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ABSTRACT

It is shown that any rate lib systematic convolutional code over

GF(p) can be decoded up to its minimum distance with respect to the

decoding constraint length by a one-step threshold decoder. It is

further shown that this decoding method can be generalized in a

natural way to allow "decoding" of a received sequence in its unquantized

analog form.
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GENERALIZED THRESHOLD DECODING OF CONVOLUTIONAL CODES

I. Introduction

Majority decoding of linear block codes using parity checks that

are orthogonal, or can be orthogonalized in steps, was first proposed

by Reed [1] in 1954. This idea was further developed by Massey [2]

and Mitchell et ale [3] in the early 1960's. Subsequently, Rudolph

[4] proposed a one-step majority decoding scheme based on parity

checks that are in general not orthogonal. In 1968, Weldon [5] pre

sented improved majority decoding algorithms for block codes asso

ciated with finite geometries. Recently, two generalized threshold

decoding methods have been devised that are capable of decoding any

binary or nonbinary linear block code up to its minimum distance.

The first scheme, devised by Gore [6J, is a generalization of Massey's

L-step orthogonalization, and achieves additional decoding power by

relaxing the requirement that parity checks be strictly orthogonal.

The second scheme, proposed by Rudolph [7], is a generalization of

one-step majority decoding based on non-orthogonal parity checks and

achieves its added power by replacing the majority element by a more

general threshold element.

Threshold decoding of convolutional (recurrent) codes was intro

duced by Massey [2J in 1962. He showed that mUltiple-step threshold

decoding is not applicable to convolutional codes (in the sense that

any convolutional code that is L-step orthogonalizable is one-step
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orthogonalizable). Thus, generalized L-step orthogonalization does

not carryover to convolutional codes in a natural way. One purpose

of this paper is to show, however, that generalized one-step threshold

decoding based on non-orthogonal parity checks does carryover. (Al

though this technique applies to any convolutional code, only rate

lib codes in systematic form will be considered for ease of presentation.)

The second purpose of the paper is to show that one-step threshold

decoding can be generalized in a very natural way to allow ftdecoding"

of a received sequence in its unquantized analog form. This generalized

decoding technique, which we call analog threshold decoding, is par

ticularly well suited to the processing of convolutional codes because

of the continuous nature of the information flow.

This paper is organized as follows. In Section II, the decoding

problem for convolutional codes is formulated in a way suited to the

development to follow. In Section III, the Fourier series representation

of discrete functions is reviewed and then applied to show the existence

of a generalized one-step threshold decoder for convolutional codes.

Examples are presented to illustrate an approach to the decoder synthesis

problem. In Section IV, the extension to analog threshold decoding is

discussed and two methods of implementing analog threshold decoders

are suggested. Concluding remarks are contained in Section V.
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II. Decoding Problem for Convolutional Codes

In what follows, we will consider only rate lib convolutional

codes in systematic (canonical) form over GF(p), the field of p

elements, p a prime. All operations in this section are performed

over GF(p). The notation used is essentially that of Wyner and Ash

[8] and Wyner [9J.

A rate lib systematic convolutional code is the null space of a

semi-infinite parity check matrix H of the form shown in Figure 1.

All the nonzero entries of H are in the shaded areas. A sequence

(semi-infinite row vector) x is a code word if and only if xH
T

= o.

The code is said to have block length b with m = b-l check symbols

per block. If v = 1, then H is the parity check matrix of a block

code.

A received sequence y is the sum of the transmitted code word x

and a semi-infinite error vector e, i.e. y = x+e. The syndrome s

is defined by s = yH
T

= (x+e)H
T = eH

T
. The i

th
block of the received

sequence, denoted by y., can be decoded correctly if we can determine
l

e., the i
th

block of e. This determination is usually made by examin
1

ing the syndrome s which contains all the available information about

e while being independent of x. Since it is impractical to examine all

of s, we are forced to restrict our attention to a segment of some given

finite length. Because of the structure of H, this means that only a

finite number of blocks of y, say y. , ... ,y. A' make a nonzero cantri
l-a ~ + ~

bution to the calculation of this segment of s. Therefore the syndrome

3



H =

8
2m............---

Figure 1. Parity check matrix of a rate lib systematic convolutional code.

I Yj -I I Yj

v = 2

a =

IJ = 2

Yj+1 I Yj+2 I =~

Figure 2, Syndrome calculation for decoding y .•
~
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calculation required to decode y. may be represented by a finite matrix
1

equation as illustrated in Figure 2 for v = 2, a = 1, ~ 2.

Let e. denote the decoder's estimate of € .• Then y. is decoded
111

by sUbtracting e. from Y., i.e. x. = y. - e., where x. denotes
1 1 111 1

the decoder's estimate of the i
th

transmitted block. (Normally, since

the code is assumed to be in systematic form, it is only necessary to

decode the information portion (first symbol) of block y .. At this
1

point, however, we prefer to let this be understood rather than com-

plicate the notation.)

In the decoding process outlined above, no attempt is made to take

advantage of previous decoding successes. For example, in Figure 2

errors in block y. 1 can affect the syndrome calculation for block y.
1- 1

even though presumably e. 1 was correctly determined during the pre
1-

vious decoding step. It is therefore natural to consider substituting

x. for y. for some or all j < i. Robinson [10] has called the decoding
J J

procedure with no substitution "definite decoding", and the decoding

*procedure with substitution for all j < i "feedback decoding fl
• If

we ignore the problem of error propagation in feedback decoders, the

only difference in the decoding problem using these two decoding options

is that the sets of correctable error patterns will not be the same.

Since the generalized one-step threshold decoding scheme discussed

here is applicable to any set of correctable error patterns, it will

*Apparently the i n t e ~ e d i a t e case where substitution is made for some
but not all j < i has not been considered. It might be interesting
to investigate the relationship between decoding constraint length
and error propagation in this more general case.
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not be necessary to distinguish between definite and feedback decoding

in the mathematical development to follow.

We will now use H,Y,e and s to denote the finite sUbmatrices used

in the decoding of Y.. Thus the equation of Figure 2 is written simply
1

s. This should cause no confusion since henceforth we will

not have occasion to use these symbols in their infinite sense.

When definite decoding is used, S However when feedback

decoding is used, the vector y = (y. , ... ,y. R) is replaced by the
1-a 1+,....,

vector (x. , ... ,x. l'Y.' ... 'Y. ~ ) . It will be convenient to let y
l-a 1- 1 l+~

denote either of these vectors.

When definite decoding is used, the relationship between syndromes

*and coset leaders is the same as in the decoding of linear block codes.

That is, a minimum weight vector from each coset is selected to be the

coset leader, thus establishing a 1-1 correspondence between coset lea-

ders and the pr distinct syndromes, where r = (~~ - V + 2)m. When

feedback decoding is used, the coset leader is a vector which has

minimum weight among those members of the coset which have no nonzero

components in blocks i-a, ... ,i-l. In either case, let e.(s) denote
1

the i
th

block of the coset leader associated with s. The code is

then decoded up to its minimum distance with respect to the decoding

constraint length (which is ( ~ ~ + l ) b for definite decoding, ( ~ + l ) b for

feedback decoding) by

*The reader not familiar with the elementary properties of linear
block codes is referred to Peterson [11, pp. 30-38]e
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x. = y.-e.(s) where s
111

- T
~

The purpose of the next section is to shaw how this decoding

procedure can be realized by a one-step threshold decoder.
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III. Generalized Threshold Decoding Rule

In this section, all operations are performed over C, the field of

complex numbers, 'unless otherwise indicated. Before proceeding, it is

unfortunately necessary to establish more notation.

1) The symbol "+" will be used to denote the complex exponentia

tion mapping ~ = EX, where E = exp(2~i/p). This mapping extends to

matrices in the natural way, i.e. (a .. t :::; (a. }).
lJ lJ

2) Let A denote the pr by p matrix whose rows are the p-ary
r

numbers O,1, ... ,pr_1 in that order. A is a representation of V (J ),
r r p

the vector space of r- t·l.Aples over J , the integers modulo p. Let f
p

r
denote a p by 1 vector with components from C. A and f together

r

represent, in tabular form, a function from V (J) into
r p

3) We define a threshold function T as follows. Let x :::; p E
g

be any complex number, where p and 9 are real numbers in the range

p ~ ° and -1/2 ~ g < p - 1/2, and E = exp(2n i/p). Then T(x) = [g + 1/2],

where the square brackets denote "integer part of ir
• (That is, we threshold

on the angle of the complex number x. In the binary case, this amounts

to thresholding on the sign of Re(x).) Note the following properties

of T:

a) If x is real, T(x-r) =[x + l/2] (mod p).

b) If x is an integer, T ( X ~ ) =x (mod p).

c) If x is any complex number and y is an integer, then

y + T(x) = T(yt;) (mod p).

8



4) Some matrix notation that will be used is:

a)

b)

I. is the identity matrix of order na
n

The transpose and conjugate transpose of a matrix A will

T *
be denoted by A and A respectively.

c) The scalar (element-wise) product of two matrices A and B

will be denoted by A 0 B.

We now have

Theorem 1

Any function f from V (J) into C can be expressed as the Fourier
r p

Series

f(z)

Proof

The proof of this theorem will only be sketched herea For details,
r

the reader is referred to [7]. First, it is established that p- 2(A A T)l
r r

*is a unitary matrix. (A matrix M is unitary if MM = I.) Then we have

f = f

I f
r

p

Let w p-r«A A T)1-)*f. (w is the p-point, r-dimensional finite
orr 0

Fourier transform [12.] of f and will be referred to as the Uspectrum"

9



of f.) Then f ;:: (A A T)+ w .
r r 0

Since the rows of A constitute the
r

complete set of possible input vectors z, this can be written in

the functional form fez) = (z A T)t w .
r 0

Corollary 1

For every function f from V (J ) into J(p), there exists a vector w
r p

such that

*Q.E.D.

f(z)

Proof

We know from Theorem 1 that f+(Z) can be expressed as the Fourier

series f+(Z) = (xA T)t w , where w = p-r«A A T)+)*f+. The assertion
roo r r

then follows by observing that fez) ;:: T(ft(z» by property (b) of T. Q.E.D.

The spectrum w is a canomical weight vector that always satisfies the
o

equation. Clearly there is an infinite convex set of weight vectors

that satisfy the equation. The major problem in the synthesis of

threshold decoders is to find a weight vector with the minimum number

of nonzero components. As we shall see, this yields a decoder which

employs the minimum number of estimators.

At this point, it is convenient to introduce notation for the informa-

tion portion of a block. Let y .. , j = O,l, ... ,b-l, denote the symbols of
1J

block y .. Then y. is the information portion (first symbol) of block y.
1 10 1

*This result may also be obtained from the fact that (A A TfF is the
character table of the Abelian group whose elements a r ~ the rows of A

under modulo p addition. The characters of an Abelian group form r

an orthogonal basis for all complex-valued functions defined on the
group [13].
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and similarly for x. and e .. We now show the existence of a one-step
l l

threshold decoding function for a rate lib systematic convolutional code.

Let B denote the matrix obtained by the modulo p addition of 1 to every

element of the first column of the ith block of A Ho Then we have
r

Theorem 2

For every rate lib systematic convolutional code over GF(p), there

exists a vector w such that the decoding function

decodes the code up to its minimum distance with respect to the de-

coding constraint length.

Proof

r th
Let f be the p by 1 vector whose s component is - e. (8)0

lO

The syndromes, ordered lexicographically, form the rows of A 0 Then
r

from corollary 1 we know that the function f can be expressed as

f(s) "" - e. (s) "" T( (s A Tt w).
10 r

From Section I, we have that a convolutional code can be decoded up

to its minimum distance with respect to the constraint length by

the decoding rule
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Combining these two equ.ations, we have

x. ~ y. + T( (s A T)+ w) (mod p).
10 10 r

Up to this point, we have viewed sAT as a product ov'er Co However"
r

T
s and A both have components from V (J ) and the exponentiation

r r p

operator" -r U has the effect of reducing its operand modulo po It

follows that we may, if we choose, view sAT as a product over ,J .
r p

But then

- T
s = Y H (mod p)

may be substituted into the decoding equation to give

Now since Y
io

is an integer, we can use property· (c) of T to rewrite

this as

A

x.
20

+ - T T T= T((y~ o(y H A ) w)o
10 r

Then this can be rearranged (using the fact that for any matrices A

and B, At 0 Bt = (A + B)T; see [7J for details) to give the desired

result

A

X ..
10

- T t
:= T((y B) w),

where B is obtained by adding (modulo p) 1 to every component of the

first column of the i
th

block of A Ho
r
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Schernatic diagrams of the defini te and feedback', decoder configura-

tions described by )Cia = T( Lv BT)+W) are shown in Figure 3 for a = 1, t3 2.

The matrix B and weight vector ware shown prim.ed in Figure 3 (b) to

indicate that the decoding logic for a given convolutional code is, in

general} different for the definite and feedback decoding options ..

The existence of a one-step threshold decoder for a rate lib sY'stem-

atic code having been established} we now tllrn to the practical prabl.em

of decoder synthesis 0 Once the finite parity check matrix H has been

specified, and it has been decided whether or not feedback will be

used, the only variable in the design of a one-step threshold de-

coder is the weight vector w. So the decoder synthesis problem boils down

to finding a vector 'W that satisfies -e. (s) = T( (s A T)T 'W) and has
10 r

the minimum number of nonzero components" If we require that w satisfy

the above constraint for all s (as we have impli.citly assumed up to

now), then the decoder is roughly analogous to a maximum likelih.ood

decoder for block codes. In practice, howev'er, it is usually only

required that 'W satisfy the con,straint for all s that correspond to

coset leaders of weigrlt t or less J where t is tb.e guaranteed error-

correction capabili ty of the code" In the examples to follow., d e ~

coders are designed to meet only t11is latter requ.irementQ (This is

not to say that some error patterns of wei.ght greater than t 'will

not be corrected; it is simply that 'We do not specify : w ~ i c h patterns

these shall be" )
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BUFFER
r---v-.-._-,--'--y-,.---"--y-,.-.-,......-v-.-- RECEIVED
~_' __......-...__.-....- .a--_I_'__+__I....... SEQUENCE

ESTIMATOR MATRIX B

(a) Definite decoding

ESTIMATOR MATRIX el

Yi+1 Yi+2

(b) Feedback decoding

Figure 3. One-step threshold decoding configurations.
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To date, no efficient algorithm has been devised for finding an

o p t i m ~ a l weight vector w. However, good results have been obtained

by starting with the spectrum wand deleting Fourier coefficients
o

which are small in absolute value while at the same time readjusting the

larger coefficients in order to stay within the convex set of solutions.

Some examples will illustrate the approach.

Example 1

[
1

10

1] .Take a = ~ = 1, where B =
o

involved in the decoding of Y
io

is

Then the parity check matrix

H =

.th
1 block

[ 1 0 ~ OOJ
00 10 11

This is the parity check matrix of a rate 1/2 binary self-orthogonal

code [2]. Consider first the synthesis of- a definite decoder.

For this code, t = 1 so we need only consider those syndromes

associated with coset leaders of weight 1 or less (in this case) all

of them). The relationship between syndromes and coset leaders is

shawn in Table I.

coset leader syndrome

00 00 00 00

00 00 01 01

00 01 00 10

00 10 00 11
~

A

e.
1

Table I.
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Then

f = - e. (s)
10

The spectrum of fT is

o
o
o
1

r~ ~ ~ ~
-r T)+ * ~ -2 I

w ~ P ((A A ) fl = 2 I 11 1 - 1 - 1
orr _ 1 _ 1 1

L

The matrix A H for this code is
r

1

1

1

-1

1/2

1/2
1/2

-1/2

A H =
2

[

10

00

11

10
ooJ
11

00

00

10

10

00

10

11

01

00

11
00
11

The estimator matrix B is obtained by adding 1 (mod 2) to each

element of the first column of the i
th

block of A
2

H. This gives

00 10 00
B = 00 00 11

10 01 00
10 11 11

Then a decoding function for this code is

16



A.

T((YB
T

)/ w)x.
10 0

T (((Yi-l,O'Ui-l,l,YiO'Yil,Yi+l,o,Yi+l,l)
0 0 1 1 )t 1/2

I)
0 0 ° 0 1/2
1 0 0 1 1/2
0 0 1 1 -1/2
0 1 0 1

_0 1 0

It is easy to verify that no weight vector with fewer than three nonzero

components can be a solution to -e. (s) = T((s A T)tw). Since the
10 r

moduli of the components of the spectrum ware all equal in this case,
o

we suspect that a minimal solution may be found whose three components

are equal in absolute value and have the same signs as the corresponding

spectral components. (We conjecture that an optimal solution w can

always be found such that its nonzero components agree in sign with

corresponding components of w.) Our suspicions are justified in
o

this case; one optimal solution is

1

'W 1

1

o

This yields the reduced decoding function

.........

x.
10 T (((Yi-1,O"',Yi+l,1)

17
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where we have deleted the last column of B
T

and the corresponding

(zero) component of w. The corresponding decoder is shown in

Figure 4(a). Note that the estimators are disjoint here (as might

have been expected since this code is orthogonalizable).

Another minimal weight vector is

w ==

and the decoding function for this choice of w is

A

x.
lO

o 1

o 0

o 0

o 1

1 0
1 0

The corresponding decoder is s h o ~ n in Figure 4(b)v In this case the

estimators are not disjoint. Both decoders are capable of correcting

any single error in a definite decoding constraint length of (a + ~ + l)b 6

bits. The aesthetic choice is decoder (a), of course, but decoder (b)

does illustrate the fact that an estimator that is consistently wrong

is just as useful as one that is consistently right; we simply comple-

ment the estimate (weight it by -1) in the former case.

Now consider the design of a feedback decoder for this codeo In

this case, ~ e want the coset leaders to be minimum weight vectors with

no nonzero components in the (i-l)st block. But the coset leaders

18



NOTE: til DENOTES -MOD 2 ADDER

(a) (b)

Figure 4. Definite decoders for b=2, m=l, v=2 self-orthogonal code.

Figure 5. Feedback decoder corresponding to figure 4(a).

Figure 6. Feedback decoder for b=2, m=l, v=6 code.
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listed in Table I already have that property. Therefore the feedback

decoding logic in this case is exactly the same as the definite de-

coding l o g i c ~ The feedback decoder corresponding to the definite

decoder of Figure 4(a) is shown in Figure 5 ~ The decoding con-

straint length here is ( ~ + l ) b = 4 bitso

The reader may have noticed that in the binary case the exponen-

tiation operation fllr" could be eliminated by a simple modification

of the threshold operator 0 (For example, the exponentiation and thresh-

old operators in Figure 4(a) can be replaced by a simple majority

element.) This is because in the binary case xi- = l-2x, which is a

trivial mapping 0 In the nonbinary case, however, the exponentiation

mapping is no longer trivial, and we prefer to leave things as they

are for the sake of uniformity 0 Also, as we shall see in the next

section, exponentiation becomes nontrivial even in the binary case

when we consider the extension to analog threshold decodingo

The example just worked is of limited interest to the designer

because the code is o r t h o g o n a l i z a ~ l e and we already know that a

simply majority decoder exists [2Jo Therefore we now exhibit a

threshold decoder for a code that is not orthogonalizableo

Example 2

Take ~ a = 5, where

B
a

11

10

00

'10
00

10

20



Then

10 00 10 00 10 11

10 00 10 00 10 11

H = 10 00 10 00 10 11

10 00 10 00 10 11

10 00 10 00 10 11

10 00 10 00 10 11

This is a parity check matrix (taken from Bussgang [14J) of a rate 1/2

binary code capable of correcting all single and double errors in a feedback

decoding constraint length of 12 bits. Employing the same general

approach used in Example 1, the following (probably minimal) decoding

function was found.

xia = T(( (Xi - 5 ,O'''.'Yi+5,1) 0 1 0 0 0 0 )+ 21 )
0 0 0 0 0 0 2

0 0 1 0 0 0 2

0 0 0 0 0 0 1

0 1 0 0 0 1 1

0 0 0 0 0 0 1

0 0 1 0 1 1

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 1 0 0

21



Tl1e corresponding decoder is shown in Figure 6. The estimators in this

case are not disjoint, as must be the case when the code is not ortho

gonali zable 0

22



IVg Analog Threshold Decoding

In the previous section, it was convenient to view the matrix

product y B
T

in x. ~ T( (Y BT)t "W) as an operation over GF(p). This
10

leads ~ u i t e naturally to a decoder implementation using a shift re-

gister, mod p adders and multipliers, an exponentiation circuit, and

a linear threshold gateo The only nonstandard item is the exponentia-

tion circuit) and i.t was pointed out that this can be eliminated in the

binary caseo

Suppose, ho"Wever, "We choose to view Y B
T

as a product over C

and drop the restriction that the components of y be integral. Then

x. = T((y BT)t w)represents a continuous extension of the original
lO

discrete decoding function, and a physical device that realizes this con-

tinuous function can udecode ff a received sequence in its unquantized

analog formo 'We now consider two possible methods of implementing such

a device.

The first method employ de devices only, and in this case we

prefer to restrict our attention to the binary case so that we are

dealing with real ~ u a n t i t i e s throughout. (We are assuming that y is

real.) As pointed out earlier, the operator T thresholds on the sign

of the real part of its argument in the binary case. Hence there is

no objection to replacing the argument by its real part. Then the

decoding function can be "Written x. = T(Re((yBT)t "W». We can take "W
10

to be real in the binary case (w is real), so we need only replace
o

23



(y BT)t by its real part. The exponentiation operator in the binary

+ z - T + (- Tcase is z = -1 = cos n z - i sin nz. Hence Re (y B) = cos n y B ),

where the cosine function is extended to matrices in the natural way.

Then the decoding function can be written as

'"x.
10

= T((cos rc(y B
T

)) w).

- TThe product y B th 1 · t h · th tover e rea s 18 a vee or w ose 1 componen

° th 1 to b t - d th .th 1 f TlS e carre a lon e ween y an e 1 co umn 0 B. Various

standard devices are available to perform this operation, e.g. a

tapped delay line and linear summing amplifiers. The cosine operator can

be realized by any device with a sinusoidal response function, e.g. a

phase modulator-demodulator pair. The last component is a conventional

linear threshold gate. The resulting analog decoder configuration is

shown in Figure 7.

The second method of implementing the extended decoding function

makes use of both dc and microwave devices. In this case complex

quantities cause no problems, so we need no longer restrict our atten

tion to the binary case. The vector (y B
T)+ describes the outputs

of a phase shifter matrix where the microwave inputs are all carriers

at a common carrier frequency with unit amplitude and 0
0

relative

phase (provided by an rf source and a stripline feed structure), the

components of yare the dc control inputs, and the coupling between

de control lines and the microwave lines is specified by the matrix B.

24
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Figure 8. rf-dc analog threshold decoder.
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The complex scalar (y B
T )1- w is a weighted sum of the outputs of

the phase shifter matrix. The weights are achieved by fixed attenua-

tion and phase shift, and the sum formed in a second reciprocal feed

structure. Finally, T( (y B
T)+ w) is obtained by adding a phase de-

tector and thresholding device at the output. The resulting analog

decoder is shown in Figure 8. (See [15] for further discussion.)

We make no claims for the implementation options proposed above.

The main reason for including a discussion of hardware is to provide

a "physical picture" of the decoding function x. = T( (y B
T)+ w).

10
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IV. Concluding Remarks

It has been shown that any rate lib systematic convolutional code

over GF(p) can be decoded up to its minimum distance with respect to

the decoding constraint length by a one-step threshold decoder. The

major problem in the synthesis of these decoders is to find an effi-

cient algorithm for obtaining a weight vector with the minimum number

of nonzero components. At this point, we do not even have a decent

bound on the number of nonzero components that might be required.

The decoding function)C. = T«Y B
T)+ VI) can be viewed as a

lO

description of a digital threshold decoder which, in the binary case

anyway, can be implemented with conventional logical components. One

possible advantage of the decoder configuration presented here is that

it is not required to be block-synchronized with the received sequence

and therefore might permit faster recovery from a synchronization

erraTa On the other hand, the decoder operates at the received sym-

bol rate rather than at the block rate which could be a disadvantage

in some applications 0

The decoding function x. = T((Y B
T

)4w)can also be viewed as a
lO

description of an analog threshold device that "decodes" the received

sequence y in its unquantized analog form. Eliminating the quantizing

step (or rather moving it from the decoder input to decoder output)

should result in improved performance. In fact there is some reason

to believe that this particular continuous extension of the discrete

decoding function might be optimal in some senseo However, we make no

claims at this time.
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