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Generalized Threshold Replenishment: An
Adaptive Vector Quantization Algorithm
for the Coding of Nonstationary Sources

James E. FowlerMember, IEEE

Abstract—In this paper, we describe a new adaptive-vector- Such algorithms (e.g., [2]-[16]) are calleatlaptive vector
quantization (AVQ) algorithm designed for the coding of non- quantization(AVQ).
stationary sources. This new algorithm, generalized threshold In this paper, we first briefly outline a mathematical defini-

replenishment (GTR), differs from prior AVQ algorithms in that . . . .
it features an explicit, online consideration of both rate and tion of AVQ which describes the structure of AVQ communica-

distortion. Because of its online nature, GTR is more amenable to tion systems as entailed by many algorithms appearing in prior
real-time hardware and software implementation than are many AVQ literature. We follow this background discussion with the

prior AVQ algorithms that rely on traditional batch training  key contribution of this paper, a new AVQ algorithm called
methods. Additionally, as rate-distortion cost criteria are used generalized threshold replenishmd@TR). GTR differs from

in both the determination of nearest-neighbor codewords and the * . . o . .
decision to update the codebook, GTR achieves rate-distortion prior algorithms in that 1) itis an online algorithm that does not

performance superior to that of other AVQ algorithms, partic-  rely on substantial buffering or iterative processing, and 2) it
ularly for low-rate coding. Results are presented that illustrate employs an explicit consideration of both rate and distortion,
low-rate performance surpassing that of other AVQ algorithms  two important quantities that measure the performance of a
for the coding of both an image sequence and an artificial g rce-coding algorithm. Because of its online nature, GTR

nonstationary random process. For the image sequence, it is. ble t I-ti hard d soft imol
shown that 1) most AVQ algorithms achieve distortion much IS more amenable to real-ime haraware and software impie-

lower than that of nonadaptive VQ for the same rate (about 1.5 Mentation than are many prior AVQ algorithms; because of
b/pixel), and 2) GTR achieves performance substantially superior its simultaneous consideration of both rate and distortion, the
to that of the other AVQ algorithms for low-rate coding, being performance of GTR surpasses that of other AVQ algorithms,

the only algorithm to achieve a rate below 1.0 bipixel. particularly for low-rate coding. We illustrate this performance
Index Terms— Adaptive vector quantization, generalized advantage with a survey of experimental results wherein we
threshold replenishment, image-sequence coding. investigate the rate-distortion performance of GTR not only on
an artificially generated nonstationary source, but also on real
data in the form of an image sequence. These experimental
. results include comparisons between GTR, nonadaptive VQ,
OVER_THE!ast_ 20 years, vector quantization (VQ) [1] ha§iher avQ algorithms, and theoretic bounds. These results
received significant attention as a powerful technique faf,,y that GTR achieves rate-distortion performance superior

data compression. VQ is theoretically attractive due to resuls inat of other reported AVQ algorithms, particularly for
from rate-distortion theory that show that VQ is asymptotically, ., (ate coding.

optimal for the coding of a data source whose statistics arer,q organization of this paper is as follows. First, in

stationary _in time. Although VQ has bgen sqccessfully app"%lection I, we briefly review a general framework for AVQ
to the coding of many types of data, including speech, audigg: parallels the traditional theory of nonadaptive VQ. As
images, and video [1], such sources can rarely be assumgd pave covered this background material elsewhere, the
to be stationary in practice, leading to a gap between 1§ ssion here will be brief. Next, in Section I1l, we describe
performance predicted by theory and that actually obtaingd yetail our GTR algorithm. Then, in Section IV, we review

in real implementations. Indeed, the nonstationary nature é%fperimental results, and finally, in Section IV, we make some
sources common in practical applications has promptedyga¢ concluding remarks.

search for more general VQ algorithms that are capable of
adapting to changing source statistics as coding progresses.

I. INTRODUCTION
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disparate VQ techniques (e.g., mean-adaption, gain-adaptithis mathematical definition follows; a more comprehensive
switched-codebook-adaption, and vector-excitation-coding discussion is given elsewhere. [17], [18]. Assume that we
gorithms, as well as finite-state VQ, predictive VQ, antdave anN-dimensional random-vector proce3§,. We define
variable-dimension VQ, all surveyed in [1]) can be considereddaptive vector quantize€)., as follows. LeC* denote a large

in one way or another to be adaptive, many are perhaps bettaiversal codebogkC C R, that is fixed for all timet. We
viewed as collections of multiple nonadaptive source codeiefine a sequence ddcal codebooksC;, such that

coupled with a source model that partitions the input source, .

as it is within this framework that the design of these systems G cc (2)

is usually carried out. It is an idea common to many report%q each timet. We restrict each sef, to be finite. Adap-
algorithms that AVQ properly refers to techniques that dynan‘pﬁ/e vector quantizerQ, is a time-variant mapping from

cally vary the contents of a vQ F:odebqok as coding Progress&.qimensional Euclidean space to the local codebook for time
For this reason, we propose, in Section II-A, a mathemaucLaIi

definition that captures this codebook-updating property and =~

establishes it as the fundamental nature of AVQ. We then Qu: RN = C,. (3)
proceed to Section II-B, wherein we present a communication-

system model for AVQ algorithms. This model reflects th&he output of the adaptive vector quantizer is another random-
structure typical to AVQ algorithms as suggested by o€Ctor process

observations and provides a context in which to discuss issues X=0 (X,) 4)
involved in practical implementation of these algorithms. We bR

note that the discussion that follows in Sections II-A and 1I-B The definition of AVQ given above is in some respects
is intended merely to lay a foundation for the development @éminiscent of the theory of universal source coding [21].
our new GTR algorithm in Section Ill. As we have devote@riefly, given a class of sources, a source coder is said to
other publications [17]-[19] to a more complete examinatiofe universalif it can optimally code each of the sources of
of this background material, the discussion given here will BRe class without knowing beforehand which source is being

brief. coded [21]. Some approaches to universal source coding use
universal codebooks; for example, Neuheffal. [21] describe
A. Mathematical Definition of AVQ a large universal codebook that contains all the optimal block

In this section, we define mathematically the concept of SQurce codes for each of the individual sources of the class.
adaptive vector quantizer. We begin by reviewing the theoR)eSpite the fac_t that lossy un@ver;al source-coding algorithms
of nonadaptive VQ as our development of AVQ parallels ihaye been mainly Of th?met'?a' |ntere§t [2,2]' .the thepry of
We note that nonadaptive VQ has been covered extensivﬂwversal source coding is an |mportant msplratlon.behmd the
elsewhere, most prominently in the comprehensive book H§velopment of several AVQ algorithms. Indeed, if an AVQ
Gersho and Gray [1]. algorithm can be proven to achieve rate-distortion optimality

VQ is the generalization of scalar quantization to highdp’ @ Particular class of sources, it can be considered to be
dimensions [1]. Briefly, nonadaptive VQ consists of a vectét universal algorithm for that class. Such universal results

quantizer,), that maps vectors fron¥-dimensional space to NaVe, in fact, been shown for certain AVQ algorithms (e.g.,
a fixed, finite setC of N-dimensional vectors: i.e., [22]). An example of a practical design procedure for lossy
universal source coding was proposed by Chbal.[23] who

Q: RN - C. (1) implement aweighted universal vector quantiz@VUVQ), a
type of switched-codebook-adaption VQ [1].
Set(C is called thecodebookof the vector quantizer. Despite the fact that AVQ is a possible approach to lossy

Rate-distortion theory [20] states that, for a stationaryniversal source coding [22], the goal of universal source cod-
ergodic random process, there exists a rate-distortion functiamg is fundamentally different from that of AVQ: a universal
R(D), such that, for a given distortiofy, (D) is the lower source code attempts to learn the statistics (which are unknown
bound on the minimum average rate achievable by any codibgt usually assumed to be stationary) of a single source over
method. In essence, the theory shows the existence of a veetdong period of time, while AVQ attempts to compensate for
guantizer that achieves this bound as the dimension of theurce statistics that change over time. Additionally, universal
guantizer becomes infinitely large [20]. coders such as WUVQ [23] possess a structure sufficiently

This theoretic asymptotic optimality of VQ has inspired itslifferent from that of most AVQ algorithms as to make a
use in many applications. However, most sources of practicakaningful experimental comparison between them difficult.
interest are, in reality, nonstationary. A number of AV@or these reasons, a comprehensive comparison between uni-
algorithms (e.g., [2]-[16]) have been introduced to provideersal source coding and AVQ techniques is beyond the scope
more efficient coding in these applications. These AVQ algof this paper.
rithms compensate for the changing source statistics associatethe mathematical definition that we have described in this
with nonstationary sources by periodically updating the V®ection provides a general representation of AVQ; however,
codebook. this definition alone offers little insight into the structure

We have developed a mathematical definition to describecessary for the implementation of AVQ in practice. We
the operation of these AVQ algorithms. A brief summary dhvestigate a suitable practical structure for AVQ next.
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Fig. 1. Model of a communication system using AVQ.
B. Model of Communication Systems Using AVQ codebook coder to identify each local codebook as a subset of

In this section, we address the issues involved in tie- IN this case, the local codebooks used by the decafer,
practical implementation of AVQ algorithms by reviewing £2" be the same as those generated by the codebook selector,

model for communication systems using AVQ. This modé&jt- However, lossless description of local codebooks is not
reflects structure that is, from our observations, commdssible in the case thaf is an infinite set; in this case, the
to practical implementations of AVQ algorithms appearin§°debook coder must necessarily introduce some distortion
in prior literature. The brevity of this discussion requireS© that, in general’, # C,. Naturally, the overall distortion
the omission of many relevant details; a more compleRerformance of the AVQ system will depend on distortion
development can be found in [17] and [19]. Fig. 1 depicts oifptroduced by the vector coder as well as a distortion (the
AVQ communication-system model consisting of time-varyingf@debook-mismatch” distortion) due to the fact that both the
versions of the VQ encoder and VQ decoder used in nonad&pcoder and the decoder use only an approximatigrip the
tive VQ systems with the addition of certain components #§cal codebook(:, designed by the codebook selector.
make the system adaptive; we briefly discuss each of thesd Nis codebook-mismatch effect has been analyzed under
components below. We concentrate on the encoder here asthfe assumptions of a stationary source, a high-resolution
operation of the decoder follows naturally from that of th¥ector coder, and an index coder implementing a fixed-length
encoder. code by Zegeet al. [27]. They have determined that, under
The vector coder maps input vectors to codewords of tffgese assumptions, the overall distortion incurred by an AVQ
current approximationét, of the local codebook. Eor mostSystem can be separated into a distortion associated with the
AVQ algorithms, the vector coder is simply a nearest-neighbggctor coder and local codebook plus the codebook-mismatch
mapping with respect to some distortion measure, althougji$tortion. In this case, the design of an AVQ system may be
a few algorithms [7], [10]-[12] use a more sophisticategartitioned so that the codebook selector and vector coder are
mapping based on both rate and distortion. The output of tesigned independently from the codebook coder.
vector coder, index process, is passed to the index coder. Because of the complexity associated with the design of
The index coder typically uses some form of entropy codirgfficient codebook coders for infinite universal codebooks,
to produce a coding approaching the first-order entropy; of most AVQ literature has not pursued codebook-coder design in
The codebook selector identifies a sequence of local codepth and has instead focused on the codebook selector. We do
books,C,, given the universal codeboak'. Often, the code- likewise here—we describe the codebook selector and vector
book selector implements a modified version of traditiongoder for a new AVQ algorithm, which we compare with
VQ-training algorithms such as the generalized Lloyd alg@lgorithms proposed by other authors. In these experimental
rithm [24], Kohonen learning [25], or entropy-constraine¢omparisons, we use the same simple codebook coder for
VQ (ECVQ) [26]. Finally, the codebook coder describes theach AVQ technique under consideration and ignore any
contents of each local codebook to the decoder via a codiggdebook-mismatch distortion. In this approach, the codebook
S,. This coding is often called “side information” [1], [5], [8] coder implements a uniform scalar quantizer that describes the
as it is considered information “sent on the side” of the maincal-codebook sequence incrementally by coding each vector
channel transmitting VQ indices. added to the local codebook with a fixed number of bits per
In our AVQ communication system, the codebook codetector component. Additionally, a set of indices is sent to
treatsC; as a random source which it codes to produce outputicate which old codewords are to be removed from the local
processs;, following the model proposed by Zegetal.[27]. codebook. It has been argued that rate-distortion inefficiency
If universal codeboolC’* is a finite set, it is possible for the due to such a simple scalar-quantizer codebook coder is
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negligible if side mformapon_ accounts for onIy. a small part given: initial local codebook, Cy
of the total rate [17]. This simple scalar-quantizer codebook initial codeword probabilitics, py(i), for cach codeword ¢; € Co
coder will be used in each AVQ algorithm considered in the rate-distortion parameter, A
. . windowing parameter, w
experimental evaluations conducted later. initial time. £ —
al time, £ =1
Step 1: Calculate initial codeword lengths of the index coder:

lIl. THE GENERALIZED THRESHOLD Honte) = = logy e (9).
REPLENISHMENT ALGORITHM Step 2: Find the distortions between cach codeword ¢; € C;_; and X;:
In this section, we describe GTR, a new AVQ algorithm. 5(cy) = dlc;, Xy).

Calculate the cost function for cach codeword

GTR is an online algorithm that does not require large amountgtep 3
of batch computation, and it employs cost criteria involving
both rate and distortion measures. The GTR algorithm weighs J(e:) = 8(e) + A~ Umw(e).
the distortion performance against the cost in rate in both th&ep 4: Find the winning codeword:
coding of the current source vector and the updating of the . -
. C == arg min . .
local codebook. In general terms, GTR incorporates a rate- Bedan, ¢
distortion-based cost function similar to the one developed.ct the index of ¢* be denoted i+
by Lightstone and Mitra [10], []_]_] into an online framework Step 5: Calculate the distortion improvement and rate cost of a codebook
similar to the AVQ algorithm described by Paul [2] while update, as well as the update cost function:
offering substantial performance improvement over these and
other approaches.
Many approaches to AVQ (e.g., [5], [6], [8]-[11]), operate in
a batch manner: a large number of source vectors are bufferetgp 6: Set C; = C,,. If AJ <0, go to Step 6a. Else, go to Step 6b.
and a computational intense codebook selector trains ove?fepd"’a‘ nSC“_Cd,: ’ff in Cl‘ds‘:“lio “‘;f ‘L“szﬂertxg C“t;opy-mdcd index
. . 17, and a llag mmdicating a codebook update. Go to Step 7.
the source pUﬁer fOI’. one or more Iter_atlons' GTR! on theStep 6b: Send the entropy-coded index 4* and a flag indicating no code-
other hand, is an online algorithm. As in other online AVQ book update.
algorithms (e_g_, [2], [4], [12]), the computational load of GTRStep 7: Estimate the new codeword probabilities:
is spread over time so that a small amount of computation is (i) = 4 P /(@ + 0, P4
performed as each source vector enters the algorithm. Source [wpim1 () + 1] /(w + 1), i = i".
vectors do not need to be buffered, while codebook updates,
. . - . Step 8: Set L = {41 and go to Step 1.
which can occur at any time, are based on quantities estimated
namically. As a result, is more amenable to real-time ig. 2. Basic algorithm.
d lly. A It, GTR ble t -t Fig. 2. Basic GTR algorith
hardware and software implementation than are many other
AVQ algorithms based on traditional batch training methods, - . .
Q alg i . g me current codeword probabilities, assuming that the index coder
In addition, GTR differs from most other AVQ algorithms. . . L
implements variable-length entropy coding. Once the winning

in that the vector coder and the codebook selector are base . Y
codeword is chosen, the codebook selector evaluates a decision

on cost criteria involving both rate and distortion measures, " cee if a codebook update would result in a reduction

. . . . . . u

AVQ algonth ms based on r.ate-d|stort|on criteria are rglatwe{ distortion outweighing the cost in rate associated with the
new. The first such technique was developed by Lightstone .
update. If so, the codebook selector replaces a codeword in

and Mitra [10], [11]. who applied ECVQ [26] to generatethe local codebook with the current source vector.

new codgwords V\.’hICh. update the code_bopk according to o simplify the discussion of this section, we present two
Lagrangian rate-distortion-based cost criterion. A SUbsequerétrsions of the GTR algorithm. In Section lll-A, we describe
approach by 9“""” and' Vetterli [12] invo!<ed a similar ECV. e basic algorithm which Iays.a foundation for' the move-to-
update technique but included mechanisms for the 9rowiadnt variant of the algorithm to follow in Section IlI-B. It
and shrinking of the codebook by adding, splitting, an X

deleting codewords. Contrary to these approaches, traditiongF' been observed that the move-to-front variant has a slight

AVQ algorithms (e.g.. [5], [6], [8], [9], [13]-[16]) usually performance advantage over the basic algorithm while being

focus on the minimization of distortion alone, regardless 8fnly marginally more computationally complex [17].

the consequences incurred in rate performance. Our GTR . .

algorithm, like the other rate-distortion-based AVQ techniqués The Basic Algorithm

[10]-[12], weighs distortion performance against associatedThe basic variant of the GTR algorithm is outlined in

cost in rate to achieve overall rate-distortion performanetetail in Fig. 2. This algorithm operates as follows. The first

superior to that of traditional AVQ algorithms. sequence of steps determines the codeword “closest” to the
The rate-distortion-based cost criteria of the GTR algorithgurrent source vector in a rate-distortion sense. This rate-

operate as follows. The codebook selector chooses a codewdigdortion-based nearest-neighbor mapping operates as follows.

from the current local codebook as a potential coding @first, the codebook selector estimates how many bits the index

the current source vector by considering both the distorti@ader would use to code each index as

between the two vectors and the rate needed to specify the

codeword to the decoder. This rate is estimated from the l(ye(c;)) = —logy pr_1(%) (5)

Ad = —5(c”), Ar = I(Xy),
AT =Ad+A- Ar.
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where v,(-) represents the index coder apd ;(¢) are the When the codebook selector has determined the winning
estimated probabilities of the codewords € C, ;. Thus, codeword,c*, for the current source vector, the new counts
I(v(c;)) estimates the rate needed to transmit indeto are calculated as
the decoder if codeword; were to be chosen by the vector ; .
. . o\ ntfl(l’)v 4 7£ 4 11
coder. Then, the distortiorc;), between the current source (i) = ne_1(i) +1, @=i. (11)
vector, X;, and each codeword;; € C,_1, is calculated. _ _ ’ - _
The codebook selector combines these distortions with thbBe algorithm estimates the new partition probabilities using

previous rate estimates into a cost function using a ratée new codeword counts; i.e.,

distortion parameter); i.e., the cost function/(c; ), for each . n4(4)
c; € Ci1is peli) = = (12)
Z ne(J)
J(c;) = 6(c;) + A U n(cy)). (6) ¢ CCy

for eache; € C,. Plugging (11) into (12) yields
The codebook selector chooses the codewaetd,with the ¢ € €. Plugging (11) i (12) yi

lowest cost function as a potential update vector for the local (4) = { [wpr—1(D)]/(w + 1), i 13)
codebook. We denote the index ¢f as:*. One should note wpr—1(1) +1]/(w+ 1), @ =1*.

that the steps to this point implement the modified nearei\tﬁer the codeword probabilities are updated, the indess

neighbor rule of the well known ECVQ algorlthm_[26]. entropy coded and transmitted to the decoder. The algorithm
In the next steps, the codebook selector decides whetlpg eats for the next source vector

the local codebook needs to be updated by first estimatings ¢ .o continuing to the move-to-front variant, several

the improvement in dlstgrt|on to be gained by a codebo mments on the parameters of the basic GTR algorithm are
update. If the codebook is updated, the current source vector

i b ded with distortion. H £ th deb ‘S order. The parametex given to the algorithm is called the
Wil be coded with zero distortion. However, It the Codebook,o_yistrtion parameteras it controls the tradeoff between
is not updated, the current source vector will be coded with

. . . . _ .o rAte and distortion within the algorithm. The value)oéffects
distortion ofé(c*). Thus, the e_snmated distortion |mprovemenrt\ot only the nearest-neighbor mapping to the current source
due to a codebook update is vector but also the codebook-update decision. Consequently,
A ultimately determines the performance of the algorithm,
in terms of rate and distortion. Indeed, varying traces
The cost in rate of the codebook update is the amount of si?'ét the rate—distortion performance curve (.Jf.th.e. algorithm.
information needed to serii, to the decoder arger_valu'es ofA will focus efforts on minimizing rfa\te
over distortion, whereas smaller values bfwill result in

Ay 2 1(Xy), 8) performgnce vyith a lower distortion and a highgr rate._

The windowing parameterw, controls the relative weight-
wherel(X,) is the number of bits of side information whichind Of the past versus the present in the time-average estimates
would be sent to the decoder in the case of a codebook upd&fethe current codeword probabilities. As we have determined

The codebook selector uses the expected distortion improyat the value ofw is noncritical in the performance of
ment and the expected rate cost in a rate-distortion-badBg algorithm [17], we will usew = 100 throughout the

Ad 2 —§(c). (7)

update cost function, defined as exp_erimentgl results presented later.
Finally, since the codebook selector uses the current source
AJ 2 Ad+ N Ar (9) Vector itself to replace codewords in the current local code-

book, the universal codebook for the GTR algorithm is the

where \ is the rate-distortion parameter given to the GTR-dimensional source alphabe®™. In the experimental
algorithm. If AJ < 0, then the expected improvement in distesults presented later in Section IV, we consider two types
tortion outweighs the expected cost in rate, and the codebdg¥ksources: an artificial nonstationary random process and
selector insertsX, into the local codebook by replacing: real image-sequence data. The artificial random process is
with X,. The codebook coder transmits to the decoder a flggntinuously distributed. Thus, the universal codebook is
indicating whether the codebook was updated. Additionally, ifffinite in this case, and the codebook coder must implement
the codebook was updated, the codebook coder sXndss lossy coding of the source vector for a codebook update.
side information. For this codebook coder, we simply scalar-quantize each
The final step of the algorithm is to estimate the ne&omponent of the updating source vector to the 9 b. These 9 b
codeword probabilities using a time average. Our method &f€ chosen, in advance, to be the nine most significant bits of
estimation assumes that the source possesses some degrétegfynamic range of the (finite-length) process currently being
local stationarity; i.e., the statistics over a window.o$ource €ncoded. Thus, for the artificial random process, the length of
vectors are approximately stationary. The algorithm estimai®§ representation aX, sent to the decoder KX;) = 9N

how many of the pasts source vectors have mapped tdits. Inthe case of the image-sequence data, which is originally
codewordc; € C,_; as represented with 256 gray levels, the universal codebook is a

finite set 0f256™ vectors. Thus, the codebook coder is capable
m—1(t) = w - pr1 (4). (10) of losslessly transmitting the sequence of local codebooks to
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Step 6: Set C; = C,—1. If AJ < 0, go to Step 6a. Else, go to Step 6b.
Step 6a: Tnsert X, in the front of C,. Increment the indices of all the
other codewords. Delete the codeword with the highest index. Send to the
decoder X and a flag indicating a codebook update. Go to Step 7.

Step 6b: Send the entropy-coded index i* and a flag indicating no code-
book update. Move ¢* to the front of Cy.

Step 7: Estimate the new codeword probabilitics. Let K be the size of the
local codebook; ie., K =|C;|. T AJ >0, or i* = K, go to Step 7a. Else,
20 to Step Th.

Step 7a: Estimate the new codeword probabilities as:

o {[pr ()] /(w0 + 1),
Jwpe—1 () + 1] /(w + 1),

i # 1F,

i =14

Rearrange the indices of the probabilities to match the move-to-front rear-
rangement of Cy; i.e., move pg(2*) to index 1, shifting all the other proba-
bilities. Go to Step 8.

Step 7b: Form the new codeword counts as:

P4 K
i=i

wpe—1(%)
ng(1) = ¢ [wpe1 () + 1] /2,
i=K.

ny(i*),

Calculate the new codeword probabilities as:

N ny(2)
Puli) = Z]gjgk m(f)

1415

to-front insertion of X; necessitates a modified calculation
of the codeword probabilities. In this case, the codebook
selector “splits” the probability of partition* between the
new codewordX;, andc*. Fig. 3 gives the details of how this
probability “split” is accomplished. After the new codeword
probabilities are calculated, they are rearranged so as to match
the move-to-front rearrangement &f.

The move-to-front technique is a heuristic that has been
shown to aid lossless coding techniques in achieving a lower
rate [28]; other similar lossless techniques include [29]. Move-
to-front codebook reordering has also been proposed to im-
plement LRU replacement in other AVQ algorithms [3], [4].
The additional computational cost of implementing a move-
to-front technique in AVQ algorithms is negligible as the
move-to-front process involves mainly simple index shuffling.
However, the LRU replacement strategy of a move-to-front
AVQ algorithm has the advantage that the index of the LRU
codeword does not need to be transmitted to the decoder. In the
case of GTR, move-to-front replacement has been observed to
contribute a slight improvement in rate-distortion performance
over that of the basic algorithm [17]. Consequently, we will

use only the move-to-front variant of the GTR algorithm in
the experimental evaluations presented in the next section.

Rearrange the indices of the probabilities to match the move-to-front rear-
rangement of Cy; i.e., move p,(K) to index 1, shifting all the other proba-
bilities.

Fig. 3. Move-to-front GTR algorithm. These steps replace the corresponding

IV. EXPERIMENTAL RESULT
steps in the basic GTR algorithm of Fig. 2. SULTS

We now survey experimental results obtained for the GTR

he decod h . | ible impl . algorithm. We investigate the rate-distortion performance of
the decoder. There exist several possible implementationscofp o an artificial nonstationary random process as well

such a lossless codebook coder [11], [17], [27]; the Simptlales on a real image sequence. We make comparisons between

technique we use here is to send each updated vector dirqu){-.R' nonadaptive VQ, and other previously published AVQ
That is, X; haslog, 256 = 8 b per vector component, andalgorithms

the length of the representation &, sent to the decoder is First, in Section IV-A, we investigate the rate-distortion

[(X;) = 8N b. More complicated co_ding schemes for lossyerformance of the GTR algorithm on a Wiener process, one
and lossless codebook coders are discussed in [11], [17], dthe few nonstationary random processes with a known
[27]. rate-distortion function (see [30]). Next, in Section IV-B, we

compare the rate-distortion performance of the GTR algorithm
against that of the nonadaptive VQ for an image sequence.

B. The Move-to-Front Variant of the Algorithm
. . . Finally, in Section IV-C, we compare the performance of
In the case of a codebook update in the basic GTR algorit R to that of other AVQ algorithms on both the Wiener-

presented above, the codebook selector adds the current source ; : . .
vector to the local codebook by replacing the codewdgrthat process 'and image-sequence data described in the previous
. . ) ; two sections.
was determined to be the closest in a rate-distortion sense.
this section, we describe tmove-to-frontGTR algorithm. In
this variant of the algorithm, codewords are added to the loc
codebook in a move-to-front fashion, effectively replacing In this section, we investigate the rate-distortion perfor-
least-recently-used (LRU) codewords. The move-to-front GTiRance of GTR on a Wiener process. Berger [30] has shown
algorithm replaces steps 6 and 7 of the basic algorithm (Fig. tBat the rate-distortion function of this nonstationary process
with the steps shown in Fig. 3 and operates as follows.  exists and has obtained an easily evaluated closed-form ex-
If the codebook is not updated, the codebook selector simgdyession for it. In the results presented here, we evaluate the
moves c* to the front (index number 1) of the codebookrate-distortion performance of the GTR algorithm against the
However, if the codebook is updated, i.e.,AJ < 0, the theoretic bound given by this expression.
codebook selector places current source vekpin the front In this section, we consider a Wiener process with variance
of C,. In this case, all the other codewords are shifted to tle& = 1. All results are averaged over five trials; i.e., we use
next highest index, and the one with the highest index (tlzetesting data set consisting of five different instances of the
LRU codeword) is deleted. Wiener process. Each instance is 80000 samples long. We
As long as the codebook is not updated, the estimation wde a sixth instance of the Wiener process to train an initial
the new codeword probabilities is the same as in the basical codebook using the generalized Lloyd algorithm (see
algorithm. However, in the case of codebook update, the moy24]). We use a uniform scalar quantizer for the codebook

Wiener-Process Results
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Fig. 5. Side information for the GTR algorithm using various codeword dimensions. In each plot, we use a local codebook of 256 codewords and a windowing
parameter ofo = 100. (a) The amount of side information due to codebook updates expressed as a percentage of the total rate reported in Fig. 4(b) (does not

include side information due to flags). (b) The frequency of codebook updates expressed as a percentage of the number of vectors coded.

coder; i.e., for each vector transmitted as side information, thedebook size of 256 vectors for the remaining results of this
codebook coder sesdd b per vector component. The totakection.
rate reported accounts for this update-vector side information,In Fig. 4(b), we plot the rate-distortion performance of GTR
the bits used as update flags, and the first-order entropyfof a fixed local-codebook size and various vector dimensions.
the index process output from the vector coder; the rate Fsom rate-distortion theory, we would expect that increasing
expressed as the average number of bits per original soutite vector dimension would yield performance increasingly
symbol. We present results only for the move-to-front variastose to the rate-distortion function. However, for practical
of the GTR algorithm, and we fix the windowing parametdmplementations of AVQ, such as GTR, the burden in rate
w at 100. due to side information varies with vector dimension. As
In Fig. 4(a), we show the rate-distortion performance odllustrated in Fig. 4(b), when the distortion is high, increasing
GTR for a fixed vector dimension and various local-codebodke vector dimension yields performance increasingly close
sizes. We see from this figure that increasing the locab the theoretic rate-distortion curve as expected. However,
codebook size yields performance closer to the theoretic ratee see from the same figure that, when the distortion is low,
distortion curve, particularly in the low-rate, low-distortionthe opposite is true; that is, using smaller vector dimensions
area of the curve (the so-called “knee” of the curve). Howevejields performance closer to the rate-distortion curve. This
the fact that the 128- and 256-codeword curves are coincideffiect is explained in Fig. 5. Fig. 5(a) plots the amount of
suggests that there is a limit to the increase in performanside information due to codebook updates as a percentage
obtainable by increasing the codebook size. We use a local-the total rate for the corresponding data in Fig. 4(b). In
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) (h)

Fig. 6. Original image sequence. (a)—(d) Four frames of the Miss America sequence. (e)-(h) Four frames of the garden sequence.
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Fig. 7. GTR versus nonadaptive VQ for the image sequence using 4-D vecter(flles) and a local codebook of 256 codewords. The GTR algorithm
operates at approximately the same rate as the nonadaptive vector quantizeA whelt.

Fig. 5(b), the frequency of codebook updates is plotted assame initial local codebook used by GTR, and the rate is the
percentage of the number of vectors coded. From Fig. 5(fiyst-order entropy of the VQ indices, divided by the vector
we see that an increasing number of codebook updates diraension. For GTR, we vary the paramefeto obtain the
needed to achieve a lower distortion for each vector dimensigate-distortion performance curve. We show quantized image
However, when the vector dimension is small, each codewadquences produced at the same average rate by GTR and
update needs fewer bits. Therefore, for low distortion levelspnadaptive VQ in Figs. 8 and 9, respectively.
the side information accounts for less of the total rate whenWe see from Fig. 7 that GTR achieves much better rate-
the vector dimension is small than when the vector dimensidrstortion performance than nonadaptive VQ when the per-
is large, as verified in Fig. 5(a). The algorithm consequentfgrmance over the entire process is considered. However,
achieves better rate-distortion performance at low distortiavhen we visually compare the image quality at equal rates
levels with smaller vector dimensions. We now continue oy examining Figs. 8 and 9, we observe that nonadaptive
the next section wherein we investigate the performance 8Q performs slightly better on the first four frames of the
GTR on real image-sequence data. sequence, while GTR is substantially better on the last four
frames of the sequence. This subjective observation is quantita-
tively verified in Fig. 10, where we plot the average distortion
In this section, we compare the rate-distortion performaneed rate obtained for each frame. Since the nonadaptive vector
of the GTR algorithm against that of nonadaptive VQ for thguantizer is using a codebook trained on data very similar to
coding of the image sequence shown in Fig. 6. This sequertbat of the first four frames of the sequence, its performance
consists of eight image frames: four frames from the image quite good on those early frames. However, since the
sequence “Miss America” followed by four frames from th@onadaptive-VQ codebook has very few codewords suited
“garden” sequence. Each image is grayscale with 256 levéds coding the latter frames of the sequence, poor distortion
and has a resolution of 352 240 pixels. To produce an initial performance is observed for the nonadaptive vector quantizer
local codebook for the GTR algorithm, we use an additionah these latter frames. On the other hand, the adaptive nature
frame from the Miss America sequence as a training data sebfoGTR allows it to increase the rate on the latter frames
the generalized Lloyd algorithm. This initial codebook is alsmm order to maintain roughly even distortion performance
used as the fixed codebook for the nonadaptive-VQ resultsover the entire sequence. Additionally, we observe that GTR
In Fig. 7, we plot the rate-distortion performance of norpreserves edges and other areas of high detail much better than
adaptive VQ versus that of GTR for the image sequenoenadaptive VQ, as it is these areas that are likely to induce a
using a local-codebook size of 256 codewords and fouredebook update within the GTR algorithm. Since these areas,
dimensional (4-D) vectors. For the nonadaptive-VQ resulishich compose a majority of the regions in the latter frames of
the VQ codebook used over the entire image sequence is the sequence, are crucial to perceptual image quality, not only

B. Image-Sequence Results
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Fig. 8. Quantized image sequence for GTR for 4-D vectorg @tiles) and a local codebook of 256 codewordis=£ 16, MSE = 38.6, rate= 1.522 b/pixel).
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Fig. 9. Quantized image sequence for nonadaptive VQ for 4-D vectors @ tiles) and a local codebook of 256 codewords (MSE234.9, rate

1.487 blpixel).
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Fig. 11. Rate-distortion performance for prominent AVQ algorithms [2], [4]-[6], [8] using 4-D vectors and a local-codebook size of 256 vectoBs. The L
and LR regions are indicated with cross hatching. (a) Wiener process, the theoretic rate-distortion function is indicated by the dashed Igeeséojuknae,
the symbol x represents the operation point of the nonadaptive vector quantizer for the same data.

does GTR have a much better empirically measured averggaformance; the natural tradeoff between rate and distortion
distortion, it also achieves better subjective performance asually implies a high distortion for this LR region. In general,
the latter frames of the sequence when compared to thR-region performance is of importance in applications whose
nonadaptive vector quantizer operating at the same rate. available rate is severely limited; this is the case for many
practical applications of current interest, such as network and
C. Comparisons to Prior AVQ Algorithms wireless communications. The second region of interest is the

We now compare the performance of GTR to that of severa r€gion, which corresponds to high-fidelity performance.
previously published AVQ algorithms [2], [4]-[6], [8]. We noteCGenerally, performance in this region will require a high
that, although numerous AVQ algorithms have appeared fd€- Although LR performance is usually considered more
previous literature, many are quite similar from a theoreti@'Portant, LD performance is of interest in certain scientific
perspective; consequently, we limit discussion here to oryd medical applications that perform measurements and cal-
those prior algorithms that have either historical or innovativ@llations on coded data and, consequently, need to maintain
prominence in AVQ literature. the integrity of the original data source. We note that we must

In the results of this section, we plot performance curvéstablish boundaries for the LR and LD regions subjectively
on the rate-distortion plane. To aid in characterizing geneff@r each individual application.
performance properties, it is convenient to identify two regions We first consider performance on the Wiener process from
of the rate-distortion plane that are of particular interesgection IV-A. In Fig. 11(a), we show the rate-distortion per-
the low-rate (LR) region and the low-distortion (LD) regionformance curves for GTR and several prominent AVQ al-
The first of these regions corresponds to high-compressigarithms [2], [4]-[6] on this Wiener-process data. Although
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Fig. 12. Summary of experimental results for the Wiener process. For the LR performance, we plot the rates from Fig. 11(a) for each algorithm for a MSE
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we plot the cumulative processing time for each algorithm divided by that of nonadaptive VQ; the parameters for each algorithm were adjusted to yield
performance on the “knee” of the corresponding rate-distortion curve in Fig. 11(a). In each plot, the smaller the bar, the better is the performance.

performances for other vector dimensions and codebook sizetn Fig. 11(b), more distinction between the AVQ algorithms
were investigated (see [17]), the only results considered héseobserved as operation moves to lower rates. Particularly,
are for 4-D vectors and a local-codebook size of 256 codseveral algorithms were unable to achieve rates in the LR
words. Fig. 12 summarizes the LR and LD performance assegion (below about 1.5 b/pixel). Of those algorithms that were
ciated with each of the AVQ algorithms under consideratioable to produce a coding at a rate below 1.25 b/pixel, only
To determine LR performance, we select a value of distortidBTR was able to maintain a monotonic decrease in rate for
for which all the rate-distortion curves in Fig. 11(a) lie inncreasing distortion. As a consequence, GTR was the only
the LR region. We then measure the rate of each algorithatgorithm to achieve a coding at a rate less than 1.0 b/pixel.
for that value of distortion and plot it in Fig. 12 as the It is clear from Fig. 11(b) that conclusions similar to those
measure of LR performance. Similarly for LD performanceéllustrated in Fig. 12 may also be drawn for the image-
we choose a rate for which the rate-distortion curves all I@equence data. That is, in general, GTR achieves LD per-
in the LD region and then measure the distortion of eadbrmance comparable to that of the better algorithms in that
algorithm for that rate. On examining Fig. 12, we see thatgion. More importantly however, the LR performance of
GTR achieves performance better than that of the other AV@TR is consistently superior to that of the other algorithms.
algorithms in both the LR and LD regions. In fact, in the A comparison of execution times of AVQ algorithms is
LR region, the GTR algorithm achieves performance almasicluded in Fig. 12. These times are presented as ratios to
50% better than that of the next best algorithms (the Paul [@le execution time of nonadaptive VQ on the same data
and Wang—Shende—Sayood [4] algorithms). In the LD regiofthe Wiener-process data). These execution-time figures are
GTR achieves performance nearly equivalent to that of th@ended to give merely a rough estimate of the relative
Paul and Wang—Shende—Sayood algorithms, but substantialheed of the algorithms rather than a thorough complexity
better than that of the other two algorithms considered. = comparison as times will vary somewhat for different local-
Superior performance is also observed for GTR on tlmdebook sizes, vector dimensions, and algorithm-parameter
image sequence from Section IV-B. In Fig. 11(b), we showalues. From Fig. 12, we see that GTR is just over twice as
the rate-distortion performance curves for GTR and severstly in execution time as nonadaptive VQ.
prominent AVQ algorithms [2], [4]-[6], [8] on this image- Before making some concluding remarks in the next section,
sequence data. We have also indicated on the plot LR and @ note that two prominent AVQ algorithms, those by Light-
regions for this data. We see that most of the AVQ algorithnstone and Mitra [10], [11] and Chan and Vetterli [12], were
have distortion performance significantly better than that ofmitted from the experimental comparisons of this section.
nonadaptive VQ when compared at the same rate. That is;Tae reason for the omission of the Lightstone—Mitra algorithm
a rate equal to that of the nonadaptive vector quantizer (abowds that this algorithm suffered from “dormant” codewords.
1.5 b/pixel), most of the AVQ algorithms achieve an MSE iThis effect, due to the batch application of ECVQ training,
the LD region (MSE of 50 or less), which results in very littlehas a tendency to reduce the size of the local codebook
visual distinction between their quantized images. Howeven, a single vector because of the accumulation of “empty”
all the AVQ algorithms achieve substantially less distortiopartition regions. As the Lightstone—Mitra algorithm provides
than nonadaptive VQ at this rate. no method for the “reactivation” of these dormant codewords,
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its performance has not been competitive with that of the othier each application in advance of coding. There would be
AVQ algorithms in our simulations [17]. Consequently, resultsonsiderable use for techniques to provide online, dynamic
for the Lightstone—Mitra algorithm were not considered herestimations for an “optimal” setting for this parameter. For
Chan and Vetterli [12] introduced mechanisms for addingxample, it would be useful to have an online method of
splitting, and deleting codewords to an ECVQ-based algorithadjustingX so as to automatically choose a particular operating
similar to that of Lightstone and Mitra. These additiongboint, such as operation in the LR region or on the knee of the
components are a promising solution to the dormant-codewaede-distortion curve. Other AVQ algorithms could also benefit
problem faced by the Lightstone—Mitra algorithm; howeveffom similar dynamic parameter estimations.
the brevity of [12] necessitated the omission of many rele- Second, it would be useful to have some measure of local
vant implementation details. Thus, an implementation of tlsationarity since GTR, like most AVQ algorithms, relies, to
Chan-Vetterli algorithm, as well as its experimental evalugome degree, on an assumption of slowly varying source
tion, was not possible for our investigations. statistics. An estimation of the length of time over which
source statistics are approximately stationary would have
utility in dynamic estimation methods fok as mentioned
V. CONCLUSIONS above. More immediately, it would serve as a good basis for

In this paper, we have presented GTR, a new AVQ dlbe static setting of the windowing parameter
gorithm. GTR differs from other AVQ algorithms in that, Finally, we recommend, for some applications, a more thor-
rather than requiring large amounts of batch computation afdgh consideration of the tradeoff involved between the code-
sizeable source buffering, GTR is an online algorithm. GTRook coder and the vector coder. As mentioned in Section II-
distributes its computational load over time so that a smdd it has been argued that the simple scalar quantizer we
amount of computation is performed for each source vectéise for the codebook coder of GTR is sufficient when side
GTR is consequently more amenable to real-time hardware dAtPrmation accounts for only a small part of the total rate [17].
software implementation than are many other AVQ algorithmAs illustrated in Fig. 5(a), this assumption appears to hold for
In addition, GTR is one of the few AVQ algorithms toLR coding. However, because performance in the LD region
employ cost criteria involving both rate and distortion. Agppears to require a sizeable amount of side information,
a result, GTR achieves rate-distortion performance superfhe investigation of other, more complex codebook coders is
to that of other AVQ algorithms, the majority of whichperhaps warranted for GTR systems designed to operate in
focus on the minimization of distortion alone regardless §is region.
resulting consequences in rate. In particular, we have seen thats multimedia applications such as video-on-demand and
GTR consistently achieves superior performance for low-rai@leconferencing gain in prevalence, they are expected to in-
coding. creasingly burden available communication resources. Future

We have presented here a body of experimental results ¥isual applications will require fast, online coding algorithms
vestigating the performance of GTR on a real image sequeriggenable to real-time hardware as well as software implemen-
as well as on a Wiener process, an artificial nonstationdgtion. Additionally, as there is increasing interest in providing
random process. These experimental results included comggg@l-time communication over network and wireless channels,
isons between GTR, nonadaptive VQ, other AVQ algorithmB8ew coding techniques will be expected to deliver low-rate
and theoretic bounds (i.e., the rate-distortion function of tHeerformance suited to the severe rate constraints inherent to
Wiener process). For the Wiener process, we saw that GHFese asynchronous channels. Because of its online nature and
achieved rate-distortion performance closer to the theore$igperior low-rate performance, the GTR algorithm proposed
rate-distortion function than did other AVQ algorithms. Parn this paper has significant potential for the incorporation of
ticularly superior performance in the low-rate, or LR, regioAVQ into practical, low-rate coding techniques at the heart of
of the rate-distortion plane was observed. Similar results weftgure communication systems.
obtained for the image-sequence data; the performance of GTR
consistently surpassed that of other AVQ algorithms by a wide ACKNOWLEDGMENT
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