the norm of the
color gradient |F| remains unchanged by the wetting boundary
condition. To illustrate the basic concepts, let us first assume

that an approximated direction to the wall normal nw is known
for each fluid site in XW . In other words, we take it for granted
that nc and nw are a priori estimates at a given fluid site near
the boundary, although the angle between them is not equal to
θc. The goal of the wetting boundary condition is to change the
orientation of nc relative to nw in order to achieve the correct
contact angle θc between the two vectors. It will be explained
later on how to compute the a priori approximation of the wall
normal nw.

The first step of the algorithm is to find a new vector vc,
that replaces the a priori estimation nc and that, ideally, forms
an angle θc with nw. For the new vector vc to form a contact
angle of θc with nw, it needs at least to respect the following
equation:

f (vc) = vc · nw − |vc| cos(θc) = 0. (30)

This is a degenerate system with one equation and three
unknowns, as each component of vc corresponds to one
unknown. Therefore, the set of solutions is infinitely large.
More precisely, the solution set is described by the equation of
a circle in three-dimensional space, the circle being generated
by taking all vectors that form an angle θc with nw. Overall, it
is a difficult problem to choose the most adequate solution in
this set. Although the system is degenerate, it is still possible to
use the numerical method of the secant to extract one particular
solution without dealing with complex three-dimensional
vector transformations and projections. As a function of the
index n, the proposed recurrence relation for the secant method
can be expressed as follows:

v(0)
c = nc, (31)

v(1)
c = nc − λ(nc + nw), (32)

v(n)
c =

v(n−2)
c f

(
v(n−1)

c

)
− v(n−1)

c f
(
v(n−2)

c

)

f
(
v

(n−1)
c

)
− f

(
v

(n−2)
c

) . (33)

In this case, the specific choice of the initial values v(0)
c and v(1)

c

imposes a search direction for the proposed secant method. As
a result, the solution vc is situated in the plane spanned by nc

and nw. This is due to the fact that the secant method proposed
here is based on linear vector combinations only, with base
vectors nc and nw. For simplicity, we used λ = 1/2, but other
values of λ or even different initial conditions could potentially
improve the numerical accuracy. However, finding a solution
to Eq. (30) in the space spanned by nc and nw is a reasonable
search hypothesis, as a solution in this plane is guaranteed to
exist. Also, since v(0)

c = nc, the secant method computes a new
vector v(n)

c , close to the color-gradient orientation nc, which
is estimated from the bulk fluid lattice sites. Although this
recurrence relation would in principle need to be carried out
for many iterations to find an exact solution, we decide in our
algorithm to always stop at n = 2 to avoid any unnecessary
computational costs. Indeed, the lattice Boltzmann method
itself is an explicit time-stepping scheme which is carried
out at very small time steps. The angle of the fluid interface
therefore changes only very little from one LBM time step to
the next, leading to a good initial value for the iterations of
the secant method. At the end of the algorithm to impose a
wetting boundary condition, since the recurrence relation does
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not guarantee the resulting vector to be of unit norm, the vector
v(2)

c is normalized before it replaces the current orientation of
the color gradient nc. After this, the execution of the CGM’s
perturbation step takes place. Assuming that a prediction of the
color gradient F and of the normal vector to the solid boundary
nw is available, this wetting boundary condition is fully
local.

This proposed wetting boundary condition is similar to
the one provided by Tölke et al. [84]. However, in their
work, the authors end up with a nonlinear system with five
equations and five unknowns. Their system is solved with a
Newton-Raphson method which could end up being expensive
in computational resources. Here, the final system has only one
equation with three unknowns and is solved with the simpler
secant method. It is clear that our approach is unusual because
the system is degenerate, but still provides good results thanks
to the chosen initial condition of the secant method. Indeed, as
already mentioned above, the search for the numerical solution
is restricted to the plane generated by nc and nw, and also the
solution is assumed to be close to nc. It is guaranteed that a
numerical solution exists in that plane, and it is most likely to
be very close to nc.

We would like to add a side note concerning the widely
used standard wetting boundary condition [44]. The standard
approach consists of imposing fictitious colored densities in
the solid lattice sites in order to influence the orientation of
the nonlocal gradients F. It has been shown in a previous
publication that this approach may lead to a nonphysical fluid
flow in a thin layer along the solid boundary. This can spoil
the numerical results [44]. But on top of this, since the contact
angle is also not accurately captured with this approach,
the fictitious colored densities must often be fine-tuned for
every choice of simulated regime parameters. This is a time-
consuming task, and even if a setting seems to work well for
a given set of flow parameters and for a simple geometry, a
more complex geometry would inevitably lead to additional
inaccuracies, or even to results that completely deviate from
any physically meaningful solution. The proposed wetting
boundary condition is much more general in the sense that it
automatically works for complex geometry and is independent
of additional imposed parameters, e.g., density and viscosity
ratios.

Estimation of nw near the solid boundary

A pore matrix is frequently obtained by micro computed
tomography imaging of rock samples [85]. These scans pro-
vide “gray” matrix while the LBM usually required a “binary”
matrix to describe the fluid-solid boundary. Therefore, the true
position of the fluid-solid interface is never exactly known
and is only an approximation in the simulations. So for a
three-dimensional fluid-solid matrix, it is overall very difficult
to find accurately what is the true position and the orientation
of the normal vector to the solid wall and to impose it into a
simulation. Here, it is assumed that a binary fluid-solid matrix
is already available and use a simple approach to estimate the
position and the normal vector to the solid wall nw. In order to
estimate nw at the fluid lattice sites near the solid boundary, the
three-dimensional solid matrix image is first smoothed using

the following smoothing operator:

g(α,β,γ )(n) =
k=1∑

k=−1

j=1∑

j=−1

i=1∑

i=−1

w(i2 + j 2 + k2)

× g(α + i,β + j,γ + k)(n−1) (34)

with

w(0) = 8/27, (35)

w(1) = 2/27, (36)

w(2) = 1/54, (37)

w(3) = 1/216, (38)

where w(i2 + j 2 + k2) are the standard weights of the D3Q27
lattice and g(x,y,z) is the fluid-solid binary matrix. In this
research the solid matrix is smoothed for three iterations.
Then the normal nw to the solid matrix at the fluid lattice
sites near the boundary are estimated as the gradient of the
smoothed image, i.e., nw(α,β,γ ) = ∇g(α,β,γ )(3). All this
computational work can be done in preprocessing before the
main lattice Boltzmann time integration loop. The gradient of
the smoothed image is stored in the computer memory and
the vector nw is called whenever it is needed in the wetting
boundary condition. Note that if the gray image from the
micro computed tomography scan is available, this smoothing
operation is not necessarily required as the gradient could
be directly computed from the gray image. However, an
approximate binary fluid-solid image would still be required
to do a simulation with this LBM.

III. NUMERICAL SIMULATION

This CGM has been showed to be compatible with many
solutions of hydrodynamic fluid-fluid interaction problems,
namely planar interface [76]; Laplace law [53]; two-phase
Couette flow [39]; two-phase spinodal decomposition growth
law [42]; oscillating plate [42]; Zalesak disk [42]; 2D capillary
wave [42]; 2D oscillating bubble [42]; two-phase Poiseuille
flow [41]; two-phase hydrostatic pressure [41]; 2D bubble
subject to Archimedes force [41]; 2D capillary-gravity wave
[41]; and 2D static contact angles on a curved geometry [44],
among others which may use a variant of the CGM.

The proposed extensions (wetting boundary condition) to
the CGM are validated against the three-dimensional Jurin
and Washburn laws. The CGM is also further validated against
a theoretical solution of a 3D capillary wave. Then, more
complex two-phase flows in porous media are studied and
discussed.

A. Jurin’s law

1. Physical and numerical description

a. Continuous physical space. The setting of the Jurin law
test is explained below. The domain of interest consists of the
box B:

B = {(x,y,z) ∈ [−L/2,L/2] × [−W/2,W/2]

× [−H/2,H/2]} (39)
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in which the following solid object O is immersed into the
box B:

O = O1 ∩ O2, (40)

O1 = {(x,y,z) ∈ B : R2 � x2 + ay2 � (R + t)2}, (41)

O2 = {(x,y,z) ∈ B : −3H/8 � z � +3H/8}. (42)

In Eq. (41), the coefficient a is equal either to 0 or 1. The
case with a = 0 corresponds to the two-dimensional Jurin
law between two infinite plates while the case with a = 1
corresponds to the three-dimensional Jurin law which involves
a three-dimensional tube. The half distance between the plates
or the radius of the tube is denoted R. The value t corresponds
to the thickness of the plates or the tube.

The object O1 can also (not necessarily) be subject to three-
dimensional rotations:

⎛
⎜⎝

x ′

y ′

z′

⎞
⎟⎠ = R

⎛
⎜⎝

x

y

z

⎞
⎟⎠ (43)

with the rotational matrix R = Rα(θα)Rβ(θβ)Rγ (θγ ). The
matrices Rα(θα), Rβ(θβ), and Rγ (θγ ) are two-dimensional
rotational matrices around a given coordinate axis. The indexes
α, β, and γ therefore correspond to one of the coordinate axes
x, y, or z. The point is that rotations are not commutative
and could be made in a different order for which the result
is different. Following the right-hand rule, the basic rotational
matrices are respectively

Rx(θx) =

⎛
⎜⎝

1 0 0

0 cos(θx) − sin(θx)

0 sin(θx) cos(θx)

⎞
⎟⎠, (44)

Ry(θy) =

⎛
⎜⎝

cos(θy) 0 sin(θy)

0 1 0

− sin(θy) 0 cos(θy)

⎞
⎟⎠, (45)

Rz(θz) =

⎛
⎜⎝

cos(θz) − sin(θz) 0

sin(θz) cos(θz) 0

0 0 1

⎞
⎟⎠. (46)

Note that in the two-dimensional case, i.e., a = 0, the
rotational matrices are not considered which means θx = θy =
θz = 0.

The top (z = H/2) and bottom (z = −H/2) planes of
the box B are solid no-slip boundaries while for simplicity
periodic boundary condition are used in the other directions.
The computational domain is filled with two immiscible fluids.
Initially, the “bottom” fluid fills the lower half of the domain
while the “top” fluid fills the upper half. The bottom fluid has
an initial density ρ0

B and a kinematic viscosity νB while the
top fluid has an initial density ρ0

T and a kinematic viscosity νT .
The interfacial tension σ at the interface of the two immiscible
fluids is also taken into account as well as the contact angle θc

at the fluids-solid boundary. The gravity acceleration g is also
an important parameter to be considered.

b. Theoretical consideration. The goal of the experiment
is to study at steady state the differential height h between

the inside and outside meniscus predicted by Jurin’s law as
a function of these parameters. In our setting, the differential
rise or fall capillary heights h is a function of the following
parameters:

h = F̃
(
L,W,H,t,R,σ,νB ,νT ,ρ0

B ,ρ0
T ,

g,θc,θx,θy,θz,α,β,γ,a
)
. (47)

According to a dimensional analysis by Refs. [86,87], the
following dimensionless formulation appears:

h

R
= F(W/L,H/L,t/L,R/L,

ρ0
T

ρ0
B

,
νT

νB

,La,

Bo,θc,θx,θy,θz,α,β,γ,a), (48)

where the Laplace, La, and Bond, Bo, numbers are respectively

La =
σR

ρ0
Bν2

B

, (49)

Bo =
(
ρ0

B − ρ0
T

)
R2g

σ
. (50)

Jurin’s law states that the function F depends only on a, θc,
and Bo such that

h

R
Bo = (a + 1) cos θc. (51)

The following additional hypothesis needs also to be taken
into account. Experimental analysis predicts well the capillary
rise or fall as long as the geometry rotations are not too large
[63], i.e., less than 50◦. It should be noted that Jurin’s law is
valid provided that the radius R is much less than the capillary
length, or said differently, smaller the Bond number. Here,
because of the periodic boundary condition, the length L must
also be much greater than the radius R to avoid capillary
competition between the periodic plates or tubes, which Jurin’s
law does not take into account. The wall’s surface is also
considered ideal and exempt of any roughness or waviness.

In a full analysis of the problem, all dimensionless numbers
should be taken into account. This is beyond the scope of
this research, so for simplicity, the following dimension-
less numbers are kept constant: W/L = 1, H/L = 1, t/L =
1/64, R/L = 1/32, and

ρ0
B

ρ0
T

= 10. Our numerical analysis

will thus concentrate on varying the other dimensionless
parameters. Once all dimensionless parameters are chosen,
there are some underlying parameters that are still free to vary,
which we set as L = 1, νB = 1/20, and ρ0

B = 1000. It is very
important to note that since these choices lead to a constant
height H for all simulations, this limits the range of the Bond
number that can be simulated, because the maximum capillary
rise or fall h depends on the Bond number. Therefore, in order
to be consistent with the domain size, we respectively fix in two
and three dimensions the numbers Bo = 0.2 and Bo = 0.4.

c. Discrete physical space. The problem is discretized
with the following number of lattice sites:

Nx =sNCoarse
x , (52)

Ny =
{

4, a = 0

Nx, a = 1
, (53)

Nz =Nx + 2, (54)
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where s is a lattice size parameter used to describe different
lattice resolutions. In the 2D case with a = 0, four lattice
sites are used, because our PALABOS code is in fact a
three-dimensional implementation and requires in this case a
minimum thickness of four lattice sites. We use NCoarse

x = 80
and as usual in the LBM, the discrete physical spacing
�x = L/Nx is equal in all three space directions. The physical
time is adjusted to the space discretization according to a
diffusive limit �t = �x2, in order to respect the condition of
fluid incompressibility [69]. The D3Q19 lattice is used for this
test case.

d. Numerical setup. The bottom and top fluids are ini-
tialized with an equilibrium distribution at zero velocity
with bottom fluid where H < 0 and top fluid where H > 0.
The single-relaxation-time operator is used, i.e., χ = 1. The
standard full-way bounce back rule is used for all solid lattice
sites in XS . The solid lattice sites are composed of the first
and last lattice plane in the vertical direction as well as the
interior of the immersed object O. To evaluate the color
F and the density ∇ρ gradients, 3D fourth-order isotropic
discretizations [88] are used on all lattice sites, except for the
lattice sites in XW where a standard 1D forward, backward,
and/or centered discrete gradient [89] is used. Note that the
previously described wetting boundary condition in Sec. II E
is also applied before the perturbation step. Others model
parameters [77] are η = 0.2, β∗ = 1, and �x∗ = L/NCoarse

x .
e. Evaluation of the steady-state and numerical height h.

The numerical differential height h is approximated during the
simulation with an automated procedure. We computed the
center of mass of the bottom fluid along the z-axis column Ci

(inside the tube) and along the vertical-axis column Co located
at (x,y) = (−L/2,−W/2) (outside of the tube). These centers
of masses zindex can be approximated with

zindex =
∑

(x,y,z)∈Cindex

mBz

/
∑

(x,y,z)∈Cindex

mB, (55)

where mB = ρB�x3 is the mass of the bottom fluid and the
index is either i or o for the inside or outside column. The
approximated numerical differential height is then defined as
h = 2(zi − zo). The steady state is considered reached when
the relative difference of the dimensionless quantity hBo/R

is less than 10−5 between a time interval of δt = 1. For the
simulations where there is a rotation of the solid object O1,
the numerical differential height is computed manually with
the aid of the free software PARAVIEW [90]. In PARAVIEW, the
inside and outside heights are approximated with the contour of
the function (ρB − ρT )/(ρB + ρT ) = 0. The main difference
is that it is the central axis of the rotated tube that is considered.
Both approaches to measure the differential height lead to very
similar results, however, we prefer to extract the numerical
differential heights with an automated procedure whenever
it is possible. The simulation is stopped when t = 20 in the
rotated case, which is a time the flow was deemed to have
reached steady state.

2. Discussion of the results

Figure 2 shows the dimensionless quantity h
R

Bo versus
the analytical two-dimensional Jurin law as a function of the

FIG. 2. Dimensionless quantity h

R
Bo as function of the viscosity

ratio νB/νT , the Laplace number La, and the contact angle θc

compared to the analytical two-dimensional Jurin law. Note that the

lattice resolution s = 2.

viscosity ratio, the Laplace number, the contact angle, and a
lattice resolution s = 2. The results show that the proposed
method is accurate for a contact angle between 45◦ and 135◦.
The errors are nonsymmetric for contact angles lower than 45◦

compared to contact angle higher than 135◦. This is because
of the density and viscosity ratios. From a geometrical point
of view, it is very difficult to represent the correct interface
curvature between the plates with only ten lattice sites when
the contact angle is far away from 90◦.

Figure 3 shows the results for one set of parameters, but
with increasing lattice resolution. It is possible to see that the
accuracy is increasing, but the model is still not completely
able to automatically capture Jurin’s law correctly for the
more extreme wetting or nonwetting fluid situation. This test
case thus gives a range of contact angles where the proposed
algorithm can be considered valid.

FIG. 3. Dimensionless quantity h

R
Bo as function of the contact

angle θc and the lattice resolution s compared to the analytical two-

dimensional Jurin law. Note that the viscosity ratio νB/νT = 20 and

the Laplace number La = 10.
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FIG. 4. Dimensionless quantity h

R
Bo as function of the viscosity

ratio νB/νT , the Laplace number La, and the contact angle θc

compared to the analytical three-dimensional Jurin law. Note that

the lattice resolution s = 2.

Figure 4 shows the same results as in Fig. 2, but for the
three-dimensional case. The three-dimensional Jurin law is
much more difficult to solve numerically as it also involves the
effect of the three-dimensional tube geometry. With a lattice
resolution of s = 2, the diameter of the tube is equal to ten
lattice sites which one could argue to be a minimum required
to represent the solid circular geometry of the tube with a
staircase approximation. Fortunately, the results for the contact
angles between 45◦ and 135◦ are similarly as good as in the
two-dimensional case.

To increase further the difficulty of this numerical valida-
tion, the tube is rotated by angles (θx,θy,θz) = (30◦,30◦,30◦),
as illustrated in Fig. 5 for a contact angle of 45◦. On this figure,
the capillary rise predicted by Jurin’s law is clearly visible.
This additional rotation increases much more the effect of the
staircase approximation, but the wetting boundary condition

FIG. 5. Graphical representation of the rotated tube geometry

with the bottom fluid highlight. As predicted by Jurin’s law, the

capillary rise is clearly visible. Note that the lattice resolution s = 2,

the viscosity ratio νB/νT = 20, the Laplace number La = 10, the

contact angle θc = 45◦, and the geometry rotations (θx,θy,θz) =
(30◦,30◦,30◦).

FIG. 6. Dimensionless quantity h

R
Bo as function of the contact

angle θc and the geometry rotations (θx,θy,θz) compared to the

analytical three-dimensional Jurin law. Note that the lattice resolution

s = 2, the viscosity ratio νB/νT = 20, and the Laplace number

La = 10.

algorithm does not seem to be really affected by this additional
difficulty. Indeed, as shown in Fig. 6 for different contact
angles, the numerical results for the inclined tube are pretty
much the same as in the noninclined case. This is in agreement
with the theory presented by Barozzi and Angeli [63] that state
that Jurin’s law is still accurate for small rotations.

It is important to note that those numerical tests are
extremely difficult as the solver needs to correctly balance
the capillary, pressure, viscous, and gravity forces as well as
to capture sufficiently well the correct geometrical shape of the
tube and the interface’s meniscus inside and outside the tube.
Overall, these numerical tests show that the proposed model is
appropriate for modeling the full three-dimensional Jurin law
for contact angle between 45◦ and 135◦, and this even with a
relatively numerically coarse tube diameter. It should be noted
that Jurin’s law only tests the steady state of the numerical
algorithm, so the next test case concerns Washburn’s law where
the model is tested in an unsteady regime.

B. Washburn’s law

1. Physical and numerical description

a. Continuous physical space. The setting of the Washburn
law test is explained below. Similarly as with the Jurin law test,
the domain of interest consists of the box B:

B = {(x,y,z) ∈ [−LI ,L + LO] × [−R/2,R/2]

× [−R/2,R/2]} (56)

in which the following solid object O is immersed into the
box B:

O = O1 ∩ O2, (57)

O1 = {(x,y,z) ∈ B : z2 + y2 � R2}, (58)

O2 = {(x,y,z) ∈ B : 0 � x � L}. (59)
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This configuration corresponds to a tube of radius R and length
L with two additional fully fluid domains of length LI =
LO that extend on both ends of the tube. The center of the
tube is aligned with the x axis and starts at x = 0. The inlet
(x = −LI ) and the outlet (x = L + LO) are density boundary
conditions while periodic boundary conditions are used for the
other directions. The solid boundary is modeled with a no-slip
condition.

The computational domain is filled with two immiscible
fluids. Initially, the “inlet” fluid fills the inlet zone, i.e., −LI <

x < 0, while the “outlet” fluid fills the rest. The inlet fluid has
an initial density ρ0

I and a dynamic viscosity μI while the outlet
fluid has an initial density ρ0

O and a dynamic viscosity μO .
The interfacial tension σ at the interface of the two immiscible
fluids is also taken into account as well as the contact angle θc

at the fluid-solid boundary. The gravity acceleration g is not an
important parameter to be considered for this horizontal tube
and is set to zero.

b. Theoretical consideration. The goal of the experiment
is to study the time dependence of the position of the fluid’s
interface. Indeed, because of the presence of the contact angle
imposed on the tube boundary, the interface is deformed and a
capillary pressure will appear at the fluid interface and it will
start to move. To make sure the interface is moving toward the
inside of the tube, the pressure is set to be constant and equal
on both ends of the domain. The inlet fluid also needs to be
the wetting fluid as well as being more viscous than the outlet
fluid, i.e., μI > μO . Washburn’s original analytical solution
[65] is rewritten in a dimensionless form:

l∗ = −
(

μO

μI − μO

)
+

√(
μO

μI − μO

)2

+
(

1

2

R

L
cos θc

)
t∗,

(60)

where l∗ = l
L

is the dimensionless position of the interface
along the tube and t∗ = σ

(μI −μO )L
t is the dimensionless time.

The surface of the wall is also considered ideal such that any
roughness and waviness are absent. We may note that if the
outer fluid dynamic viscosity is negligible, i.e., μO ≪ μI ,
the analytical solution clearly illustrates the widely known
proportion relation l∗ ∝

√
t∗.

In our setting, the dimensionless parameters that we choose
to include are θc, L/R, LI/L, LO/L, μI/μO , ρI/ρO , and
La = σRρI/μ

2
I . For simplicity, we set constant the following

dimensionless numbers: L/R = 20, La = 1, and LI/L =
LO/L = 22/100. There are some underlying parameters that
are still free to vary which we set as R = 0.000 02, νI = 1/6,
and ρ0

I = 998.2. In the end, only the contact angle θc, the
dynamic viscosity μI/μO , and the density ρI/ρO ratios are
free to vary.

To provide a better understanding of the setting of the
Washburn test case, Fig. 7 shows visually the results of a
simulation example. A capillary intrusion of water into a single
cylindrical pore initially filled with hexane is illustrated at the
dimensionless time t∗ ≈ 48.3. The water-hexane density and
dynamic viscosity ratios are ρI/ρO = 1.5094 and μI/μO =
3.2277. The water-solid contact angle is 40◦.

c. Numerical setup. The domain is discretized such that
the radius of the tube R contains NCoarse = 5 fluid lattice sites.
In total, the full lattice contains 144 × 12 × 12 sites. One may

FIG. 7. Capillary intrusion of water into a single cylindrical

pore initially filled with hexane, i.e., ρI/ρO = 1.5094 and μI/μO =
3.2277. The water-solid contact angle is 40◦ and t∗ ≈ 48.3.

note that this is a very coarse lattice. This is done intentionally.
Indeed, for modeling flows in porous media, it is needed to be
able to capture the imbibition process as accurately as possible
on the coarser possible grid. This is similar as in the Jurin law
test where the radius of the tube was also of five lattice sites
with s = 2. However, the radius also needs to be large enough
in lattice units so that the geometry represents a circular tube.
The standard full-way bounce back rule is used for all solid
lattice sites in XS . The physical space step �x = 2R/(Ny − 2)
is equal in all three space directions. The physical time is
adjusted to the space discretization according to a diffusive
limit �t = �x2. The inlet and outlet fluids are initialized with
an equilibrium distribution at zero velocity. To evaluate the
color F and the density ∇ρ gradients, 3D fourth-order isotropic
discretizations [88] are used on all lattice sites, except for the
lattice sites in XW where a standard 1D forward, backward,
and/or centered discrete gradient [89] is used. These gradients
are also set to zero on the inlet and outlet boundary lattice sites
in XE . The previously described wetting boundary condition
in Sec. II E is also applied before the perturbation step. On
the inlet and outlet boundary and as described in Sec. II D,
regularized density boundary conditions are used such that ρ0

I

and ρ0
O are respectively imposed. Since the numerical position

of the solid boundary might be slightly affected by the value of
the lattice Boltzmann viscosity, the multiple-relaxation-time
operator is used and the relaxation parameters are set as in
Ref. [91] using the set B. Very recent study seems to point out
[92], however, that single-relaxation-time may be sufficient
to obtain accurate results and this, as long as the Knudsen
number is low. Other parameters [77] are η = 0.2, β∗ = 1,
and �x∗ = 2R/(NCoarse − 2). The D3Q19 lattice is used for
this test case.

d. Evaluation of the dimensionless position l∗. The dimen-
sionless position of the interface is approximated as follows.
First, a color function is defined:

ψ =
ρI

ρI + ρO

. (61)

This function takes a value of 1 or 0 depending on whether
the lattice site contains only inlet or outlet fluid respectively.
At the interface the value will be between 1 and 0 relative to
the proportion of each fluid. The capillary saturation of the
inlet fluid into the tube is approximated by the summation of
ψ inside the tube divided by the number of fluid lattice sites
that are also strictly inside the tube. In our simple case, it is
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FIG. 8. Dimensionless position of the fluid interface l∗ into the

single cylindrical pore as function of the dimensionless time t∗ and

the contact angle θc. The numerical results of the proposed lattice

Boltzmann color-gradient method are compared to the analytical

three-dimensional Washburn law. Water-hexane density and viscosity

ratios are simulated, i.e., ρI/ρO = 1.5094 and μI/μO = 3.2277.

These simulations correspond to a capillary intrusion of water into a

single cylindrical pore filled initially with hexane.

clear that the capillary saturation can be used to estimate the
dimensionless position l∗ of the interface in the tube.

2. Discussion of the results

Figures 8–10 show the dimensionless position of the fluid
interface l∗ as functions of the dimensionless time t∗ and the
contact angle θc. Three types of density and viscosity ratios
were respectively considered:

(1) water to hexane where ρI/ρO = 1.5094 and μI/μO =
3.2277;

(2) water to trichloroethylene where ρI/ρO = 0.6828 and
μI/μO = 1.7583 [93]; and

(3) dimensionless ratios where ρI/ρO = 10 and μI/μO =
30.

The second test with the lower density at the inlet is slightly
more difficult than the first test while the last one is the
most difficult because of a much larger density and viscosity

FIG. 9. Dimensionless position of the fluid interface l∗ into the

single cylindrical pore as function of the dimensionless time t∗

and the contact angle θc. The numerical results of the proposed

lattice Boltzmann color-gradient method are compared to the an-

alytical three-dimensional Washburn law. Water-trichloroethylene

density and viscosity ratios are simulated, i.e., ρI/ρO = 0.6828

and μI/μO = 1.7583. These simulations correspond to a capillary

intrusion of water into a single cylindrical pore filled initially with

trichloroethylene.

ratio. The last test is difficult enough that it encompasses
most types of liquid-liquid interfaces. There may be a small
discrepancy between the numerical and theoretical results.
Indeed, occasionally the numerical dots are not directly over
the analytic curve. This can be explained, in part, because
the theory does not take into account the initial condition of
the numerical setting. Indeed, for simplicity, the initial inter-
face has a contact angle of 90◦ with the boundary and will
therefore need to relax to the contact angle prescribed by the
wetting boundary condition. This creates an initial capillary
wave at the tube entry that perturbs the initial interface position.
It is also clear that the last test generate the largest numerical
errors. However, all in all, the three-dimensional Washburn
law is well described by the proposed two-phase color-gradient
model for a wide range of contact angles, density, and viscosity
ratios. This confirms that the model is adequate for capturing
unsteady capillary intrusion into a simple pore even if the
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FIG. 10. Dimensionless position of the fluid interface l∗ into the

single cylindrical pore as function of the dimensionless time t∗ and

the contact angle θc. The numerical results of the proposed CGM

are compared to the analytical three-dimensional Washburn law. The

density and viscosity ratios are respectively, i.e., ρI/ρO = 10 and

μI/μO = 30.

lattice resolution is very coarse. It also confirms the validity of
the approach taken to model the wetting boundary conditions.

C. Three-dimensional capillary wave

1. Physical and numerical description

a. Continuous physical space. The setting of the capillary
wave test case is explained below. The domain of interest
consists of the box B:

B = {(x,y,z) ∈ [0,L] × [0,W ] × [0,H ]}. (62)

A perturbed thick sheet of fluid T is placed in between another
immiscible fluid and is located at

T = {(x,y,z) ∈ B : H/4 < z − hp < 3H/4} (63)

with

hp =
h

2
cos [2π (x − L/2)/λ] +

h

2
cos [2π (y − W/2)/λ],

(64)

where h is the initial amplitude and λ is the wavelength of the
perturbation. The fluid sheet is the blue fluid with an initial
density ρ0

b and a dynamic viscosity μb while the medium
fluid is the red fluid with an initial density ρ0

r and a dynamic
viscosity μr . The interfacial tension σ at the interface of the
two immiscible fluids is also taken into account. For simplicity,
periodic boundary conditions are used in all directions. The
experiment consists to study the angular frequency ω of this
surface wave as a function of these parameters:

ω = F
(
L,W,H,h,λ,σ,μr ,μb,ρ

0
r ,ρ

0
b

)
. (65)

The function F is an unknown functional and a dimensional
analysis leads to the following Pi groups:

Re = G

(
L

λ
,
W

λ
,
H

λ
,
λ

h
,a,b,Ŵ

)
, (66)

where the function G is another unknown functional and

Re =
ωλ2ρ0

r

μr

, (67)

a =
μb

μb + μr

, (68)

b =
ρ0

b

ρ0
b + ρ0

r

, (69)

Ŵ =
σ

k

(
ρ0

r + ρ0
b

)

(μr + μb)2
. (70)

In this particular case, Re is the oscillatory Reynolds number,
a and b are dimensionless numbers related to the density
and dynamic viscosity ratios. We also introduced the dimen-
sionless number Ŵ which is a quantity related with the long
wavelength limit, i.e., when Ŵ ≫ 1. Note that k = 2π/λ is
the wave number. Again, in this case, for a full understanding
of the problem all dimensionless numbers should be taken
into account. However, since our main goal is to compare
a numerical angular frequency with a theoretical one, some
simplification needs to be done. The following dimensionless
numbers are set as constant, i.e., the ratios L/λ = 1, W/λ =
1, H/λ = 4, and λ/h = 10. This leads to

Re = G̃(a,b,Ŵ). (71)

In the proposed setting, there are some underlying parameters
that are still free to vary and are set as λ = 1, μr = 1/100, and
ρ0

r = 1.
b. Theoretical consideration. A theoretical dispersion re-

lation exists for surface waves on an interface between two
liquids [66]. When the gravitational acceleration is neglected,
the dispersion relation for the angular frequency ω is

0 = +(1 − i1ωτ )2 + (ω1τ )2 − a
√

1 − i2ωτa/b

− (1 − a)
√

1 − i2ωτ (1 − b)/(1 − a), (72)
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where i =
√

−1 is the imaginary number and

τ =
ρ0

r + ρ0
b

2k2(μr + μb)
, (73)

ω2
1 =

σk3

ρ0
r + ρ0

b

. (74)

Note that the long wavelength limit is when (2ω1τ )2 = Ŵ ≫ 1.
Given the necessary parameters of a simulation, this expression
is solved to find ω and the theoretical oscillatory Reynolds
number is deduced. The latter is usually a complex number
where the real part corresponds to the angular frequency
of oscillation of the surface wave while the imaginary part
is linked to its damping rate. It should be noted that this
theoretical dispersion relation is for waves in an infinite
medium where the boundary and initial condition do not affect
the damped periodical theoretical solution. Our numerical
setting is obviously not exactly as this theoretical case, but
the numerical setting is near enough that it is still possible
to find a correlation between the theoretical and numerical
solutions.

c. Discrete physical space. The problem is discretized as
follows. Let us define again a lattice density size parameters s.
The number of lattice sites required to discretized the problem
is defined as

Nx = (L/λ)NCoarses, (75)

Ny = (W/L)Nx, (76)

Nz = (H/L)Nx . (77)

For this test case, we used NCoarse = 50. The spacing steps
�x = �y = �z = λ/Nx discretize the computational do-
main, and the time step �t = �x2 discretizes the time domain.

d. Numerical setup. The red and blue fluids are initialized
with the zero velocity equilibrium distribution such that the
blue fluid is initially located inside the sheet T with strictly
only red fluid outside and strictly only blue fluid inside
the initial sheet T . The multiple-relaxation-time operator
is used with χ = 4/5. Concerning the gradient’s numerical
evaluation, the 3D fourth order isotropic discretization [88]
is used for all lattice sites. The other parameters [77] are
η = 0.2, β∗ = 1, and �x∗ = λ/NCoarse

x . The D3Q19 lattice
is used.

e. Numerical evaluation of the Reynolds number Re. Let
us define the center of mass of the blue fluid which is located on
the central axis, i.e., x = L/2 and y = W/2. The height of the
center of mass hc is probed every five time steps and extracted
from the simulation. The function hc is a one-dimensional
time dependent function where successive local maximum
and minimum appear. After t > 3, we start to record the time
t1, t2, . . . , where those local extrema appear and the simulation
is stopped when t6 is achieved. The numerical period of
oscillations is then approximated as 2(t6 − t5) and the real
part of the numerical Reynolds number is approximated as

ℜ(Re) = 2π
2(t6−t5)

λ2

νr
. As it is very difficult to precisely measure

in the simulation the imaginary part of ω, we neglect all
analysis concerning the imaginary part. Indeed, the oscillation
amplitude is initially strongly affected by the initial condition

which causes the initial damping factor to not represent the
one of the periodical theoretical solution and, near the end
of the simulation, the oscillation amplitude is so small that
it is difficult to precisely measure the wave amplitude. This
happens because the model uses a diffuse interface and it
lacks spatial resolution in that domain region. Overall, this
problem does not appear when measuring the oscillation
frequency because the time axis is well discretized with the
lattice Boltzmann method, but the same cannot be said for the
spatial resolution where the oscillation amplitude needs to be
measured. Maybe a local lattice refining technique would help,
but this is out of scope of the present work.

2. Discussion of the results

Accurate simulation of a full three-dimensional capillary
wave with this lattice Boltzmann method is an important
test to validate the interaction of the pressure and capillary
forces in an unsteady regime. Figure 11 shows the results
of the simulations against the theoretical prediction. The real
part of the oscillatory Reynolds number ℜ(Re) is shown as
a function of the relative viscosity a, the relative density b,
and the dimensionless number Ŵ. It is clear that the numerical
results match the theoretical dispersion relation (72) for a wide
range of parameters. The relative viscosity a and density b are
in the same range as what would be liquid-liquid interfaces.
This test case thus further confirms the accuracy of this lattice
Boltzmann method for simulating the dynamic of liquid-liquid
capillary interfaces.

D. Regime transition in random porous media

1. Physical and numerical description

a. Continuous physical space. The setting of the regime
transition test case is explained below. The domain of interest
consists of the two-dimensional box B,

B = {(x,z) ∈ [0,L + LI + LO] × [0,H ]}, (78)

in which the following random porous media object O is
immersed into the box B:

O = O1 ∩ O2, (79)

O1 = {(x,z) ∈ B : 0 � z � H }, (80)

O2 = {(x,z) ∈ B : LI � x � L + LO}. (81)

This configuration corresponds to a random porous mediaO of
length L and height H with two additional fully fluid domains
of length LI = LO that extend on both ends of the porous
media.

The inlet (x = 0) is a velocity boundary condition and the
outlet (x = L + LI + LO) is a density boundary condition.
Periodic boundary conditions are used for the other directions.
The solid boundary of the porous media is modeled with a
no-slip condition. The porous media O is a random structured
network of pores and throats that will be defined later.

When gravity effects can be neglected, the displacement
of a nonwetting fluid in a porous medium that is otherwise
saturated with a wetting fluid depends on the balance between
capillary and viscous stresses, for instance, whether the
nonwetting fluid will preferentially displace the wetting one
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FIG. 11. Real part of the oscillatory Reynolds number ℜ(Re) as function of the relative viscosity a, the relative density b, and the

dimensionless number Ŵ; the quantity b = 1/10 in the left plot and a = 1/10 in the right plot.

heterogeneously forming fingers like structure or will form a
rather homogeneous displacing front depends on the dynamic
viscosities of the injected/inlet μI and defending/outlet μO

fluids, the injection rate Q, the interfacial tension between the
two immiscible fluids σ and the geometrical properties of the
porous medium (i.e., notably the average throat size Rt ). These
physical parameters can be grouped into three dimensionless
numbers, the viscosity ratio M , the capillary number C and
the Reynolds number Re:

M =
μI

μO

, (82)

C =
uIμI

σ | cos(θc)|
, (83)

Re =
uIRt

νI

, (84)

where uI = Q/A is a uniform inlet velocity and A is the
porous media cross-section area. The inlet fluid has an initial
density ρ0

I while the outlet fluid has an initial density ρ0
O . The

contact angle at the fluids-solid boundary is θc.
b. Lenormand’s phase diagram. Lenormand et al. [55]

showed that the nonwetting fluid pattern displacement can

be qualitatively inferred by knowing M and C. The authors
proposed a two variable log10(M) and log10(C) phase diagram
in which three basic patterns of nonwetting fluid invasion can
be plotted; see Fig. 12. These are viscous fingering (light
green), capillary fingering (light red), and stable displacement
front (deep blue). Note that in their experiments, the Reynolds
number is usually always very small. At high capillary
numbers, if the injected nonwetting phase is more viscous
than the wetting one, a stable pistonlike front displacement
has to be expected. During displacement, the nonwetting
phase almost completely saturates the porous medium. For
example, the nonwetting fluid explores both small and high
aperture throats and the saturation of the nonwetting phases
can get very close to 1. On the other hand, when the viscosity
of the defending wetting fluid is markedly higher than the
one of the injected nonwetting one, a viscous pressure drop
exerted by the defending fluid dominates and the nonwetting
phase will form heterogeneous fingers parallel to the pressure
gradient, i.e., the viscous fingering regime. In this case low
nonwetting saturation S ∼ 0.2 must be expected. At low
capillary number of injections, i.e., C ≪ 1, and over a wide
range of viscosity ratios [i.e., log10(M) higher and lower
than 0] pore-by-pore capillary pressure drops dominate (i.e.,
capillary fingering regime) and the nonwetting fluid will tend

033306-16



GENERALIZED THREE-DIMENSIONAL LATTICE . . . PHYSICAL REVIEW E 95, 033306 (2017)

FIG. 12. Lenormand’s phase diagram and the CGM simulation

parameters corresponding to the “cross” and “plus” symbols. The

“circle,” “diamond,” and “triangle” symbols correspond to parameters

where an animation of the simulation is available in the Supplemental

Material [94]. Note that the three regime Lenormand plateaus (viscous

fingering, stable displacement, and capillary fingering) are illustrated

only for qualitative comparison as the exact position of these plateaus

depends on many factors [55].

to invade the pores that show the lower capillary resistivity
(i.e., the larger one). During capillary fingering, although the
advancing front is rather flat, return flow of the nonwetting
phase and trapping of the wetting fluid (i.e., blobs formation)
must be expected. Average saturation values in between the
two previous regimes have to be therefore expected. Thanks
to pore-network calculations and laboratory experiments,
Lenormand et al. show that different experiments conducted
in the same region of the phase diagram lead to very similar
saturation (i.e., the saturation plateaus in Lenormand’s work).
However, while moving from one region to others of the phase
diagram, either by fixing M and varying C or vice versa,
a transition region between three different extremes must
be expected where the saturation of the invading phase will
monotonously evolve from one plateau value to the other.

c. Random porous network. Although it is not possible
to construct with LBM exactly the same random porous
networks as in the paper of Lenormand et al., it is still possible
to simulate very similar random networks where the same
basic flow mechanism should also appear. As in the work
of Lenormand et al., our random porous networks are also
made of random structured interconnected capillaries. One
difference is that the pores and throats are two dimensional
here, but in contrast to the various computational approaches
taken in Lenormand et al. the porous geometry and the
multiphase fluid dynamics are fully modeled here. The average
radius of the pores and the throats are respectively Rp and Rt .
Each pore radius Rp and each throat radius Rt are distributed

randomly but uniformly such that Rp ∈ [Rp − ǫp,Rp + ǫp]

and Rt ∈ [Rt − ǫt ,Rt + ǫt ] respectively. The symbols ǫp and
ǫt stand for the maximum gaps. The distance between the pores
is always equal to Dp = 3Rp + ǫp. On top of that, one throat
in five is randomly absent in order to add more randomness.
The bottom (z = 0) and top (z = H ) of each random porous
media are a no-slip boundary condition. Figure 13 illustrates
the geometry of one such random network.

d. Lattice Boltzmann parameters. For simplifying the pre-
sentation of this test case, we adopt immediately the lattice
unit convention where �x = �t = 1. The lengths L = 980
and LI = LO = 20 while the height H = 980. The radii
Rp = 12 and Rt = 4 while the gaps ǫp = 2 and ǫt = 1. So
on the proposed porous domain size of 980 × 980 lattice sites,
the network contains approximately 26 × 26 pores which is
roughly equal to the 25 × 25 pores network of Lenormand
et al. As described by Lenormand et al., the inlet fluid has to be
nonwetting and so we set θc = 135◦. The inputs of a simulation
are the density ratio γ = ρ0

I /ρ
0
O , the kinematic viscosity ratio

q = νI/νO , and the capillary number C. In our simulations,
we set the densities ρ0

I = 1 and ρ0
O = ρ0

I /γ . If the kinematic
viscosity ratio q is greater than or equal to 1 then the kinematic
viscosities νI = 1/6 and νO = νI/q, otherwise νO = 1 and
νI = νOq. Note that the dynamic viscosity ratio is simply M =
γ q. The inlet velocity uI = 0.000 05 for most simulations,
however, for the lower capillary number, the inlet velocity was
reduced down to uI = 0.000 005. As a consequence Re � 0.02
for all simulations in this section which is deemed sufficiently
small, and it can go as low as Re = 0.000 12 for the smallest
capillary numbers for numerical stability reason.

e. Numerical setup. Since our numerical code is three
dimensional, the MRT-D3Q15 model with χ = 4/5 is used
in order to reduce the total computational time. To reduce
it further, the number of lattice sites in the belt around the
block data for MPI communication is equal to 1. This allows
us to have only two sites thickness for the two-dimensional
domain. Reducing the communication belt to 1 also has
the consequence of using only the first neighbors in the
nonlocal gradient computation, so 3D fourth-order isotropic
discretizations [88] are used on all lattice sites except for
the lattice sites in XW where a standard 1D first-order
forward, first-order backward, and/or second-order centered
discrete gradient [89] is used. These gradients are also set
to zero on the inlet and outlet boundary lattice sites. The
standard full-way bounce back rule is used for all solid lattice
sites in XS . The inlet and outlet fluids are initialized with
an equilibrium distribution at zero velocity with the inlet
fluid where x < LI + 10 and the outlet fluid elsewhere. The
previously described wetting boundary condition in Sec. II E
is also applied before the perturbation step. On the inlet and
outlet boundaries and as described in Sec. II D, regularized
velocity and density boundary conditions are used such that
uI and ρ0

O are respectively imposed. Other parameters [77] are
η = 0 and β∗ = 0.7.

f. Evaluation of the saturation S and the stopping criterion.

The saturation S of the nonwetting inlet fluid is evaluated
exactly as in the Washburn test case. Every 5000 time steps,
the saturation S of the porous media is computed as well as the
exit saturation Se along the line of the porous media exit x =
LI + L. The simulations are stopped when the exit saturation
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FIG. 13. Displacement regimes in random porous media: (a)

viscous fingering, (b) stable displacement, and (c) capillary fingering.

An animation of these simulations is available in the Supplemental

Material [94].

Se is greater than 0.001. In other words, as soon as the inlet
fluid reaches the outlet buffer zone, the simulation is stopped.

2. Discussion of the results

Immiscible fluids flow solvers that aim to model fluids
displacements at the pore scale and successfully recover the
different transport regimes as presented by Lenormand et al.

[55] need to be able to do the following:
(1) deal with important dynamic viscosity ratios between

the two immiscible fluids;
(2) deal with varying fluid-solid wetting properties;
(3) implement proper boundary conditions; and
(4) offer the opportunity to play with an important param-

eter space in order to explore the different region of the phase
diagram proposed by Lenormand.

In this section we show that the proposed LB model
succeeds in recovering these three different displacing regimes
and well reproduces the expected qualitative behavior during
the transitions stages where capillary and viscous pressure
drops may have comparable magnitudes. Actually, for Fig. 13,
animations are available in the Supplemental Material [94] and
these clearly show the three different displacement regimes.

As shown in Fig. 12, our calculations follow two straight
lines over the Lenormand phase diagram. These two straight
lines are intended to explore the three main regions of the
phase diagram within the limits of stability of our LB code
and are obtained by the following:

(1) keeping a constant capillary number log10(C) = 10, and
varying log10(M) between −4 and 1.48; and

(2) keeping a constant viscosity ratio log10(M) = 1.48, and
varying log10(C) between −5 and 1.

The first line allows us to appreciate the transition between
viscous and stable displacement regimes, where viscous

FIG. 14. Saturation S of random porous media as function of the

dynamic viscosity ratio M . The jump transition from viscous to stable

regime is qualitatively captured by the CGM.
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FIG. 15. Saturation S of random porous media as function of

the capillary number C. The jump transition from capillary to stable

regime is qualitatively captured by the CGM.

pressure drops dominate; see Fig. 14. The second one, on the
other hand, investigates how viscous and capillary stresses
compete and explore the transition region that separates the
stable front displacement and capillary fingering regions; see
Fig. 15.

We are confident that our model is stable for an even larger
parameter space, but it may require us to lower the Reynolds
number, and this is particularly true if the capillary number
shall be lower than log10(C) = −5. Unfortunately, the lower
the Reynolds number, the longer is the simulation and this
becomes computationally prohibitive.

We qualitatively compare our results with the pore-network
calculations conducted by Lenormand et al.; see dashed lines in
Figs. 14 and 15. A quantitative comparison is out of our scope
for several reasons. First, we conduct calculations on different
but similar porous media geometry. Second, the two models are
based on different assumptions; where the lattice Boltzmann
method deals with intra-pore-scale processes by resolving the
full Navier-Stokes equations, pore network models are based
on occupancy rules (i.e., whether or not pore and throats can
be invaded) dictated by force balance thresholds. Therefore,
in pore-network calculations pores and throats, if invaded,
are fully saturated, an approximation that does not apply
to LB calculations. Our LB calculations show an excellent
qualitative agreement while exploring the two transitional
regimes.

In order to show the consistency of the presented lattice
Boltzmann model, our calculations are performed on two
different, but statistically similar (i.e., similar number of pores
and throats and range of throat apertures) randomly generated
porous-media geometries. We obtain similar final saturation S

for the two sets of runs, results that give us confidence on the
quality and reproducibility of our calculations.

FIG. 16. Pore matrix of the Berea sandstone [85]. The full pore

matrix is discretized in a lattice of size 400 × 400 × 400. This

corresponds to a resolution of 5.3 μm3 per voxel.

E. Berea sandstone

1. Physical and numerical description

Continuous physical space. The setting of the Berea
sandstone test case is explained below. The domain of interest
consists of the three-dimensional box B,

B = {(x,y,z) ∈ [0,L + LI + LO] × [0,W ] × [0,H ]}, (85)

in which the porous media object O is immersed into the box
B:

O = O1 ∩ O2, (86)

O1 = {(x,y,z) ∈ B : 0 � z � H }, (87)

O2 = {(x,y,z) ∈ B : LI � x � L + LO}. (88)

This configuration corresponds to a real cubic Berea sandstone
sample O of length L, width W = L, and height H = L. Two
additional fully fluid domains of length LI = LO that extend
on both ends of the sample serve as numerical buffer zones.
The digital image we use for our calculations (see Fig. 16
where the rock pore spaces are represented) is open source
and is made available by Dong and co-workers [85,95]. The
porosity of the sample is 0.19 [85] and the physical size of each
voxel is 5.3 μm3. In-flow and out-flow boundary conditions
are placed respectively at x = 0 and x = L + LI + LO , while
periodic boundaries are used for the other spatial directions.
Depending on two different experiments that we present (i.e.,
(1) imbibition and drainage with an imposed fluid velocity
and (2) imbibition under the influence of a counterworking

pressure gradient), we use different inlet and outlet conditions,
notably imposed velocity or flux plus a pressure outlet
condition, and pressure boundary conditions applied on both
ends of the porous medium. The solid boundaries of the porous
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TABLE I. Final total saturation of the intruding fluid in the Berea sandstone sample. The intruding fluid is either nonwetting (θc = 135◦)

or wetting (θc = 45◦).

Case M C Re Saturation (θc = 135◦) Saturation (θc = 45◦)

Viscous fingering 0.004 10 0.017 960 7 0.088 0.142

Stable displacement 30 10 0.000 431 1 0.337 0.769

Capillary fingering 30 0.0001 0.000 431 1 0.618 0.590

rock are modeled as no slip using the full-way bounce-back
method.

2. Imbibition and drainage with imposed flux (velocity-inlet and

density-outlet boundary conditions)

a. Parameters and numerical setup. The numerical exper-
iments we present in this section, i.e., 3D imbibition and
drainage experiments in digital Berea sandstone, are along
the same lines as the one we conducted with a 2D-like
random porous network. Indeed we use the same physical
dimensionless number definition such as the dynamic viscosity
ratios M , the capillary number C and, unless stated otherwise,
the same simulation settings are also used. The porous medium
geometry is different and changing the geometry involves
modifying slightly the definition of the Reynolds number.
Indeed, the reference length in its definition is chosen as the
average pore size R = 400 × 0.000 015 36/0.002 138 ≈ 2.87
in lattice units [85]. We, moreover, set an inlet velocity uI =
0.000 025 for all experiments, with the invading fluid initially
fully occupying x < LI + 1 and placing the defending fluid
elsewhere, when possible second order gradient discretization
is used near the boundary.

Due to the large numerical load of the Berea calculations,
i.e., the digital image of the Berea sample is 4003 lattice units,
we limit our analysis only at qualitatively comparing different
simulation results obtained for drainage and imbibition sce-
narios. We performed only a few experiments as shown in
Table I.

In the case of drainage, we set the intruding fluid as
nonwetting and we chose a static contact angle equal to
θc = 135◦, while for imbibition, where the intruding fluid is
wetting, we chose θc = 45◦. Once the invading fluid reaches
the sample exit, we extract the total saturation of the invading
fluid (i.e., integrated over the total volume of the sample) and
also the saturation along the x axis, [i.e., integration over planes
along the normalized stone depth x∗ = (x − LI )/L, and that
we call here after saturation depth profile]. We underline that
when the setup with a velocity-inlet boundary condition (BC)
and a nonwetting intruding fluid is used, the pressure at the
inlet will necessarily build over time and ultimately overcome
the resistive capillary pressure. Consequently the intruding
nonwetting fluid will, at some point, reach the outlet buffer
zone, ending the simulation.

In Table I we report the results concerning the final total
saturation for each regime we simulated.

b. Discussion of the results: Viscous fingering. The final
saturation for the drainage viscous fingering regime calculation
conducted in the 3D Berea sample is much lower (about twice
as much) when compared to the 2D-like one presented above.
Since in the viscous regime the invading fluid tends to form
preferentially tubelike fingers, we attribute the main reason for

the observed discrepancy between 2D-like and 3D calculations
to the fact that two-dimensional fingers occupy a physically
larger spatial ratio than their three-dimensional counterparts.
Moreover, the Berea sample being the digital image of a real
rock, it could display a higher degree of heterogeneity.

Although the invasion pattern is clearly viscous fingering
dominated, we can notice that the final saturation in imbibition
(S = 0.142) is significantly larger than with drainage (S =
0.088). This is an expected result; indeed in imbibition the
invading fingers are expected to be broader [96–98], since
they have the tendency to wet the pores and thus explore more
easily neighboring pores. Figure 17 shows depth saturation
profiles for both imbibition and drainage experiments in the
viscous fingering regime. We see that along the stone depth x∗,
the imbibition saturation curve is predominantly higher than
the drainage saturation one. Figure 18 shows the final views of
a drainage simulation (lattice size of 440 × 400 × 400) in the
viscous fingering regime. The main invading finger is clearly
visible. An animation of this simulation for a reduced size
matrix is available in the Supplemental Material [94] (lattice
size of 220 × 200 × 200). Figure 19 shows analog results
as in Fig. 18 but this time for an imbibition case. Also for
this scenario we supply an animation of this simulation for a

FIG. 17. Saturation of the Berea sandstone as function of the

stone depth x∗ in the viscous fingering regime. Imbibition (θc = 45◦)

and drainage (θc = 135◦) are illustrated as well as the corresponding

final global saturation of the sample.
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FIG. 18. Final view of a drainage CGM simulation in the viscous

fingering regime with half the solid Berea sandstone matrix in the

back. An animation of this simulation for a reduced size matrix is

available in the Supplemental Material [94].

reduced size matrix in the Supplemental Material [94] (lattice
size of 220 × 200 × 200). When comparing Figs. 18 and 19 we
clearly see that the bulk region explored by the invading fluid
during imbibition and drainage experiments is essentially the
same, clearly indicating that the invasion dynamics throughout
the whole numerical domain is essentially dominated by
viscous pressure drop. However, we can observe that fingers
in the imbibition scenario are broader and this is because the
favorable wettability of the sample during imbibition favors
lateral invasion (i.e., pore-scale processes, overall, are capillary
dominated). Figures 18 and 19, show, as the animations

FIG. 19. Final view of an imbibition CGM simulation in the

viscous fingering regime with half the solid Berea sandstone matrix

in the back. An animation of this simulation for a reduced size matrix

is available in the Supplemental Material [94].

FIG. 20. Saturation of the Berea sandstone as function of the

stone depth x∗ in the stable displacement regime. Imbibition

(θc = 45◦) and drainage (θc = 135◦) are illustrated as well as the

corresponding final global saturation of the sample.

corroborate visually, that the saturation curve as a function of
the stone depth is higher with imbibition than with drainage.

c. Discussion of the results: Stable displacement. In the
stable displacement regime, we find a strongly different final
saturation between imbibition (S = 0.769) and drainage (S =
0.337) experiments. This result was unexpected, but a careful
analysis of the simulation results reveals why this occurred.
Figure 20 shows the saturation depth profiles for imbibition
and drainage experiments for the stable displacement regime;
saturation depth profiles are sensibly different. In particular, for
the drainage case, the second half of the Berea sample seems
to be almost unexplored. This is an effect of the fluid-fluid
interface dynamics. Indeed, in the drainage situation, isolated
droplets can snap off from the main advancing front, as shown
in Fig. 21, and move under the push of the displaced wetting
fluid, i.e., which is displaced by the pistonlike effect of the
advancing stable nonwetting fluid front [99]; the smallest drops
(i.e., microdroplets, with a radius sensibly smaller than average
pore size and smaller but similar to the throat size) can be
scarcely sensible to the capillary resistance of the medium
and reach the outlet much earlier than the stable nonwetting
front. This situation is much less likely with imbibition
because isolated droplets are most likely slowed down and/or
trapped by the surrounding nonwetting fluid, which is resistive
to displacement. In order to show the presence of single
advancing drops, in Fig. 21 we report the logarithm of the
saturation depth profile for the drainage case. Here we can
clearly see saturation “bumps” in the second half of the porous
medium that we attribute to isolate nonwetting droplets. In
Fig. 22 we show the final snapshot of the drainage simulation
where we can see an isolated droplet that has reached the
sample outlet before the main advancing front (black circle).
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FIG. 21. Logarithm of the saturation of the Berea sandstone as

function of the stone depth x∗ in the stable displacement regime and

drainage (θc = 135◦).

So the analysis in the stable displacement regime cannot be
based solely on the study of final sample saturation since the
effect of the flows on the interface dynamics cannot be ignored
even if the Reynolds number is very low (≈ 0.000 431 1 here).
In the stable displacement regime coupled with a drainage
situation, the interfacial tension can be really small and the

FIG. 22. Final view of a drainage CGM simulation in the stable

displacement regime with half the solid Berea sandstone matrix in

the back (lattice size of 440 × 400 × 400). It is possible to see in the

black circle the isolated droplet that has reached the sample outlet

before the main advancing front.

FIG. 23. Saturation of the Berea sandstone as function of the

stone depth x∗ in the capillary fingering regime. Imbibition (θc = 45◦)

and drainage (θc = 135◦) are illustrated as well as the corresponding

final global saturation of the sample.

flows can still drive isolated droplets into the center of the
pores and move faster than the main advancing front.

d. Discussion of the results: Capillary fingering. In the
capillary fingering regime, the final saturation is very similar
to imbibition (S = 0.590) and drainage (S = 0.618) exper-
iments. Figure 23 shows saturation depth profiles for both
imbibition and drainage calculations. It is reasonable to
assume that the net flow effects on the interface dynamics are
much less important in the capillary fingering regime than in
the stable displacement regime since the interfacial tension
is much higher. One may also remark that the imbibition
filling process seems to explore further the beginning than
the end of the sample compared to the drainage scenario.
However, the differences in the saturation curves are rather
small and this makes it difficult to make a clear analysis.
Indeed, the difference between imbibition and drainage final
saturation was about 100% for the viscous fingering and stable
displacement regime. An explanation was clearly needed in
these cases. So overall, it is difficult to tackle the task of
explaining these small differences. We rather say that in our
specific cases the difference between imbibition and drainage
in the resulting dynamics of capillary fingering appears to
be small and that we could not find any distinct significative
phenomena for these simulated parameters. Note that this does
not imply that there are no distinct phenomena.

3. Imbibition under the influence of a counterworking pressure

gradient (density-inlet and density-outlet BCs)

In this experiment we are interested in testing our model in
the case where the naturally advancing front of a wetting fluid
(i.e., under the positive effect of capillary forces) is slowed
down or stopped by a counterworking pressure gradient. For
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instance, our goal is to find the critical pressure difference to
apply at the outlet for which the overall flow is stopped. This
setup is of interest for environmental engineering applications,
where engineered changes in hydraulic heads may be used to
inhibit the advancing front of DNAPL contamination events
[100]. Moreover this experiment gives us the opportunity to
show the superiority of the wetting BC we propose with respect
to the standard one and test the regularized BC in the case
where both ends of the porous medium are subject to pressure
boundary conditions.

a. Dimensionless quantities. The dimensionless numbers
used to describe this physical problem are different than with
a velocity inlet. Instead of the capillary and Reynolds number
which are well defined with a reference velocity, the following
dimensionless numbers are carefully chosen:

La =
σRtρ

0
I

μ2
I

, (89)

L =
1

2

�PRt

σ cos(θc)
, (90)

where Rt = 200 × 0.000 040 06/0.002 138 ≈ 3.74 is the
maximum throat radius [85] of the sample in a lattice unit
and �P is the pressure variation across the sample, with
the pressure being higher at the outlet than at the inlet
so the flow can be stopped. The first dimensionless number
is the well-known Laplace number La which relates the
capillaries to the viscous forces. The second one was derived
from the Laplace-Young law across a tube of radius Rt when
the capillary pressure �Pc is equal to the pressure difference
�P along the tube. This is the simplest case where a situation
of no flow appears. If this idea is extended to a core sample
ideally represented by many tubes in parallel, the flow will
not pass through the principal and largest tube of radius Rt if
L = 1. Of course, the flow would still pass through the smaller
capillaries, but by Washburn law, when the throat radius gets
smaller the penetration velocity also gets smaller. So the fluid
penetration in the smaller capillaries evolve according to a
much larger time scale and a much lower spatial scale than the
larger capillaries. That is the reason for choosing the maximum
throat radius Rt of the sample as the reference length. If the
many tubes in parallel assumption is not too far-fetched for
some complex porous media, we would therefore expect that
the critical permeable-impermeable threshold would be around
L = 1 for the larger capillaries and for the shorter time scale.
Smaller capillaries as well as the complex geometry shape
may still play an important role, so it would not be surprising
that the critical permeable-impermeable threshold L might be
larger or lower than 1, but a value around L = 1 is a good
initial guess. At the very least, the larger the dimensionless
quantity L, the more difficult it becomes for the intruding flow
to cross the sample in a reasonable amount of time. Inversely,
the smaller L, the easier it gets for the intruding fluid to pass
through the main path. For these simulations, we used a unit
density ratio, a viscosity ratio of M = 30, a contact angle of
θc = 45◦, and La = 2. The value of the Laplace number was
chosen such that the interfacial tension force is high compared
to the viscous force and as a consequence, the time scale for
which the physical imbibition phenomenon appears is short.

FIG. 24. Saturation of the Berea sandstone as function of the

stone depth x∗ and the dimensionless quantity L. The critical exit

saturation threshold for percolation is also illustrated. Only the cases

with L = 0 and L = 0.5 percolate the core sample under the chosen

steady state simulation criterion.

b. Steady-state consideration. Since the computation in
this section involves steady state flows and these are rather
expensive to compute with the lattice Boltzmann method,
we decided to reduce the resolution of the Berea sandstone
by a factor of 2 in each dimension using the algorithm in
Ref. [101]. With a lower resolution of the core sample only
the larger space and shorter time scale of the main flow are
captured (which also follow the idea above of using L as a
representative dimensionless quantity). The stopping criterion
of the simulations is one of the following:

(1) a steady state is reached when the relative global
saturation difference in a time window of 5000 time steps
is less than 10−4, in which case the sample is then considered
as impermeable;

(2) when the saturation along the sample exit plane is more
than 10−3, in which case the sample is then considered as
permeable.

Note that the saturation is measured as in the previous test
case.

c. Discussion of the results. Figure 24 shows the depth
saturation profiles as function of the dimensionless quantity
L. Only the cases with L = 0 and L = 0.5 percolate the core
sample under the chosen steady state simulation criterion.
The case with L = 1 nearly percolates the sample. It is clear
that a more conservative stopping criterion would have led
to percolation in that case. Overall, this test illustrates that
the estimation of percolation near L = 1 seems to be a good
initial guess in order to find the critical percolation threshold.
As stated above, a high L number indicates that it is difficult
to percolate the sample (on the larger space and shorter time
scale). Figure 25 shows the global saturation of the Berea
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FIG. 25. Global saturation of the Berea sandstone as function of

the time (in lattice units) and the dimensionless quantity L.

sandstone as function of the time (in lattice units) and the
dimensionless quantity L. We see that percolation cannot
be reached in the shorter time scale if L is high enough
which is in accordance with the theory and analysis advanced
above. Indeed, the global saturation rapidly reach a level for
which it will not be possible to percolate the sample in a
reasonable amount of physical time (that can be tackled with
a simulation). The case with L = 0 percolates the sample
and this is in accordance with the many tubes in parallel
geometrical approximation of porous media described above,
i.e., the percolation is held to happen and much faster than
with a high L number.

d. Note on standard wetting boundary condition. We
would like to note that the development of this numerical
method was mainly done in order to fill the need to simulate
with more accuracy the imbibition process in porous media.
Indeed, the widely used and standard wetting boundary
condition for the multiphase lattice Boltzmann method is not
adequate to simulate wetting phenomena. This was clearly
shown in a previous publication on simple test case [44]. This
is shown again in Fig. 26 which presents the saturation of
the Berea sandstone as function of the stone depth x∗ and
the proposed versus the standard wetting boundary conditions.
The dimensionless numberL = 10 is used in these simulations
and this means that a very strong inverse pressure gradient is
imposed. It required 285 000 time steps to percolate the sample
with the standard wetting boundary condition while 420 000
time steps were needed to reach steady state with the proposed
wetting boundary condition. The difference in behavior of the
numerical method is huge! From our theoretical consideration
above, with L = 10, it makes much more physical sense to
achieve a nonpercolating steady state. Indeed, the standard
wetting boundary condition is incorrect and this is because
there is an uncontrollable numerical mass transfer along the

FIG. 26. Saturation of the Berea sandstone as function of the

stone depth x∗ and the type of wetting boundary conditions. The

dimensionless quantity L = 10 which means that there is a strong

inverse pressure gradient. The standard wetting boundary conditions

do not behave as expected with such a strong inverse pressure

gradient.

solid boundary of the porous media. It is clear that we could
not do all the above scientific analysis to numerically study
wetting phenomena while using the standard approach. So
overall, we strongly welcome and suggest using the proposed
wetting boundary condition to simulate the imbibition process
in porous media with LBM.

IV. CONCLUSION

This article proposes an extension of a 2D CGM to 3D
simulations with the D3Q15, D3Q19, and D3Q27 lattices.
The model is provided with sufficient detail to allow it
to be easily reproduced by the reader; matrices, stencils,
weights, and indexes can be found in the Appendix. This
work also significantly contributes to the advancement of
the computational modeling of multiphase or multicomponent
fluid flows under the influence of wetting properties with the
lattice Boltzmann technique and, more in particular, with the
CGM, extending its range of applicability in porous-media
applications. To improve the numerical model, we extended the
three-dimensional regularized velocity and density boundary
conditions to CGM, which allowed us to easily specify in-flow
and out-flow boundaries for fluids characterized by different
densities. Moreover, we proposed a three-dimensional wetting
boundary condition which we rigorously validated for both
variable density and viscosity ratios, within values typical for
liquid-liquid compounds. To validate the method, we have
shown that Jurin’s and Washburn’s laws, which both depend on
a proper model for fluid-fluid and fluid-solid interfacial tension
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properties, are well captured by the proposed numerical
approach. Moreover, to extend the many existing validations
attempted with the CGM, we have also demonstrated that
the CGM is capable of modeling three-dimensional capillary
waves for a wide range of liquid-liquid density and viscosity
ratios. Furthermore, by using simple 2D-like random porous
networks, we were able to show that the proposed CGM, in
conjunction with the regularized inlet, outlet and proposed
wetting boundary conditions, is able to qualitatively reproduce
the various imbibition regimes (i.e., viscous fingering, stable
displacement, and capillary fingering) and the associated
transition zones as classified by Lenormand.

Finally, in order to explore the capabilities of CGM for
realistic engineering scenarios, we performed 3D imbibition
and drainage experiments in a digitalized Berea sandstone and
reproduced the three main fluid invasion regimes. We demon-
strated that the proposed wetting boundary condition is more
suitable for simulating imbibition in porous media than the
LBM standard wetting boundary approach. This is, in our opin-
ion, the principal advantage of our proposed method, along
with the ability to describe flows with variable density ratios
more accurately in a range of values of high interest in many
industrial areas, including the oil industry and DNAPL de-
contamination processes. We would also like to point out that
wetting properties can easily be locally adjusted in our model.
Therefore, nothing prevents our model from being applied,
in the future, to applications where spatially variable wetting
properties are needed, such as microfluidics applications [102]
and porous rocks characterized by strongly variable mineral
assemblies [103]. We finally would like to highlight that our
code was implemented and added to the well-established LBM
open-source PALABOS library [68] and that we intend to make
our code available to the public under the same license; a choice
that we strongly believe will further stimulate the industries
and the academics to advance the use of LB codes for both
industrial and research applications in the field of pore scale
of multiphase or multicomponent flows in porous media.
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APPENDIX

The Appendix is organized in two sections:
(1) the theoretical derivation of the lattice weights for CGM;

and
(2) the MRT matrices.

1. Derivation of the lattice weights for CGM

In the equilibrium distribution of Eq. (4), the weights Wi

are already known and are the standard lattice weights of the

TABLE II. D2Q9 lattice velocity and weights.

D2Q9 {i : |ci |2 = 0} {i : |ci |2 = 1} {i : |ci |2 = 2}

Wi 4/9 1/9 1/36

φi 0 1/5 1/20

ϕi 1 −1/5 −1/20

ψi −8/3 −1/6 1/12

ξi 0 1/2 1/8

Bi −4/27 2/27 5/108

c2 = (−1,0) c1 = (−1,1)

c4 = (0,−1) c3 = (−1,−1)
ci c0 = (0,0)

c6 = (1,0) c5 = (1,−1)

c8 = (0,1) c7 = (1,1)

TABLE III. D3Q15 lattice velocity and weights.

D3Q15 {i : |ci |2 = 0} {i : |ci |2 = 1} {i : |ci |2 = 3}

Wi 2/9 1/9 1/72

φi 0 1/7 1/56

ϕi 1 −1/7 −1/56

ψi −5/3 −1/3 1/12

ξi 0 1/2 1/16

Bi −4/27 1/27 7/216

c4 = (−1,−1,−1)

c1 = (−1,0,0) c5 = (−1,−1,1)

c2 = (0,−1,0) c6 = (−1,1,−1)

c3 = (0,0,−1) c7 = (−1,1,1)
ci c0 = (0,0,0)

c8 = (1,0,0) c11 = (1,1,1)

c9 = (0,1,0) c12 = (1,1,−1)

c10 = (0,0,1) c13 = (1,−1,1)

c14 = (1,−1,−1)

TABLE IV. D3Q19 lattice velocity and weights.

D3Q19 {i : |ci |2 = 0} {i : |ci |2 = 1} {i : |ci |2 = 2}

Wi 1/3 1/18 1/36

φi 0 1/12 1/24

ϕi 1 −1/12 −1/24

ψi −5/2 −1/6 1/24

ξi 0 1/4 1/8

Bi −2/9 1/54 1/27

c4 = (−1,−1,0)

c5 = (−1,1,0)

c6 = (−1,0,−1)

c1 = (−1,0,0) c7 = (−1,0,1)

c2 = (0,−1,0) c8 = (0,−1,−1)

c3 = (0,0,−1) c9 = (0,−1,1)
ci c0 = (0,0,0)

c10 = (1,0,0) c13 = (1,1,0)

c11 = (0,1,0) c14 = (1,−1,0)

c12 = (0,0,1) c15 = (1,0,1)

c16 = (1,0,−1)

c17 = (0,1,1)

c18 = (0,1,−1)
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TABLE V. D3Q27 lattice velocity and weights.

D3Q27 {i : |ci |2 = 0} {i : |ci |2 = 1} {i : |ci |2 = 2} {i : |ci |2 = 3}

Wi 8/27 2/27 1/54 1/216

φi 0 2/19 1/38 1/152

ϕi 1 −2/19 −1/38 −1/152

ψi −20/9 −2/9 1/36 1/36

ξi 0 1/3 1/12 1/48

Bi −16/81 2/81 2/81 7/648

c4 = (−1,−1,0)

c5 = (−1,1,0)

c6 = (−1,0,−1) c10 = (−1,−1,−1)

c1 = (−1,0,0) c7 = (−1,0,1) c11 = (−1,−1,1)

c2 = (0,−1,0) c8 = (0,−1,−1) c12 = (−1,1,−1)

c3 = (0,0,−1) c9 = (0,−1,1) c13 = (−1,1,1)
ci c0 = (0,0,0)

c14 = (1,0,0) c17 = (1,1,0) c23 = (1,1,1)

c15 = (0,1,0) c18 = (1,−1,0) c24 = (1,1,−1)

c16 = (0,0,1) c19 = (1,0,1) c25 = (1,−1,1)

c20 = (1,0,−1) c26 = (1,−1,−1)

c21 = (0,1,1)

c22 = (0,1,−1)

lattice Boltzmann method [69]. The derivation of the weights is
φi, ϕi, ψi, ξi , and ζ for the two- and three-dimensional lattices.
The methodology is based on a Chapman-Enskog analysis
from Refs. [37,78] which the latter states that with variable
density, the equilibrium distribution functions should satisfy
slightly different constraints than in the case of a single-phase
flow with near constant density. Those methodologies were
adapted in Ref. [39] for the color-blind distribution functions
of the color-gradient multiphase D2Q9 model. Below, we
described a more general methodology to extract valid weights
on two- or three-dimensional lattices.

First, the speed of sound weight ζ in Eq. (11) is chosen
such that if the free parameters αk = W0, then the square
of the isothermal speed of sound will be equal to 1/3 as is
usually the case in the standard single-phase lattice Boltzmann
method. Then, the weights φi and ϕi are determined following
the principle of mass conservation, momentum conservation,
momentum flux tensor, and constitutive physics of a single-
phase lattice Boltzmann method [78]. To take into account
variable density of a multiphase flow, the weights ψi and ξi

must be carefully chosen and the constraints on the color-blind
distribution functions are

∑

i

N
(e)
i = ρ, (A1)

∑

i

N
(e)
i ci,m = ρum, (A2)

∑

i

N
(e)
i ci,mci,n = +Pmn + ρumun + ν[um∂n(ρ)

+un∂m(ρ) + uo∂o(ρ)δmn], (A3)

TABLE VI. Weight ζ related to the isothermal speed of sound (ck
s )2.

D2Q9 D3Q15 D3Q19 D3Q27

ζ 3
5

3
7

1
2

9
19

∑

i

N
(e)
i ci,mci,nci,o =

ρ

3
(umδno + unδmo + uoδmn), (A4)

where (m,n,o,p) is the index notation, δ is the Kronecker
function, and Pmn =

∑
k P k

mn is the color-blind pressure tensor.
These relations make sure that the macroscopic equations are
respected in the single-phase region while an interpolation is
applied at the interface for the viscosity ν and the color-blind
Pmn pressure tensor.

Under these constraints, ψi and ξi are now the only
unknowns left in a system of equations (A1)–(A4) with more
unknowns than constraints. So, there is still some degree of
freedom within the system and to close the system of equations,
we proposed to minimize the following functional using the
method of Lagrange multiplier:

∑

i

{ ν[ψi(u · ∇ρ) + ξi(G : ci ⊗ ci)]}2

Wi

. (A5)

This functional, weighted by the standard lattice weights Wi ,
has the goal to minimize the difference with the single-phase
flow equilibrium distribution. Once solved, the weights ψi and
ξi are found.

The last weights Bi are related to the capillary stress tensor
and are derived in a similar fashion as in Refs. [35,43]. We
follow the constraints of conservation of mass, momentum,

TABLE VII. Velocity space indexes p related to the momentum.

D2Q9 D3Q15 D3Q19 D3Q27

px 3 3 3 1

py 5 5 5 2

pz 7 7 3
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and macroscopic form of the capillary stress tensor:

∑

i

(
�N

pert
i

)
= 0, (A6)

∑

i

(
�N

pert
i

)
ci = 0, (A7)

1

ωeff

∑

i

(
�N

pert
i

)
ci ⊗ ci =

2

9

A

ωeff|F|
(|F|2I − F ⊗ F), (A8)

where I is the identity tensor and N
pert
i is defined as in Eq. (16).

By imposing these constraints on the perturbation weights
Bi , the system of equations also has more unknown than
equations. To close the system, we again proposed to minimize
the following functional using the method of Lagrange

multiplier:

∑

i

(
�N

pert
i

)2

Wi

. (A9)

This functional, again weighted by the standard lattice weights
Wi , has the goal to minimize the impact of the perturbation
operator in the density distribution space.

All the resulting weights needed to complete the numerical
scheme are given in Tables II–VI for each lattice. Useful in-
dexes corresponding to the momentum and kinematic viscosity
are also respectively given in Tables VII and VIII.

2. MRT matrices

For convenience, the MRT matrices for the D2Q9, D3Q15,
D3Q19, and D3Q27 are all consolidated in Tables IX–XII and
they follow the lattice connectivity given in Tables II–V.

TABLE VIII. Velocity space indexes υ related to the kinematic viscosity.

D2Q9 D3Q15 D3Q19 D3Q27

υ {i : i = 7,8} {i : i = 9,10,11,12,13} {i : i = 9,11,13,14,15} {i : i = 5,6,7,8,9}

TABLE IX. MRT D2Q9 matrix M.

MD2Q9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1

−4 2 −1 2 −1 2 −1 2 −1

4 1 −2 1 −2 1 −2 1 −2

0 −1 −1 −1 0 1 1 1 0

0 −1 2 −1 0 1 −2 1 0

0 1 0 −1 −1 −1 0 1 1

0 1 0 −1 2 −1 0 1 −2

0 0 1 0 −1 0 1 0 −1

0 −1 0 1 0 −1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TABLE X. MRT D3Q15 matrix M.

MD3Q15 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−2 −1 −1 −1 1 1 1 1 −1 −1 −1 1 1 1 1

16 −4 −4 −4 1 1 1 1 −4 −4 −4 1 1 1 1

0 −1 0 0 −1 −1 −1 −1 1 0 0 1 1 1 1

0 4 0 0 −1 −1 −1 −1 −4 0 0 1 1 1 1

0 0 −1 0 −1 −1 1 1 0 1 0 1 1 −1 −1

0 0 4 0 −1 −1 1 1 0 −4 0 1 1 −1 −1

0 0 0 −1 −1 1 −1 1 0 0 1 1 −1 1 −1

0 0 0 4 −1 1 −1 1 0 0 −4 1 −1 1 −1

0 2 −1 −1 0 0 0 0 2 −1 −1 0 0 0 0

0 0 1 −1 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1 0 0 0 1 1 −1 −1

0 0 0 0 1 −1 −1 1 0 0 0 1 −1 −1 1

0 0 0 0 1 −1 1 −1 0 0 0 1 −1 1 −1

0 0 0 0 −1 1 1 −1 0 0 0 1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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TABLE XI. MRT D3Q19 matrix M.

MD3Q19 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 8 8 8 8 8 8 −11 −11 −11 8 8 8 8 8 8

12 −4 −4 −4 1 1 1 1 1 1 −4 −4 −4 1 1 1 1 1 1

0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0

0 4 0 0 −1 −1 −1 −1 0 0 −4 0 0 1 1 1 1 0 0

0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1

0 0 4 0 −1 1 0 0 −1 −1 0 −4 0 1 −1 0 0 1 1

0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1

0 0 0 4 0 0 −1 1 −1 1 0 0 −4 0 0 1 −1 1 −1

0 2 −1 −1 1 1 1 1 −2 −2 2 −1 −1 1 1 1 1 −2 −2

0 −4 2 2 1 1 1 1 −2 −2 −4 2 2 1 1 1 1 −2 −2

0 0 1 −1 1 1 −1 −1 0 0 0 1 −1 1 1 −1 −1 0 0

0 0 −2 2 1 1 −1 −1 0 0 0 −2 2 1 1 −1 −1 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 −1 −1 1 1 0 0 0 0 0 1 1 −1 −1 0 0

0 0 0 0 1 −1 0 0 −1 −1 0 0 0 −1 1 0 0 1 1

0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 0 1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TABLE XII. MRT D3Q27 matrix M.

MD3Q27 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 −1 0 0 −1 −1 −1 −1 0 0 −1 −1 −1 −1 1 0 0 1 1 1 1 0 0 1 1 1 1

0 0 −1 0 −1 1 0 0 −1 −1 −1 −1 1 1 0 1 0 1 −1 0 0 1 1 1 1 −1 −1

0 0 0 −1 0 0 −1 1 −1 1 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1 1 −1 1 −1

−2 −1 −1 −1 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 0 0 0 0 0 0 1 1 1 1

0 2 −1 −1 1 1 1 1 −2 −2 0 0 0 0 2 −1 −1 1 1 1 1 −2 −2 0 0 0 0

0 0 1 −1 1 1 −1 −1 0 0 0 0 0 0 0 1 −1 1 1 −1 −1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 0 0 0 1 −1 0 0 0 0 1 1 −1 −1

0 0 0 0 0 0 0 0 1 −1 1 −1 −1 1 0 0 0 0 0 0 0 1 −1 1 −1 −1 1

0 0 0 0 0 0 1 −1 0 0 1 −1 1 −1 0 0 0 0 0 1 −1 0 0 1 −1 1 −1

0 4 0 0 1 1 1 1 0 0 −2 −2 −2 −2 −4 0 0 −1 −1 −1 −1 0 0 2 2 2 2

0 0 4 0 1 −1 0 0 1 1 −2 −2 2 2 0 −4 0 −1 1 0 0 −1 −1 2 2 −2 −2

0 0 0 4 0 0 1 −1 1 −1 −2 2 −2 2 0 0 −4 0 0 −1 1 −1 1 2 −2 2 −2

0 −4 0 0 2 2 2 2 0 0 −1 −1 −1 −1 4 0 0 −2 −2 −2 −2 0 0 1 1 1 1

0 0 −4 0 2 −2 0 0 2 2 −1 −1 1 1 0 4 0 −2 2 0 0 −2 −2 1 1 −1 −1

0 0 0 −4 0 0 2 −2 2 −2 −1 1 −1 1 0 0 4 0 0 −2 2 −2 2 1 −1 1 −1

4 0 0 0 −1 −1 −1 −1 −1 −1 1 1 1 1 0 0 0 −1 −1 −1 −1 −1 −1 1 1 1 1

−8 4 4 4 −2 −2 −2 −2 −2 −2 1 1 1 1 4 4 4 −2 −2 −2 −2 −2 −2 1 1 1 1

0 −4 2 2 1 1 1 1 −2 −2 0 0 0 0 −4 2 2 1 1 1 1 −2 −2 0 0 0 0

0 0 −2 2 1 1 −1 −1 0 0 0 0 0 0 0 −2 2 1 1 −1 −1 0 0 0 0 0 0

0 0 0 0 −2 2 0 0 0 0 1 1 −1 −1 0 0 0 −2 2 0 0 0 0 1 1 −1 −1

0 0 0 0 0 0 0 0 −2 2 1 −1 −1 1 0 0 0 0 0 0 0 −2 2 1 −1 −1 1

0 0 0 0 0 0 −2 2 0 0 1 −1 1 −1 0 0 0 0 0 −2 2 0 0 1 −1 1 −1

0 0 0 0 −1 −1 1 1 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 −1 −1 0 0 0 0 0 0 0 −1 1 0 0 1 1 0 0 0 0

0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 0 0 0 0 0 1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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