
1410 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 10, OCTOBER 1998

Generalized Threshold Replenishment: An
Adaptive Vector Quantization Algorithm
for the Coding of Nonstationary Sources

James E. Fowler,Member, IEEE

Abstract—In this paper, we describe a new adaptive-vector-
quantization (AVQ) algorithm designed for the coding of non-
stationary sources. This new algorithm, generalized threshold
replenishment (GTR), differs from prior AVQ algorithms in that
it features an explicit, online consideration of both rate and
distortion. Because of its online nature, GTR is more amenable to
real-time hardware and software implementation than are many
prior AVQ algorithms that rely on traditional batch training
methods. Additionally, as rate-distortion cost criteria are used
in both the determination of nearest-neighbor codewords and the
decision to update the codebook, GTR achieves rate-distortion
performance superior to that of other AVQ algorithms, partic-
ularly for low-rate coding. Results are presented that illustrate
low-rate performance surpassing that of other AVQ algorithms
for the coding of both an image sequence and an artificial
nonstationary random process. For the image sequence, it is
shown that 1) most AVQ algorithms achieve distortion much
lower than that of nonadaptive VQ for the same rate (about 1.5
b/pixel), and 2) GTR achieves performance substantially superior
to that of the other AVQ algorithms for low-rate coding, being
the only algorithm to achieve a rate below 1.0 b/pixel.

Index Terms— Adaptive vector quantization, generalized
threshold replenishment, image-sequence coding.

I. INTRODUCTION

OVER THE last 20 years, vector quantization (VQ) [1] has
received significant attention as a powerful technique for

data compression. VQ is theoretically attractive due to results
from rate-distortion theory that show that VQ is asymptotically
optimal for the coding of a data source whose statistics are
stationary in time. Although VQ has been successfully applied
to the coding of many types of data, including speech, audio,
images, and video [1], such sources can rarely be assumed
to be stationary in practice, leading to a gap between the
performance predicted by theory and that actually obtained
in real implementations. Indeed, the nonstationary nature of
sources common in practical applications has prompted a
search for more general VQ algorithms that are capable of
adapting to changing source statistics as coding progresses.

Manuscript received November 30, 1996; revised July 29, 1997. This
work was supported by an AT&T Ph.D. Scholarship. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Antonio Ortega.

The author was with the Department of Electrical Engineering, The Ohio
State University, Columbus, OH 43210 USA. He is now with the Depart-
ment of Electrical and Computer Engineering, Mississippi State University,
Starkville, MS 39762 USA (e-mail: fowler@ece.msstate.edu).

Publisher Item Identifier S 1057-7149(98)06861-4.

Such algorithms (e.g., [2]–[16]) are calledadaptive vector
quantization(AVQ).

In this paper, we first briefly outline a mathematical defini-
tion of AVQ which describes the structure of AVQ communica-
tion systems as entailed by many algorithms appearing in prior
AVQ literature. We follow this background discussion with the
key contribution of this paper, a new AVQ algorithm called
generalized threshold replenishment(GTR). GTR differs from
prior algorithms in that 1) it is an online algorithm that does not
rely on substantial buffering or iterative processing, and 2) it
employs an explicit consideration of both rate and distortion,
two important quantities that measure the performance of a
source-coding algorithm. Because of its online nature, GTR
is more amenable to real-time hardware and software imple-
mentation than are many prior AVQ algorithms; because of
its simultaneous consideration of both rate and distortion, the
performance of GTR surpasses that of other AVQ algorithms,
particularly for low-rate coding. We illustrate this performance
advantage with a survey of experimental results wherein we
investigate the rate-distortion performance of GTR not only on
an artificially generated nonstationary source, but also on real
data in the form of an image sequence. These experimental
results include comparisons between GTR, nonadaptive VQ,
other AVQ algorithms, and theoretic bounds. These results
show that GTR achieves rate-distortion performance superior
to that of other reported AVQ algorithms, particularly for
low-rate coding.

The organization of this paper is as follows. First, in
Section II, we briefly review a general framework for AVQ
that parallels the traditional theory of nonadaptive VQ. As
we have covered this background material elsewhere, the
discussion here will be brief. Next, in Section III, we describe
in detail our GTR algorithm. Then, in Section IV, we review
experimental results, and finally, in Section IV, we make some
brief concluding remarks.

II. A DAPTIVE VECTOR QUANTIZATION

In this section, we define and describe AVQ within a general
framework. This discussion summarizes detailed observations
[17] of a number of previously published AVQ algorithms.
We begin by proposing a mathematical definition of AVQ.
To date, there has been a certain imprecise use of the word
“adaptive” in VQ literature, resulting in confusion as to exactly
what is entailed by an AVQ algorithm. Although a number of

1057–7149/98$10.00 1998 IEEE

FOWLER: GENERALIZED THRESHOLD REPLENISHMENT 1411

disparate VQ techniques (e.g., mean-adaption, gain-adaption,
switched-codebook-adaption, and vector-excitation-coding al-
gorithms, as well as finite-state VQ, predictive VQ, and
variable-dimension VQ, all surveyed in [1]) can be considered,
in one way or another to be adaptive, many are perhaps better
viewed as collections of multiple nonadaptive source coders
coupled with a source model that partitions the input source,
as it is within this framework that the design of these systems
is usually carried out. It is an idea common to many reported
algorithms that AVQ properly refers to techniques that dynami-
cally vary the contents of a VQ codebook as coding progresses.
For this reason, we propose, in Section II-A, a mathematical
definition that captures this codebook-updating property and
establishes it as the fundamental nature of AVQ. We then
proceed to Section II-B, wherein we present a communication-
system model for AVQ algorithms. This model reflects the
structure typical to AVQ algorithms as suggested by our
observations and provides a context in which to discuss issues
involved in practical implementation of these algorithms. We
note that the discussion that follows in Sections II-A and II-B
is intended merely to lay a foundation for the development of
our new GTR algorithm in Section III. As we have devoted
other publications [17]–[19] to a more complete examination
of this background material, the discussion given here will be
brief.

A. Mathematical Definition of AVQ

In this section, we define mathematically the concept of an
adaptive vector quantizer. We begin by reviewing the theory
of nonadaptive VQ as our development of AVQ parallels it.
We note that nonadaptive VQ has been covered extensively
elsewhere, most prominently in the comprehensive book by
Gersho and Gray [1].

VQ is the generalization of scalar quantization to higher
dimensions [1]. Briefly, nonadaptive VQ consists of a vector
quantizer, , that maps vectors from -dimensional space to
a fixed, finite set of -dimensional vectors; i.e.,

(1)

Set is called thecodebookof the vector quantizer.
Rate-distortion theory [20] states that, for a stationary,

ergodic random process, there exists a rate-distortion function,
, such that, for a given distortion , is the lower

bound on the minimum average rate achievable by any coding
method. In essence, the theory shows the existence of a vector
quantizer that achieves this bound as the dimension of the
quantizer becomes infinitely large [20].

This theoretic asymptotic optimality of VQ has inspired its
use in many applications. However, most sources of practical
interest are, in reality, nonstationary. A number of AVQ
algorithms (e.g., [2]–[16]) have been introduced to provide
more efficient coding in these applications. These AVQ algo-
rithms compensate for the changing source statistics associated
with nonstationary sources by periodically updating the VQ
codebook.

We have developed a mathematical definition to describe
the operation of these AVQ algorithms. A brief summary of

this mathematical definition follows; a more comprehensive
discussion is given elsewhere. [17], [18]. Assume that we
have an -dimensional random-vector process,. We define
adaptive vector quantizer, , as follows. Let denote a large
universal codebook, , that is fixed for all time . We
define a sequence oflocal codebooks, , such that

(2)

at each time . We restrict each set to be finite. Adap-
tive vector quantizer is a time-variant mapping from

-dimensional Euclidean space to the local codebook for time
; i.e.,

(3)

The output of the adaptive vector quantizer is another random-
vector process

(4)

The definition of AVQ given above is in some respects
reminiscent of the theory of universal source coding [21].
Briefly, given a class of sources, a source coder is said to
be universal if it can optimally code each of the sources of
the class without knowing beforehand which source is being
coded [21]. Some approaches to universal source coding use
universal codebooks; for example, Neuhoffet al. [21] describe
a large universal codebook that contains all the optimal block
source codes for each of the individual sources of the class.
Despite the fact that lossy universal source-coding algorithms
have been mainly of theoretical interest [22], the theory of
universal source coding is an important inspiration behind the
development of several AVQ algorithms. Indeed, if an AVQ
algorithm can be proven to achieve rate-distortion optimality
for a particular class of sources, it can be considered to be
a universal algorithm for that class. Such universal results
have, in fact, been shown for certain AVQ algorithms (e.g.,
[22]). An example of a practical design procedure for lossy
universal source coding was proposed by Chouet al. [23] who
implement aweighted universal vector quantizer(WUVQ), a
type of switched-codebook-adaption VQ [1].

Despite the fact that AVQ is a possible approach to lossy
universal source coding [22], the goal of universal source cod-
ing is fundamentally different from that of AVQ: a universal
source code attempts to learn the statistics (which are unknown
but usually assumed to be stationary) of a single source over
a long period of time, while AVQ attempts to compensate for
source statistics that change over time. Additionally, universal
coders such as WUVQ [23] possess a structure sufficiently
different from that of most AVQ algorithms as to make a
meaningful experimental comparison between them difficult.
For these reasons, a comprehensive comparison between uni-
versal source coding and AVQ techniques is beyond the scope
of this paper.

The mathematical definition that we have described in this
section provides a general representation of AVQ; however,
this definition alone offers little insight into the structure
necessary for the implementation of AVQ in practice. We
investigate a suitable practical structure for AVQ next.

1412 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 10, OCTOBER 1998

Fig. 1. Model of a communication system using AVQ.

B. Model of Communication Systems Using AVQ

In this section, we address the issues involved in the
practical implementation of AVQ algorithms by reviewing a
model for communication systems using AVQ. This model
reflects structure that is, from our observations, common
to practical implementations of AVQ algorithms appearing
in prior literature. The brevity of this discussion requires
the omission of many relevant details; a more complete
development can be found in [17] and [19]. Fig. 1 depicts our
AVQ communication-system model consisting of time-varying
versions of the VQ encoder and VQ decoder used in nonadap-
tive VQ systems with the addition of certain components to
make the system adaptive; we briefly discuss each of these
components below. We concentrate on the encoder here as the
operation of the decoder follows naturally from that of the
encoder.

The vector coder maps input vectors to codewords of the
current approximation, , of the local codebook. For most
AVQ algorithms, the vector coder is simply a nearest-neighbor
mapping with respect to some distortion measure, although
a few algorithms [7], [10]–[12] use a more sophisticated
mapping based on both rate and distortion. The output of the
vector coder, index process, is passed to the index coder.
The index coder typically uses some form of entropy coding
to produce a coding approaching the first-order entropy of.

The codebook selector identifies a sequence of local code-
books, , given the universal codebook . Often, the code-
book selector implements a modified version of traditional
VQ-training algorithms such as the generalized Lloyd algo-
rithm [24], Kohonen learning [25], or entropy-constrained
VQ (ECVQ) [26]. Finally, the codebook coder describes the
contents of each local codebook to the decoder via a coding,

. This coding is often called “side information” [1], [5], [8]
as it is considered information “sent on the side” of the main
channel transmitting VQ indices.

In our AVQ communication system, the codebook coder
treats as a random source which it codes to produce output
process , following the model proposed by Zegeret al. [27].
If universal codebook is a finite set, it is possible for the

codebook coder to identify each local codebook as a subset of
. In this case, the local codebooks used by the decoder,,

can be the same as those generated by the codebook selector,
. However, lossless description of local codebooks is not

possible in the case that is an infinite set; in this case, the
codebook coder must necessarily introduce some distortion
so that, in general, . Naturally, the overall distortion
performance of the AVQ system will depend on distortion
introduced by the vector coder as well as a distortion (the
“codebook-mismatch” distortion) due to the fact that both the
encoder and the decoder use only an approximation,, to the
local codebook, , designed by the codebook selector.

This codebook-mismatch effect has been analyzed under
the assumptions of a stationary source, a high-resolution
vector coder, and an index coder implementing a fixed-length
code by Zegeret al. [27]. They have determined that, under
these assumptions, the overall distortion incurred by an AVQ
system can be separated into a distortion associated with the
vector coder and local codebook plus the codebook-mismatch
distortion. In this case, the design of an AVQ system may be
partitioned so that the codebook selector and vector coder are
designed independently from the codebook coder.

Because of the complexity associated with the design of
efficient codebook coders for infinite universal codebooks,
most AVQ literature has not pursued codebook-coder design in
depth and has instead focused on the codebook selector. We do
likewise here—we describe the codebook selector and vector
coder for a new AVQ algorithm, which we compare with
algorithms proposed by other authors. In these experimental
comparisons, we use the same simple codebook coder for
each AVQ technique under consideration and ignore any
codebook-mismatch distortion. In this approach, the codebook
coder implements a uniform scalar quantizer that describes the
local-codebook sequence incrementally by coding each vector
added to the local codebook with a fixed number of bits per
vector component. Additionally, a set of indices is sent to
indicate which old codewords are to be removed from the local
codebook. It has been argued that rate-distortion inefficiency
due to such a simple scalar-quantizer codebook coder is

FOWLER: GENERALIZED THRESHOLD REPLENISHMENT 1413

negligible if side information accounts for only a small part
of the total rate [17]. This simple scalar-quantizer codebook
coder will be used in each AVQ algorithm considered in the
experimental evaluations conducted later.

III. T HE GENERALIZED THRESHOLD

REPLENISHMENT ALGORITHM

In this section, we describe GTR, a new AVQ algorithm.
GTR is an online algorithm that does not require large amounts
of batch computation, and it employs cost criteria involving
both rate and distortion measures. The GTR algorithm weighs
the distortion performance against the cost in rate in both the
coding of the current source vector and the updating of the
local codebook. In general terms, GTR incorporates a rate-
distortion-based cost function similar to the one developed
by Lightstone and Mitra [10], [11] into an online framework
similar to the AVQ algorithm described by Paul [2] while
offering substantial performance improvement over these and
other approaches.

Many approaches to AVQ (e.g., [5], [6], [8]–[11]), operate in
a batch manner: a large number of source vectors are buffered,
and a computational intense codebook selector trains over
the source buffer for one or more iterations. GTR, on the
other hand, is an online algorithm. As in other online AVQ
algorithms (e.g., [2], [4], [12]), the computational load of GTR
is spread over time so that a small amount of computation is
performed as each source vector enters the algorithm. Source
vectors do not need to be buffered, while codebook updates,
which can occur at any time, are based on quantities estimated
dynamically. As a result, GTR is more amenable to real-time
hardware and software implementation than are many other
AVQ algorithms based on traditional batch training methods.

In addition, GTR differs from most other AVQ algorithms
in that the vector coder and the codebook selector are based
on cost criteria involving both rate and distortion measures.
AVQ algorithms based on rate-distortion criteria are relatively
new. The first such technique was developed by Lightstone
and Mitra [10], [11] who applied ECVQ [26] to generate
new codewords which update the codebook according to a
Lagrangian rate-distortion-based cost criterion. A subsequent
approach by Chan and Vetterli [12] invoked a similar ECVQ
update technique but included mechanisms for the growing
and shrinking of the codebook by adding, splitting, and
deleting codewords. Contrary to these approaches, traditional
AVQ algorithms (e.g., [5], [6], [8], [9], [13]–[16]) usually
focus on the minimization of distortion alone, regardless of
the consequences incurred in rate performance. Our GTR
algorithm, like the other rate-distortion-based AVQ techniques
[10]–[12], weighs distortion performance against associated
cost in rate to achieve overall rate-distortion performance
superior to that of traditional AVQ algorithms.

The rate-distortion-based cost criteria of the GTR algorithm
operate as follows. The codebook selector chooses a codeword
from the current local codebook as a potential coding of
the current source vector by considering both the distortion
between the two vectors and the rate needed to specify the
codeword to the decoder. This rate is estimated from the

Fig. 2. Basic GTR algorithm.

current codeword probabilities, assuming that the index coder
implements variable-length entropy coding. Once the winning
codeword is chosen, the codebook selector evaluates a decision
rule to see if a codebook update would result in a reduction
in distortion outweighing the cost in rate associated with the
update. If so, the codebook selector replaces a codeword in
the local codebook with the current source vector.

To simplify the discussion of this section, we present two
versions of the GTR algorithm. In Section III-A, we describe
the basic algorithm which lays a foundation for the move-to-
front variant of the algorithm to follow in Section III-B. It
has been observed that the move-to-front variant has a slight
performance advantage over the basic algorithm while being
only marginally more computationally complex [17].

A. The Basic Algorithm

The basic variant of the GTR algorithm is outlined in
detail in Fig. 2. This algorithm operates as follows. The first
sequence of steps determines the codeword “closest” to the
current source vector in a rate-distortion sense. This rate-
distortion-based nearest-neighbor mapping operates as follows.
First, the codebook selector estimates how many bits the index
coder would use to code each index as

(5)

1414 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 10, OCTOBER 1998

where represents the index coder and are the
estimated probabilities of the codewords . Thus,

estimates the rate needed to transmit indexto
the decoder if codeword were to be chosen by the vector
coder. Then, the distortion, , between the current source
vector, , and each codeword, , is calculated.
The codebook selector combines these distortions with the
previous rate estimates into a cost function using a rate-
distortion parameter,; i.e., the cost function, , for each

is

(6)

The codebook selector chooses the codeword,, with the
lowest cost function as a potential update vector for the local
codebook. We denote the index of as . One should note
that the steps to this point implement the modified nearest-
neighbor rule of the well known ECVQ algorithm [26].

In the next steps, the codebook selector decides whether
the local codebook needs to be updated by first estimating
the improvement in distortion to be gained by a codebook
update. If the codebook is updated, the current source vector
will be coded with zero distortion. However, if the codebook
is not updated, the current source vector will be coded with a
distortion of . Thus, the estimated distortion improvement
due to a codebook update is

(7)

The cost in rate of the codebook update is the amount of side
information needed to send to the decoder

(8)

where is the number of bits of side information which
would be sent to the decoder in the case of a codebook update.

The codebook selector uses the expected distortion improve-
ment and the expected rate cost in a rate-distortion-based
update cost function, defined as

(9)

where is the rate-distortion parameter given to the GTR
algorithm. If , then the expected improvement in dis-
tortion outweighs the expected cost in rate, and the codebook
selector inserts into the local codebook by replacing
with . The codebook coder transmits to the decoder a flag
indicating whether the codebook was updated. Additionally, if
the codebook was updated, the codebook coder sendsas
side information.

The final step of the algorithm is to estimate the new
codeword probabilities using a time average. Our method of
estimation assumes that the source possesses some degree of
local stationarity; i.e., the statistics over a window ofsource
vectors are approximately stationary. The algorithm estimates
how many of the past source vectors have mapped to
codeword as

(10)

When the codebook selector has determined the winning
codeword, , for the current source vector, the new counts
are calculated as

(11)

The algorithm estimates the new partition probabilities using
the new codeword counts; i.e.,

(12)

for each . Plugging (11) into (12) yields

(13)

After the codeword probabilities are updated, the indexis
entropy coded and transmitted to the decoder. The algorithm
repeats for the next source vector.

Before continuing to the move-to-front variant, several
comments on the parameters of the basic GTR algorithm are
in order. The parameter given to the algorithm is called the
rate-distortion parameter, as it controls the tradeoff between
rate and distortion within the algorithm. The value ofaffects
not only the nearest-neighbor mapping to the current source
vector but also the codebook-update decision. Consequently,

ultimately determines the performance of the algorithm,
in terms of rate and distortion. Indeed, varying traces
out the rate-distortion performance curve of the algorithm.
Larger values of will focus efforts on minimizing rate
over distortion, whereas smaller values ofwill result in
performance with a lower distortion and a higher rate.

The windowing parameter, , controls the relative weight-
ing of the past versus the present in the time-average estimates
of the current codeword probabilities. As we have determined
that the value of is noncritical in the performance of
the algorithm [17], we will use throughout the
experimental results presented later.

Finally, since the codebook selector uses the current source
vector itself to replace codewords in the current local code-
book, the universal codebook for the GTR algorithm is the

-dimensional source alphabet, . In the experimental
results presented later in Section IV, we consider two types
of sources: an artificial nonstationary random process and
real image-sequence data. The artificial random process is
continuously distributed. Thus, the universal codebook is
infinite in this case, and the codebook coder must implement
lossy coding of the source vector for a codebook update.
For this codebook coder, we simply scalar-quantize each
component of the updating source vector to the 9 b. These 9 b
are chosen, in advance, to be the nine most significant bits of
the dynamic range of the (finite-length) process currently being
encoded. Thus, for the artificial random process, the length of
the representation of sent to the decoder is
bits. In the case of the image-sequence data, which is originally
represented with 256 gray levels, the universal codebook is a
finite set of vectors. Thus, the codebook coder is capable
of losslessly transmitting the sequence of local codebooks to

FOWLER: GENERALIZED THRESHOLD REPLENISHMENT 1415

Fig. 3. Move-to-front GTR algorithm. These steps replace the corresponding
steps in the basic GTR algorithm of Fig. 2.

the decoder. There exist several possible implementations of
such a lossless codebook coder [11], [17], [27]; the simple
technique we use here is to send each updated vector directly.
That is, has b per vector component, and
the length of the representation of sent to the decoder is

b. More complicated coding schemes for lossy
and lossless codebook coders are discussed in [11], [17], and
[27].

B. The Move-to-Front Variant of the Algorithm

In the case of a codebook update in the basic GTR algorithm
presented above, the codebook selector adds the current source
vector to the local codebook by replacing the codewordthat
was determined to be the closest in a rate-distortion sense. In
this section, we describe themove-to-frontGTR algorithm. In
this variant of the algorithm, codewords are added to the local
codebook in a move-to-front fashion, effectively replacing
least-recently-used (LRU) codewords. The move-to-front GTR
algorithm replaces steps 6 and 7 of the basic algorithm (Fig. 2)
with the steps shown in Fig. 3 and operates as follows.

If the codebook is not updated, the codebook selector simply
moves to the front (index number 1) of the codebook.
However, if the codebook is updated, i.e., if , the
codebook selector places current source vectorin the front
of . In this case, all the other codewords are shifted to the
next highest index, and the one with the highest index (the
LRU codeword) is deleted.

As long as the codebook is not updated, the estimation of
the new codeword probabilities is the same as in the basic
algorithm. However, in the case of codebook update, the move-

to-front insertion of necessitates a modified calculation
of the codeword probabilities. In this case, the codebook
selector “splits” the probability of partition between the
new codeword, , and . Fig. 3 gives the details of how this
probability “split” is accomplished. After the new codeword
probabilities are calculated, they are rearranged so as to match
the move-to-front rearrangement of.

The move-to-front technique is a heuristic that has been
shown to aid lossless coding techniques in achieving a lower
rate [28]; other similar lossless techniques include [29]. Move-
to-front codebook reordering has also been proposed to im-
plement LRU replacement in other AVQ algorithms [3], [4].
The additional computational cost of implementing a move-
to-front technique in AVQ algorithms is negligible as the
move-to-front process involves mainly simple index shuffling.
However, the LRU replacement strategy of a move-to-front
AVQ algorithm has the advantage that the index of the LRU
codeword does not need to be transmitted to the decoder. In the
case of GTR, move-to-front replacement has been observed to
contribute a slight improvement in rate-distortion performance
over that of the basic algorithm [17]. Consequently, we will
use only the move-to-front variant of the GTR algorithm in
the experimental evaluations presented in the next section.

IV. EXPERIMENTAL RESULTS

We now survey experimental results obtained for the GTR
algorithm. We investigate the rate-distortion performance of
GTR on an artificial nonstationary random process as well
as on a real image sequence. We make comparisons between
GTR, nonadaptive VQ, and other previously published AVQ
algorithms.

First, in Section IV-A, we investigate the rate-distortion
performance of the GTR algorithm on a Wiener process, one
of the few nonstationary random processes with a known
rate-distortion function (see [30]). Next, in Section IV-B, we
compare the rate-distortion performance of the GTR algorithm
against that of the nonadaptive VQ for an image sequence.
Finally, in Section IV-C, we compare the performance of
GTR to that of other AVQ algorithms on both the Wiener-
process and image-sequence data described in the previous
two sections.

A. Wiener-Process Results

In this section, we investigate the rate-distortion perfor-
mance of GTR on a Wiener process. Berger [30] has shown
that the rate-distortion function of this nonstationary process
exists and has obtained an easily evaluated closed-form ex-
pression for it. In the results presented here, we evaluate the
rate-distortion performance of the GTR algorithm against the
theoretic bound given by this expression.

In this section, we consider a Wiener process with variance
. All results are averaged over five trials; i.e., we use

a testing data set consisting of five different instances of the
Wiener process. Each instance is 80 000 samples long. We
use a sixth instance of the Wiener process to train an initial
local codebook using the generalized Lloyd algorithm (see
[24]). We use a uniform scalar quantizer for the codebook

1416 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 10, OCTOBER 1998

(a) (b)

Fig. 4. Rate-distortion performance of the GTR algorithm on the Wiener process. Each curve is generated from left to right using an increasing, geometric
sequence of� values. For each curve,! = 100. The theoretic rate-distortion curve for the Wiener process is indicated by the dashed line. (a) Sixteen-dimensional
vectors and various local-codebook sizes. (b) Local codebook of 256 codewords and various vector dimensions.

(a) (b)

Fig. 5. Side information for the GTR algorithm using various codeword dimensions. In each plot, we use a local codebook of 256 codewords and a windowing
parameter of! = 100. (a) The amount of side information due to codebook updates expressed as a percentage of the total rate reported in Fig. 4(b) (does not
include side information due to flags). (b) The frequency of codebook updates expressed as a percentage of the number of vectors coded.

coder; i.e., for each vector transmitted as side information, the
codebook coder sends 9 b per vector component. The total
rate reported accounts for this update-vector side information,
the bits used as update flags, and the first-order entropy of
the index process output from the vector coder; the rate is
expressed as the average number of bits per original source
symbol. We present results only for the move-to-front variant
of the GTR algorithm, and we fix the windowing parameter

at 100.
In Fig. 4(a), we show the rate-distortion performance of

GTR for a fixed vector dimension and various local-codebook
sizes. We see from this figure that increasing the local-
codebook size yields performance closer to the theoretic rate-
distortion curve, particularly in the low-rate, low-distortion
area of the curve (the so-called “knee” of the curve). However,
the fact that the 128- and 256-codeword curves are coincident
suggests that there is a limit to the increase in performance
obtainable by increasing the codebook size. We use a local-

codebook size of 256 vectors for the remaining results of this
section.

In Fig. 4(b), we plot the rate-distortion performance of GTR
for a fixed local-codebook size and various vector dimensions.
From rate-distortion theory, we would expect that increasing
the vector dimension would yield performance increasingly
close to the rate-distortion function. However, for practical
implementations of AVQ, such as GTR, the burden in rate
due to side information varies with vector dimension. As
illustrated in Fig. 4(b), when the distortion is high, increasing
the vector dimension yields performance increasingly close
to the theoretic rate-distortion curve as expected. However,
we see from the same figure that, when the distortion is low,
the opposite is true; that is, using smaller vector dimensions
yields performance closer to the rate-distortion curve. This
effect is explained in Fig. 5. Fig. 5(a) plots the amount of
side information due to codebook updates as a percentage
of the total rate for the corresponding data in Fig. 4(b). In

FOWLER: GENERALIZED THRESHOLD REPLENISHMENT 1417

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. Original image sequence. (a)–(d) Four frames of the Miss America sequence. (e)–(h) Four frames of the garden sequence.

1418 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 10, OCTOBER 1998

Fig. 7. GTR versus nonadaptive VQ for the image sequence using 4-D vectors (2� 2 tiles) and a local codebook of 256 codewords. The GTR algorithm
operates at approximately the same rate as the nonadaptive vector quantizer when� = 16.

Fig. 5(b), the frequency of codebook updates is plotted as a
percentage of the number of vectors coded. From Fig. 5(b),
we see that an increasing number of codebook updates are
needed to achieve a lower distortion for each vector dimension.
However, when the vector dimension is small, each codeword
update needs fewer bits. Therefore, for low distortion levels,
the side information accounts for less of the total rate when
the vector dimension is small than when the vector dimension
is large, as verified in Fig. 5(a). The algorithm consequently
achieves better rate-distortion performance at low distortion
levels with smaller vector dimensions. We now continue to
the next section wherein we investigate the performance of
GTR on real image-sequence data.

B. Image-Sequence Results

In this section, we compare the rate-distortion performance
of the GTR algorithm against that of nonadaptive VQ for the
coding of the image sequence shown in Fig. 6. This sequence
consists of eight image frames: four frames from the image
sequence “Miss America” followed by four frames from the
“garden” sequence. Each image is grayscale with 256 levels
and has a resolution of 352 240 pixels. To produce an initial
local codebook for the GTR algorithm, we use an additional
frame from the Miss America sequence as a training data set to
the generalized Lloyd algorithm. This initial codebook is also
used as the fixed codebook for the nonadaptive-VQ results.

In Fig. 7, we plot the rate-distortion performance of non-
adaptive VQ versus that of GTR for the image sequence
using a local-codebook size of 256 codewords and four-
dimensional (4-D) vectors. For the nonadaptive-VQ result,
the VQ codebook used over the entire image sequence is the

same initial local codebook used by GTR, and the rate is the
first-order entropy of the VQ indices, divided by the vector
dimension. For GTR, we vary the parameterto obtain the
rate-distortion performance curve. We show quantized image
sequences produced at the same average rate by GTR and
nonadaptive VQ in Figs. 8 and 9, respectively.

We see from Fig. 7 that GTR achieves much better rate-
distortion performance than nonadaptive VQ when the per-
formance over the entire process is considered. However,
when we visually compare the image quality at equal rates
by examining Figs. 8 and 9, we observe that nonadaptive
VQ performs slightly better on the first four frames of the
sequence, while GTR is substantially better on the last four
frames of the sequence. This subjective observation is quantita-
tively verified in Fig. 10, where we plot the average distortion
and rate obtained for each frame. Since the nonadaptive vector
quantizer is using a codebook trained on data very similar to
that of the first four frames of the sequence, its performance
is quite good on those early frames. However, since the
nonadaptive-VQ codebook has very few codewords suited
for coding the latter frames of the sequence, poor distortion
performance is observed for the nonadaptive vector quantizer
on these latter frames. On the other hand, the adaptive nature
of GTR allows it to increase the rate on the latter frames
in order to maintain roughly even distortion performance
over the entire sequence. Additionally, we observe that GTR
preserves edges and other areas of high detail much better than
nonadaptive VQ, as it is these areas that are likely to induce a
codebook update within the GTR algorithm. Since these areas,
which compose a majority of the regions in the latter frames of
the sequence, are crucial to perceptual image quality, not only

FOWLER: GENERALIZED THRESHOLD REPLENISHMENT 1419

Fig. 8. Quantized image sequence for GTR for 4-D vectors (2� 2 tiles) and a local codebook of 256 codewords (� = 16, MSE= 38.6, rate= 1.522 b/pixel).

1420 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 10, OCTOBER 1998

Fig. 9. Quantized image sequence for nonadaptive VQ for 4-D vectors (2� 2 tiles) and a local codebook of 256 codewords (MSE= 234.9, rate
= 1.487 b/pixel).

FOWLER: GENERALIZED THRESHOLD REPLENISHMENT 1421

(a) (b)

Fig. 10. Average distortion and rate per frame of the image sequence for 4-D vectors (2� 2 tiles) and a local codebook of 256 codewords. (a) GTR
algorithm (� = 16). (b) Nonadaptive VQ.

(a) (b)

Fig. 11. Rate-distortion performance for prominent AVQ algorithms [2], [4]–[6], [8] using 4-D vectors and a local-codebook size of 256 vectors. The LD
and LR regions are indicated with cross hatching. (a) Wiener process, the theoretic rate-distortion function is indicated by the dashed line. (b) Image sequence,
the symbol� represents the operation point of the nonadaptive vector quantizer for the same data.

does GTR have a much better empirically measured average
distortion, it also achieves better subjective performance on
the latter frames of the sequence when compared to the
nonadaptive vector quantizer operating at the same rate.

C. Comparisons to Prior AVQ Algorithms

We now compare the performance of GTR to that of several
previously published AVQ algorithms [2], [4]–[6], [8]. We note
that, although numerous AVQ algorithms have appeared in
previous literature, many are quite similar from a theoretic
perspective; consequently, we limit discussion here to only
those prior algorithms that have either historical or innovative
prominence in AVQ literature.

In the results of this section, we plot performance curves
on the rate-distortion plane. To aid in characterizing general
performance properties, it is convenient to identify two regions
of the rate-distortion plane that are of particular interest:
the low-rate (LR) region and the low-distortion (LD) region.
The first of these regions corresponds to high-compression

performance; the natural tradeoff between rate and distortion
usually implies a high distortion for this LR region. In general,
LR-region performance is of importance in applications whose
available rate is severely limited; this is the case for many
practical applications of current interest, such as network and
wireless communications. The second region of interest is the
LD region, which corresponds to high-fidelity performance.
Generally, performance in this region will require a high
rate. Although LR performance is usually considered more
important, LD performance is of interest in certain scientific
and medical applications that perform measurements and cal-
culations on coded data and, consequently, need to maintain
the integrity of the original data source. We note that we must
establish boundaries for the LR and LD regions subjectively
for each individual application.

We first consider performance on the Wiener process from
Section IV-A. In Fig. 11(a), we show the rate-distortion per-
formance curves for GTR and several prominent AVQ al-
gorithms [2], [4]–[6] on this Wiener-process data. Although

1422 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 10, OCTOBER 1998

Fig. 12. Summary of experimental results for the Wiener process. For the LR performance, we plot the rates from Fig. 11(a) for each algorithm for a MSE
distortion of 15. For the LD performance, we plot the MSE distortions from Fig. 11(a) for each algorithm for a rate of 3.0 b/sample. For the execution time,
we plot the cumulative processing time for each algorithm divided by that of nonadaptive VQ; the parameters for each algorithm were adjusted to yield
performance on the “knee” of the corresponding rate-distortion curve in Fig. 11(a). In each plot, the smaller the bar, the better is the performance.

performances for other vector dimensions and codebook sizes
were investigated (see [17]), the only results considered here
are for 4-D vectors and a local-codebook size of 256 code-
words. Fig. 12 summarizes the LR and LD performance asso-
ciated with each of the AVQ algorithms under consideration.
To determine LR performance, we select a value of distortion
for which all the rate-distortion curves in Fig. 11(a) lie in
the LR region. We then measure the rate of each algorithm
for that value of distortion and plot it in Fig. 12 as the
measure of LR performance. Similarly for LD performance,
we choose a rate for which the rate-distortion curves all lie
in the LD region and then measure the distortion of each
algorithm for that rate. On examining Fig. 12, we see that
GTR achieves performance better than that of the other AVQ
algorithms in both the LR and LD regions. In fact, in the
LR region, the GTR algorithm achieves performance almost
50% better than that of the next best algorithms (the Paul [2]
and Wang–Shende–Sayood [4] algorithms). In the LD region,
GTR achieves performance nearly equivalent to that of the
Paul and Wang–Shende–Sayood algorithms, but substantially
better than that of the other two algorithms considered.

Superior performance is also observed for GTR on the
image sequence from Section IV-B. In Fig. 11(b), we show
the rate-distortion performance curves for GTR and several
prominent AVQ algorithms [2], [4]–[6], [8] on this image-
sequence data. We have also indicated on the plot LR and LD
regions for this data. We see that most of the AVQ algorithms
have distortion performance significantly better than that of
nonadaptive VQ when compared at the same rate. That is, at
a rate equal to that of the nonadaptive vector quantizer (about
1.5 b/pixel), most of the AVQ algorithms achieve an MSE in
the LD region (MSE of 50 or less), which results in very little
visual distinction between their quantized images. However,
all the AVQ algorithms achieve substantially less distortion
than nonadaptive VQ at this rate.

In Fig. 11(b), more distinction between the AVQ algorithms
is observed as operation moves to lower rates. Particularly,
several algorithms were unable to achieve rates in the LR
region (below about 1.5 b/pixel). Of those algorithms that were
able to produce a coding at a rate below 1.25 b/pixel, only
GTR was able to maintain a monotonic decrease in rate for
increasing distortion. As a consequence, GTR was the only
algorithm to achieve a coding at a rate less than 1.0 b/pixel.

It is clear from Fig. 11(b) that conclusions similar to those
illustrated in Fig. 12 may also be drawn for the image-
sequence data. That is, in general, GTR achieves LD per-
formance comparable to that of the better algorithms in that
region. More importantly however, the LR performance of
GTR is consistently superior to that of the other algorithms.

A comparison of execution times of AVQ algorithms is
included in Fig. 12. These times are presented as ratios to
the execution time of nonadaptive VQ on the same data
(the Wiener-process data). These execution-time figures are
intended to give merely a rough estimate of the relative
speed of the algorithms rather than a thorough complexity
comparison as times will vary somewhat for different local-
codebook sizes, vector dimensions, and algorithm-parameter
values. From Fig. 12, we see that GTR is just over twice as
costly in execution time as nonadaptive VQ.

Before making some concluding remarks in the next section,
we note that two prominent AVQ algorithms, those by Light-
stone and Mitra [10], [11] and Chan and Vetterli [12], were
omitted from the experimental comparisons of this section.
The reason for the omission of the Lightstone–Mitra algorithm
was that this algorithm suffered from “dormant” codewords.
This effect, due to the batch application of ECVQ training,
has a tendency to reduce the size of the local codebook
to a single vector because of the accumulation of “empty”
partition regions. As the Lightstone–Mitra algorithm provides
no method for the “reactivation” of these dormant codewords,

FOWLER: GENERALIZED THRESHOLD REPLENISHMENT 1423

its performance has not been competitive with that of the other
AVQ algorithms in our simulations [17]. Consequently, results
for the Lightstone–Mitra algorithm were not considered here.
Chan and Vetterli [12] introduced mechanisms for adding,
splitting, and deleting codewords to an ECVQ-based algorithm
similar to that of Lightstone and Mitra. These additional
components are a promising solution to the dormant-codeword
problem faced by the Lightstone–Mitra algorithm; however,
the brevity of [12] necessitated the omission of many rele-
vant implementation details. Thus, an implementation of the
Chan–Vetterli algorithm, as well as its experimental evalua-
tion, was not possible for our investigations.

V. CONCLUSIONS

In this paper, we have presented GTR, a new AVQ al-
gorithm. GTR differs from other AVQ algorithms in that,
rather than requiring large amounts of batch computation and
sizeable source buffering, GTR is an online algorithm. GTR
distributes its computational load over time so that a small
amount of computation is performed for each source vector.
GTR is consequently more amenable to real-time hardware and
software implementation than are many other AVQ algorithms.
In addition, GTR is one of the few AVQ algorithms to
employ cost criteria involving both rate and distortion. As
a result, GTR achieves rate-distortion performance superior
to that of other AVQ algorithms, the majority of which
focus on the minimization of distortion alone regardless to
resulting consequences in rate. In particular, we have seen that
GTR consistently achieves superior performance for low-rate
coding.

We have presented here a body of experimental results in-
vestigating the performance of GTR on a real image sequence
as well as on a Wiener process, an artificial nonstationary
random process. These experimental results included compar-
isons between GTR, nonadaptive VQ, other AVQ algorithms,
and theoretic bounds (i.e., the rate-distortion function of the
Wiener process). For the Wiener process, we saw that GTR
achieved rate-distortion performance closer to the theoretic
rate-distortion function than did other AVQ algorithms. Par-
ticularly superior performance in the low-rate, or LR, region
of the rate-distortion plane was observed. Similar results were
obtained for the image-sequence data; the performance of GTR
consistently surpassed that of other AVQ algorithms by a wide
margin in the LR region. In fact, of the AVQ algorithms
considered here, only GTR was able to maintain a monotonic
decrease in rate for increasing distortion in the LR region for
the image sequence.

The performance results reported here indicate that GTR has
significant potential in source-coding applications. However,
several issues in the algorithm remain open for further inves-
tigation; we briefly mention a few of these now as potential
topics for further research. First, GTR, like all the other AVQ
algorithms under consideration in this paper, requires the spec-
ification of several parameters in advance. In particular, for
GTR, the value of the rate-distortion parameterdetermines
the specific operating point on the algorithm’s rate-distortion
performance curve. Currently, one must selectindividually

for each application in advance of coding. There would be
considerable use for techniques to provide online, dynamic
estimations for an “optimal” setting for this parameter. For
example, it would be useful to have an online method of
adjusting so as to automatically choose a particular operating
point, such as operation in the LR region or on the knee of the
rate-distortion curve. Other AVQ algorithms could also benefit
from similar dynamic parameter estimations.

Second, it would be useful to have some measure of local
stationarity since GTR, like most AVQ algorithms, relies, to
some degree, on an assumption of slowly varying source
statistics. An estimation of the length of time over which
source statistics are approximately stationary would have
utility in dynamic estimation methods for as mentioned
above. More immediately, it would serve as a good basis for
the static setting of the windowing parameter.

Finally, we recommend, for some applications, a more thor-
ough consideration of the tradeoff involved between the code-
book coder and the vector coder. As mentioned in Section II-
B, it has been argued that the simple scalar quantizer we
use for the codebook coder of GTR is sufficient when side
information accounts for only a small part of the total rate [17].
As illustrated in Fig. 5(a), this assumption appears to hold for
LR coding. However, because performance in the LD region
appears to require a sizeable amount of side information,
the investigation of other, more complex codebook coders is
perhaps warranted for GTR systems designed to operate in
this region.

As multimedia applications such as video-on-demand and
teleconferencing gain in prevalence, they are expected to in-
creasingly burden available communication resources. Future
visual applications will require fast, online coding algorithms
amenable to real-time hardware as well as software implemen-
tation. Additionally, as there is increasing interest in providing
real-time communication over network and wireless channels,
new coding techniques will be expected to deliver low-rate
performance suited to the severe rate constraints inherent to
these asynchronous channels. Because of its online nature and
superior low-rate performance, the GTR algorithm proposed
in this paper has significant potential for the incorporation of
AVQ into practical, low-rate coding techniques at the heart of
future communication systems.

ACKNOWLEDGMENT

The author would like to thank Dr. S. C. Ahalt for his
invaluable support, both academic and otherwise, which has
made this work possible.

REFERENCES

[1] A. Gersho and R. M. Gray,Vector Quantization and Signal Compression,
Boston, MA: Kluwer, 1992.

[2] D. B. Paul, “A 500–800 bps adaptive vector quantization vocoder
using a perceptually motivated distance measure,” inConf. Rec. IEEE
Globecom,1982, pp. 1079–1082.

[3] R. M. Goodman, B. Gupta, and M. Sayano, “Neural network implemen-
tation of adaptive vector quantization for image compression,” Tech.
Rep. Department of Electrical Engineering, California Inst. Technol.,
Pasadena, CA, 1991.

[4] X. Wang, S. Shende, and K. Sayood, “Online compression of video
sequences using adaptive VQ codebooks,” inProc. IEEE Data Com-

1424 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 10, OCTOBER 1998

pression Conf.,J. A. Storer and M. Cohn, Eds, Snowbird, UT, 1994,
pp. 185–194.

[5] A. Gersho and M. Yano, “Adaptive vector quantization by progressive
codevector replacement,” inProc. Int. Conf. Acoustics, Speech, and
Signal Processing,May 1985, pp. 133–136.

[6] R. Lancini, F. Perego, and S. Tubaro, “Neural network approach for
adaptive vector quantization of images,” inProc. Int. Conf. Acoustics,
Speech, and Signal Processing,San Francisco, CA, Mar. 1992, pp.
389–392.

[7] J. E. Fowler and S. C. Ahalt, “Adaptive vector quantization using
generalized threshold replenishment,” inProc. IEEE Data Compression
Conf.,J. A. Storer and M. Cohn, Eds. Snowbird, UT, Mar. 1997, pp.
317–326.

[8] M. Goldberg and H. Sun, “Image sequence coding using vector quan-
tization,” IEEE Trans. Commun.,vol. COMM-34, no. 7, pp. 703–710,
July 1986.

[9] , “Frame adaptive vector quantization for image sequence cod-
ing,” IEEE Trans. Commun.,vol. 36, pp. 629–635, May 1988.

[10] M. Lightstone and S. K. Mitra, “Adaptive vector quantization for image
coding in an entropy-constrained framework,” inProc. Int. Conf. Image
Processing,Austin, TX, Nov. 1994, vol. 1, pp. 618–622.

[11] , “Image-adaptive vector quantization in an entropy-constrained
framework,” IEEE Trans. Image Processing,vol. 6, pp. 441–450, Mar.
1997.

[12] C. Chan and M. Vetterli, “Lossy compression of individual signals based
on string matching and one pass codebook design,” inProc. Int. Conf.
Acoustics, Speech, and Signal Processing,Detroit, MI, May 1995, pp.
2491–2494.

[13] N. M. Nasrabadi and Y. Feng, “A dynamic finite-state vector quan-
tization scheme,” inProc. Int. Conf. Acoustics, Speech, and Signal
Processing,Albuquerque, NM, Apr. 1990, pp. 2261–2264.

[14] T.-C. Lee and A. M. Peterson, “Adaptive vector quantization using a
self-development neural network,”IEEE J. Select. Areas Commun.,vol.
8, pp. 1458–1471, Oct. 1990.

[15] O. T.-C. Chen, B. J. Sheu, and Z. Zhang, “An adaptive vector quantizer
based on the gold-washing method for image compression,”IEEE Trans.
Circuits Syst. Video Technol.,vol. 4, pp. 143–157, Apr. 1994.

[16] R.-F. Chang, W.-T. Chen, and J.-S. Wang, “Image sequence coding
using adaptive tree-structured vector quantization with multipath search-
ing,” in Proc. Int. Conf. Acoust., Speech, Signal Processing,Toronto,
Ont., Canada, May 1991, pp. 2281–2284.

[17] J. E. Fowler, “Adaptive vector quantization for the coding of nonsta-
tionary sources,” Ph.D. dissertation, The Ohio State Univ., 1996.

[18] , “A survey of adaptive vector quantization—Part I: A unifying
structure,” IPS Lab. Tech. Rep. TR-97-01, The Ohio State Univ., Mar.
1997.

[19] J. E. Fowler and S. C. Ahalt, “A survey of adaptive vector quantiza-
tion—Part II: Classification and comparison of algorithms,” The Ohio
State Univ., IPS Lab. Tech. Rep. TR-97-02, Mar. 1997.

[20] T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice-
Hall 1971.

[21] D. L. Neuhoff, R. M. Gray, and L. D. Davisson, “Fixed rate universal
block source coding with a fidelity criterion,”IEEE Trans. Inform.
Theory,vol. 21, pp. 511–523, Sept. 1975.

[22] Z. Zhang and V. K. Wei, “An on-line universal lossy data compression
algorithm via continuous codebook refinement—Part I: Basic results,”
IEEE Trans. Inform. Theory,vol. 42, pp. 803–821, May 1996.

[23] P. A. Chou, M. Effros, and R. M. Gray, “A vector quantization approach
to universal noiseless coding and quantization,”IEEE Trans. Inform.
Theory,vol. 42, pp. 1109–1138, July 1996.

[24] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun.,vol. 28, pp. 84–95, Jan. 1980.

[25] T. Kohonen, Self-Organization and Associative Memory,2nd ed.
Berlin, Germany: Springer-Verlag, 1988.

[26] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-constrained
vector quantization,”IEEE Trans. Acoust., Speech, Signal Processing,
vol. 37, pp. 31–42, Jan. 1989.

[27] K. Zeger, A. Bist, and T. Linder, “Universal source coding with
codebook transmission,”IEEE Trans. Commun.,vol. 42, pp. 336–346,
Feb./Mar./Apr. 1994.

[28] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, “A locally adap-
tive data compression scheme,”Commun. ACM,vol. 29, pp. 320–330,
Apr. 1986.

[29] J. Sayir and T. Ernst, “Ordering the probabilities of an unknown discrete
memoryless source,” inProc. IEEE Int. Symp. Information Theory,Ulm,
Germany, 1997, to be published.

[30] T. Berger, “Information rates of Wiener processes,”IEEE Trans. Inform.
Theory,vol. 16, pp. 134–139, Mar. 1970.

James E. Fowler (S’91–M’96) received the B.S.
degree in computer and information science engi-
neering and the M.S. and Ph.D. degrees in electrical
engineering in 1990, 1992, and 1996, respectively,
all from The Ohio State University.

In 1995, he was an Intern Researcher at AT&T
Labs in Holmdel, NJ, and, from January to July
1997, he held an NSF-sponsored postdoctoral as-
signment at the Universit´e de Nice, Sophia Antipo-
lis, France. He is currently an Assistant Professor
in the Department of Electrical and Computer En-

gineering, Mississippi State University, Starkville, MS. His research interest
include data-compression algorithms, video-coding algorithms and hardware
systems, adaptive vector quantization, information theory, and neural-network
algorithms for signal processing.

