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A 3D windowed Fourier transform is proposed for fringe sequence analysis, which processes the joint spatial
and temporal information of the fringe sequence simultaneously. The 2D windowed Fourier transform in the
spatial domain and the 1D windowed Fourier transform in the temporal domain are two special cases of the
proposed method. The principles of windowed Fourier filtering and windowed Fourier ridges are developed.
Experimental verification shows encouraging results despite a longer processing time. © 2006 Optical Soci-

ety of America
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Fringe pattern analysis, or interferogram analysis, is
an essential part of optical metrology.' Various tech-
niques, such as phase shifting, Fourier transform,
regularized phase tracking,2 and vortex transform,>*
have been developed for fringe pattern analysis. Two-
dimensional windowed Fourier transform is a novel
alternative developed 1"ecently.5’_7 To measure a dy-
namic phenomenon, a fringe sequence is often re-
corded by using a high-speed camera. Fringe se-
quences can be processed frame by frame by using
existing techniques for fringe pattern analysis, as
shown in Fig. 1(a). However, if useful information,
such as a temporal carrier is available between con-
secutive frames, these frames should be processed si-
multaneously rather than separa‘cely.8 The frames
are usually processed pixel by pixel, as shown in Fig.
1(b). As the joint spatial-temporal information could
be richer than pure spatial or pure temporal informa-
tion, a generalized 3D windowed Fourier transform
(WFT) is proposed in this Letter. It can be used as a
spatial domain method and as a temporal domain
method as two special cases. It is interesting to note
that the joint information has already been utilized
with a Fourier transform.’ General n-dimensional
quadrature transform was also investigated recently,
with which a single closed fringe pattern or a tempo-
ral set can be successfully demodulated.'®’ Com-
pared with Fourier transform, vortex transform, and
quadrature transform, WFT provides a redundant
and localized basis, which is useful for fringe pattern

representation and excellent noise reduction.’
A 3D fringe sequence can be expressed as

f(r) =a(r) + b(r)cos[¢(r)], (1)
0146-9592/06/142121-3/$15.00

where 7=[x y t]T is a vector in 3D space with x and
as spatial coordinates and ¢ as the temporal coordi-
nate; T is a transpose operator; f(7) is the recorded in-
tensity; a(r) and b(r) are the background intensity
and fringe amplitudes, respectively, which usually
vary slowly; and ¢(7) is the phase distribution to be
determined. In a small volume around a point r, the
phase can be approximated as a superplane by Taylor
expansion

¢(F) = ¢(Fo) + [Ve(Fo)I"(F = 7o), (2)

where 7 and 7, are two adjacent points with small
Euclidean distance and Vo(7) is the gradient of ¢ at
the point 7

de(r) dg(r) de(r) r
dx G PR '

r=r

VfP(Fo) =

3)

These are the local angular frequencies or instanta-
neous angular frequencies at point r,. Consequently

Fig. 1. (Color online) Strategies for fringe analysis. (a)
Processing in xy plane (spatial domain), one frame at a
time; (b) processing along ¢ axis (temporal domain), one
pixel at a time; (¢) processing in xyt space (joint spatial-
temporal domain).
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in the local volume we have

cos[¢(7)] = cos{e(o) + [V (7o) I (F = o)}

1
= 5 exp{je(ro) +j[V<P(Fo)]T(F— o)}

1
+ 5 expi-j ¢(ro) =J[V(r) 1" (F = 7o)},
(4)

where j=+-1. Hence in a local volume, cos[¢(7)] can
be effectively represented by harmonics with limited
extensions as

h(7;8) = g(Fexp(FETP), (5)

where 5 =[& & &]T is a vector of spatial and temporal
angular frequency components, exp(j¢’r) is a har-

monic with ¢ as its frequency, and g(7) is a window
that limits the extensions of the harmonic to be in a
local volume.

Fortunately all these harmonics with limited ex-
tensions construct a basis. To represent a signal by
this basis is the essence of the WFT, which has been
investigated for the 2D case in our previous work.””
For fringe sequence analysis, the transform is ex-
tended to be 3D and is explored in this Letter. This
will be shown to be a simple but significant and el-
egant generalization of the 2D transform.

The window function is chosen as a Gaussian and
consequently the kernel of the WFT is

(7€) = exp[ - %*TK-IF + jéTF] : (6)
where
1/0? 0 0
K1l=| 0 1/0? 0 |
0 0 1/0?
o, 0, and o, are the standard deviation of the

Gaussian function and represent the extensions of
the harmonics in the x, y, and ¢ axes, respectively.
The 3D WFT and inverse transform can be expressed
concisely as convolutions

f7) = # j f f ) @ (5]

® h(F;OdédE dé, (7)

where f(r) @ h(r; 5) is the windowed Fourier spectrum;
the symbol ® denotes a 3D convolution as

a(F)@b(f):Jic f: J_ia(u,v,r)

Xbx-u,y — v,t — dudvdr. (8)
The above 3D WFT becomes a 2D WFT in the spatial
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domain when o,—0. Similarly it becomes a 1D WFT
along the temporal axis when o,—0 and o, —0.

Based on 3D WF'T described above two alygorlthms
windowed Fourier filtering (WFF) and windowed
Fourier ridges (WFR), are developed. The WFF algo-
rithm is expressed as

n r&n [h —mMM—
A = — f (A7) © h(52)]

& gyl &l
® h(F;£)dEdg,dE,. )

This equation is very similar to Eq. (7), except for two
modifications. First, [f(r)®@h(r;&)] denotes that the

original spectrum of f(r) @ h(r;£) is altered. Usually
the spectrum is thresholded such that the spectrum
coefficients with small absolute values are set to zero.
By this operation, noise can be greatly reduced. Sec-
ond, the integration is carried out in a selected vol-
ume (&, Ex] ¥ [, &n] X [, &1 ] instead of the whole
frequency space. This operation selects the desired
spectrum sidelobe for signal reconstruction such that
an analytic signal is constructed and phase distribu-
tion can be extracted. A carrier frequency is desired
to avoid the phase ambiguity problem. 12 This opera-
tion also reduces computing time.
The WFR algorithm is expressed as

Ve(r) = arg max/f(7) ® h(7;9),
¢

(10)

which means that Vo(r) takes the value of 5 when
this ¢ maximizes the amplitude spectrum |f(r)

®h(r; €)|. In this algorithm, A(r; &) with different ¢ are
generated and compared with the signal in a local
volume around a point 7,. The highest similarity
(best match) is found and named as a ridge. The

value of 5 for the best match is selected to represent
the gradient of the phase at the point 7,.The gradient
of the phase at any other points 7 can be determined
by the same matching process. The phase can be ob-
tained by integrating V¢(r), or can be determined as

() = angle{f(r) ® h[r;Vo()]}. (11)

To verify the proposed concept, an electronic speckle
pattern interferometry fringe sequence on a continu-
ously deforming plate with an artificial defect (a cir-
cular blind hole) is recorded and processed. The plate
is loaded by compressed air and deformed in one di-
rection by increments of pressure. A temporal carrier
is provided by the deformation itself. The sequence
contains 150 frames with a frame size of 220 pixels
X 220 pixels. The gray level is from 0 to 255. Four
frames (frames 31, 61, 91, and 121) from the se-
quence are shown in the first row of Fig. 2. The sec-
ond row of Fig. 2 shows the wrapped phase maps ob-
tained by using the WFF algorithm shown in Eq. (9),

where 0,=10 pixels, 0,=10 pixels, and 0,=5 frames.

The spectrum sidelobe is [&,;, &) X[, &l X [&a5 &n)
=[-0.8,0.8]xX[-0.8,0.8]x[0.2,0.7]. Their units are
radian/pixel, radian/pixel, and radian/frame, respec-
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Fig. 2. Fringe sequence analysis by WFT and Fourier
transform (FT). First row, four frames from a fringe se-
quence; second row, extracted phase using WFT; third row,
cosine value of the extracted phase in the second row;
fourth row, extracted phase using F'T; last row, cosine value
of the extracted phase in the fourth row.

tively. The sampling rates are A¢,=0.05rad/pixel,
A¢,=0.05rad/pixel, and A¢=0.1rad/frame, respec-
tively. The threshold is empirically set to be 600. The
phase can be easily unwrapped. For ease of compari-
son, the obtained phase data ¢(r) is converted to co-
sine fringes, as shown in the third row of Fig. 2. It
can be seen that the result is satisfactory. It is worth
noting that no preprocessing and postprocessing are
needed. For comparison, the fourth row shows the
best estimation we could obtain by using a 3D
Fourier transform. Similarly, the corresponding co-
sine fringes are shown in the last row. The improve-
ment of WF'T over the Fourier technique is obvious.
Though the 3D WFT results in 6D spectrum coeffi-
cients, it is not necessary to store all these coeffi-
cients. Take the WFF in Eq. (9) as an example: for a
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specific frequency E, its spectrum coefficient can be
computed as f(r)® h(r; &), which is thresholded and

used for reconstructing the signal f(7). This spectrum
coefficient can then be discarded. Another frequency
is selected for the same processing until all the
sampled frequencies are computed. For the above ex-
ample, approximately 150 Mbytes of memory are
needed to store the original sequence, the temporary
spectrum, and the reconstructed sequence with
single precision. Hence the requirement for memory
is not very high. However, the 3D transform does
need a long computing time. For the above example,
7 h are consumed to obtain the phase information by
using the C language on a Pentium IV 3.2 GHz pro-
cessor with hyperthreading. As a reference, the time
for the 3D Fourier transform is less than 1 s. This is
because two 3D convolutions, one for analysis and
the other for synthesis, are needed for each sampled
frequency in WFF, as shown in Eq. (9). However, this
heavy burden can be reduced by the rapid develop-
ment of computing technology, such as parallel com-
puting techniques.

The authors thank the reviewers for their insight-
ful and helpful comments. K. Qian’s e-mail address is
mkmgian@ntu.edu.sg.
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