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Abstract—The generalized method of time and transfer con-
stants is introduced. It can be used to determine the transfer
function to the desired level of accuracy in terms of time and
transfer constants of first-order systems using exclusively low
frequency calculations. This method can be used to determine the
poles and zeros of circuits with both inductors and capacitors.
An inductive proof of this generalized method is given which
subsumes special cases, such as methods of zero- and infinite-value
time constants. Several important and useful corollaries of this
method are discussed and several examples are analyzed.

Index Terms—Bandwidth enhancement techniques, circuit
Analysis, Cochran-Grabel method, determination of poles and
zeros, infinite-value time constants (IVT), method of time and
transfer constants (TTC), zero-value time constants (ZVT).

I. INTRODUCTION

A NALOG circuit design depends on analysis as a beacon to
provide qualitative and quantitative input on how we can

improve circuit performance by modifying its topology and/or
parameters. A great deal of effort goes into improving the accu-
racy of device models and circuit simulators to predict the ex-
pected experimental outcome accurately on a computer before
testing it in the lab. However, these absolutely necessary tools
are not sufficient for analog circuit design, which by its nature
is open-ended and divergent. This necessitates analytical tech-
niques that can provide insight into how and where the circuit
can be modified for design purposes.

The identification of the dominant source of a problem is at
the core of design as it focuses creative energy on critical parts
of the circuit and more importantly identify what kind of mod-
ifications will improve it. Generally, this is done by reducing
the analysis into smaller more straightforward calculations that
allow one to arrive at progressively more accurate approxima-
tions without performing the full analysis.

Although mesh and nodal analysis provide a systematic
framework to apply Kirchhoff’s current and voltage laws
(KCL and KVL) to the circuit problem and convert them to a
linear algebra problem that can be solved numerically using a
computer(e.g., works of Bode [1] and Guillemin [2]), they are
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not effective design tools. The analysis must be carried to the
end before approximate results can be obtained and even then
it is hard to obtain design insight from the resultant algebraic
expressions particularly in terms of identifying the dominant
sources of problem and topological solutions to them. This
need was recognized by some of the early works in this area,
e.g., [3] and [4].

An early instance of an approach suitable for design is the
method of open-circuit time constants (OCT) developed by
Thornton, Searle, et al. in early 1960s [5]. The OCT was devel-
oped for lumped electronic circuits with capacitors as their sole
energy storing (reactive) elements to estimate their bandwidth
limitation. It states that the coefficient of the term linear in com-
plex frequency, , in the denominator of the transfer function is
exactly equal to the sum of time constants associated with each
capacitor alone when all other capacitors are open circuited and
sources are nulled. The original derivation of the OCT [5] and
its subsequent generalizations to both capacitors and inductors,
namely the method of zero value time-constants (ZVT), was
based on evaluation of the determinant of the matrix in
the nodal equations and how its co-factors change due to the
capacitors [5]. The ZVT method is powerful since it provides a
clear indication of the dominant source of bandwidth limitation
and guidance into potential solutions. In Section IV, we present
an alternative inductive derivation of ZVT’s and will generalize
the method by using transfer constants to account for the effect
of zeros on the bandwidth estimate.

The approach used in [5] was generalized in early 1970s by
Cochran and Grabel [6] to determine as many of the denomi-
nator coefficients as needed by calculating the time-constants
associated with each reactive element under different combina-
tions of shorting and opening of other reactive elements in the
circuit. Unlike nodal analysis, this process can be stopped at any
point when the desired level of accuracy for the denominator has
been obtained. The notation was cleaned further in the 1980s
by Rosenstark to express denominator coefficient only in terms
of time constants in a systematic way [10]. In the 1990s, the
method was generalized to include the effect of transcapacitors
by Fox et al. [12] and mutual inductors by Andreani et al. [14].

In late 1970s, Davis developed a method for determination of
the numerator (and thus the zeros) of the transfer functions of
lumped RC circuits using a combination of the time-constants
and the low frequency transfer functions under different com-
binations of shorting and opening of the capacitors [7]–[9]. We
will discuss a generalization of this method with a more intu-
itive notation in Section V.
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The transfer function of a first-order system can also be deter-
mined using the extra element theorem presented in late 1980s
by Middlebrook [11]. In this case, two of the three low fre-
quency calculations are identical to Davis’s approach [7]. The
third calculation used to determine the numerator of the transfer
function involves a null-double injection, which involves simul-
taneous usage of two sources to null the output signal. The ap-
proach was generalized to extra elements in late 1990s in [13]
and [15], where the denominator of the transfer function is cal-
culated the same way as the Cochron-Grabel method [6] and its
numerator using multiple null double injections. The approach
presented in this paper does not use the null double injection
and provides a more intuitive link between the zeros and the
time and transfer constants.

In Section II, we discuss some of the general properties of a
transfer function. We find the general transfer function of a first-
order system in Section III, where the concept of transfer con-
stant is defined. Next, we investigate an th-order system and
derive its first-order numerator and denominator coefficients. We
provide an inductive intuitive proof and a generalization of the
method of zero-value time constants and its generalization for the
numerator using the concept of transfer constant in Section IV. In
Section V, we discuss how all the coefficients of the numerator
and denominator can be calculated using the method of time and
transfer constants (TTC) and thus provide a complete method to
determine the transfer function to the desired level of accuracy.
Some of the important corollaries to circuit design will be dis-
cussed in VI. Finally, Section VII provides several examples of
the method, which will be referred to through the text.

II. GENERAL PROPERTIES OF TRANSFER FUNCTIONS

For a single-input single-output linear time-invariant (LTI)
network, the transfer function can be defined as the ratio of the
voltages and/or currents of any two arbitrary ports of the circuit,
including the ratio of the voltage and current of the same port.
We designate the input and output variables as and . For ex-
ample, when is an input voltage due to a voltage source and
is the voltage of another node in the circuit, the transfer function,

, would correspond to a voltage gain. On the
other hand, if the input, , is the currentof a current source driving
a given port of the circuit, while the output, , is the voltage across
the same port, the transfer function, would
correspond to the impedance looking into that port.1

The transfer function of a linear system with lumped elements
can be written as2

(1)

1One has to be careful about the choice of stimulus and output. If a node
is excited with a current source and the voltage across that node is measured,
then the quantity measured is the impedance, ����. On the other hand, if the
same port is excited by a voltage source and its current is the output variable,
the calculated transfer function is the admittance � ���. Although in the end,
we must have ���� � ��� ���, one should keep things consistent, as the poles
of ���� are the zeros of � ��� and vice versa. This is important in nulling the
independent source, which means a short-circuit for a voltage source and an
open-circuit for the current source.

2The leading one in the denominator is absent for transfer functions that go
to infinity at dc (e.g., the input impedance of a capacitor to ground). In such
cases, it is more straightforward to evaluate the inverse transfer function (e.g.,
admittance in the case of the capacitor).

where all and coefficients are real and represents the com-
plex frequency. Coefficient is the low frequency (dc) transfer
function. This equation can be factored as3

(2)

where based on the fundamental theorem of algebra, the pole
and zero frequencies ( and ) are either real or appear as com-
plex conjugate pairs.

The order of the denominator, , determines the number of
natural frequencies of the system and is equal to the number
of independent energy storage elements in the circuits. This is
equal to the maximum number of independent initial conditions
(capacitor voltages and inductor currents) that can be set, as we
will see later in Section V. Natural frequencies of the circuit are
independent of the choice of the input and output variables and
are intrinsic characteristics of the circuit.4

On the contrary, the zeros of the transfer function, i.e., the
roots of the numerator of (1), do depend on the choice of the
input and output. While it is possible to answer what the poles
of a circuit are without knowing what the input and output vari-
ables are, it is meaningless to ask the same question about the
zeros, as they assume different values for different choices of
the input and/or the output.

Knowing the coefficients of the transfer function of an LTI
system (or equivalently its poles and zeros), we can predict its
dynamics. In the following sections we see how we can de-
termine the transfer function of an th-order system to the
desired level of accuracy using low frequency calculations of
port resistances and low-frequency values of the transfer func-
tions (transfer constants) for different combinations of shorting
and opening of other elements. We will start with first-order
system similar to that in [7] with a modified, more generaliz-
able notation.

III. FIRST-ORDER SYSTEM

Let us consider an LTI circuit with a single energy-storing
element, an input , and an output , as shown in Fig. 1(a) and
(b) for a system with a capacitor or an inductor, respectively.
Although these circuits include only one reactive element,
or , the network in the box can be quite complex with any
number of frequency-independent elements, such as resistors
and dependent sources.

3The factorization of (1) is most suitable to describe a low-pass system. In the
case of a band-pass amplifier with a well defined mid-band gain, � , (where
� can be very small or even zero) the poles and the zeros can be divided into
two groups: those occurring below mid-band and those that fall above it. To have
a flat pass-in this case, the number of poles and zeros below mid-band must be
equal. Thus, (2) can be reordered as (due to Middlebrook)

�����
�� � � � ��

�� � � � ��
� � �

�� � � � ��

�� � � � �� �

This representation is helpful when we try to separate the effect of the poles and
zeros affecting the low cut-off frequency, � , from those controlling the high
cut-off frequency, � .

4The implicit assumption here is that these modes are observable in the con-
trol theoretical sense.
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Fig. 1. First-order system with a) a capacitor as the energy storing element;
b) an inductor.

A circuit with one reactive element has one pole and one
zero.5 For a first-order system, (1) reduces to

(3)

where is the low-frequency transfer function. The pole will be
at corresponding to a pole time constant of .
The zero occurs at .

Now we use transfer constants defined as low frequency
transfer functions from the input to the output under different
combinations of shorted and opened reactive elements (shown
with capital with different superscripts) to determine of the
transfer function. Our first transfer constant is the value of the
transfer function when the reactive element (or in general all
reactive elements) is (are) zero valued ( , i.e., open cir-
cuited capacitor and , i.e., short circuited inductor). This
transfer constant is designated as . This is the same as the low
frequency transfer function since setting every reactive element
to zero removes any frequency dependence from the circuit, i.e.,

(4)

For a first-order system with a capacitor, , the only time con-
stant, , is simply , where is the resistance seen across
the capacitor with all the independent sources (including the
input) nulled. (Nulling a source means replacing an indepen-
dent voltage source with a short circuit and an independent cur-
rent source with an open-circuit.) Here, the circuit of Fig. 1(a)
simply reduces to the parallel combination of capacitor, , and
the low frequency resistance it sees, . Therefore, we have a
pole time constant of

(5)

where the superscript zero in indicates that the independent
sources and the energy-storing element are at their zero values
and the subscript is the index of the energy storing element.
Equivalently, if the reactive element is an inductor, , the time-
constant is

(6)

Let us continue with the case of capacitor for the time being.
The impedance of the capacitor is simply . We notice
that the capacitance, , and the complex frequency, , always
appear together as a product, so the transfer function of (3) can
be unambiguously written as

(7)

5Sometimes, we say there is “no zero” when it is at infinity.

where and have the appropriate units. Combining (5) and
(7), we obtain

(8)

We can use another transfer constant to determine the numer-
ator of (7). This time assume that the value of goes to infinity.
For a capacitor this is equivalent to having it replaced with a
short circuit. For , the second terms in the numerator
and the denominator of the transfer function of (7) dominate,
and, hence, it reduces to

(9)

where is another transfer constant evaluated from the input
to the output with the reactive element at its infinite value,

e.g., capacitor short circuited. This is simply another fre-
quency-independent gain calculation. Note that in general this
transfer constant, , is different from the first transfer con-
stant, , which is the low frequency transfer function with the
energy storing element being zero valued (capacitor open cir-
cuited or inductor shorted).

Considering (8), (9), and comparing (3) with (7), we easily
determine to be

(10)

where is simply the pole time constant defined by (5) or (6).
The result of this derivation is that the transfer function of a

system with one energy-storing element can be expressed as

(11)

where is the zero-valued transfer constant from the input,
, to the output when the reactive element is zero-valued (

opened or shorted), is the infinite-value transfer constant
( shorted or opened), and is the time constant associ-
ated with the reactive element and resistance it sees with the
independent sources nulled, . As can be seen for a single en-
ergy-storing element, (11) provides the exact transfer function
of the system, in terms of three low-frequency calculations.

IV. ZERO-VALUE TIME AND TRANSFER CONSTANTS

Having considered a system with one energy storage element,
in this section we take the first step toward a complete general-
ization of the approach to the case with energy storing ele-
ments, which will be presented in Section V. We will start by de-
termining the first term in the denominator and numerator of (1),
namely, and in a system with reactive (energy-storing)
elements. First, using an alternative inductive, more intuitive (as
opposed to deductive), derivation than that of [5], we determine

as the sum of the so-called zero-value time constants (ZVT) of
the network.6 Next, we also derive a general expression for in
terms of these ZVT’s and some low frequency transfer functions.

6In [5], the first denominator term, � , for capacitors only is derived using
an �-port nodal analysis of the above system and calculations of the co-factors
of the circuit determinant. It is generalized in [6] using a similar matrix-based
approach.
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Fig. 2. Network with � ports in addition to the input and output with all the
inductors and capacitors presented at the additional ports and no energy storing
element inside.

Any network with energy-storing (reactive) elements can
be represented as a system with external ports (in addition
to the input and output) with no frequency-dependent elements
inside (e.g., containing only resistors and dependent voltage and
current sources) and each reactive element (namely inductors
and capacitors) attached to one of the ports, as shown in Fig. 2.
(If more than one reactive element is connected to the same pair
of terminals, each one of them is assumed to have a port of its
own with a separate index.)

The only way for a coefficient to occur in a transfer function
of a lumped circuit is as a multiplicative factor to a capacitor or
an inductor, as in or . Let us initially limit our discussion
to just capacitors and then generalize to include the inductors.
In that case, the coefficient in (1) must be a linear combi-
nation of all the capacitors in the circuit. Note that the term
cannot contain a term because such a term must have an

multiplier. Applying the same line of argument, the coeffi-
cient must consist of a linear combination of two-way products
of different capacitors , as they are the only ones that can
generate an term.7 In general, the coefficient of the term
must be a linear combination of nonrepetitive -way products
of different capacitors. The same argument can be applied to

coefficients in the numerator and, hence, we can write the
transfer function as

(12)
where coefficients and have the appropriate units. Note that
the double (and higher order) sums are defined in such a way to
avoid redundancy due to the repetition of terms such as,
and . Also note that the superscripts “ ” and “ ” is used as
an index and not an exponent.

The idea behind the derivation of and coefficients in
general is to choose a set of extreme values (zero and infinity
or equivalently open and short) for energy storing elements in
such a way that we can isolate and express one of the or pa-
rameters at a time in terms of other parameters we already know
and low-frequency calculations involving no reactive elements
at all.

7We will see in footnote 8 why they cannot be the same capacitor, i.e., �� � .

Fig. 3. Network with � ports in addition to the input and output with with all
the inductors and capacitors zero valued except � .

A. Determination of

In this subsection, we show that is exactly equal to the
sum of the zero-value time constants (ZVT) and thereby provide
an alternative derivation of the ZVT method. The zero-value
time constant for each reactive element is essentially the time-
constants of the first-order systems formed by forcing all other
reactive elements to be at their zero values, i.e., open-circuited
capacitors and shorted-circuited inductors.

The transfer function of (12) is determined independently of
the specific value of the capacitor and must, therefore, be valid
for all capacitor values including zero and infinity. To determine

, let us look at a reduced case when all capacitors, except ,
have a value of zero, as depicted in Fig. 3. The transfer function
of (12) with a single reduces to the following first-order one8

(13)

We have already determined the transfer function of a general
first-order system in (11). The reduced system of Fig. 3 is one
such first-order system with a time constant of

(14)

where is the resistance seen by the capacitor looking into
port with all other reactive elements their zero value (hence, the
superscript zero), namely open-circuited capacitors (and short-
circuited inductors), and the independent sources nulled. Equa-
tions (11), (13), and (14) clearly indicate that

(15)

This argument is applicable to any capacitor in the system.
Hence, the first denominator coefficient in (1), , is simply
given by the sum of these zero-value time constants (ZVT)9

(16)

8Here, we can see why the higher order terms in (12) cannot contain any
self-product terms (e.g.,� �� ) from Fig. 3. A �� � term in the sums defining
� or � in (12) would result in a second-order transfer function in (13) which
contradicts the fact that the reduced system of Fig. 3 has only one energy storing
element. By the same token, terms such as �� � � cannot appear in higher
order terms, such as � .

9This method is sometimes referred to as the method of open-circuit time
(OCT) constants. This terminology only makes sense when applied to capacitors
because a zero-valued capacitor corresponds to an open circuit. Unfortunately,
an inductor at its zero value corresponds to a short circuit, and, thus, the name
becomes misleading.
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where coefficients are the ZVT’s given by (14) for capaci-
tors. With both inductors and capacitors present, the summation
terms in (12) will be linear combination of inductors and capac-
itors and sums of their products for higher order terms. With an
inductor at port , setting all the other elements to their zero
value and nulled independent sources, the system reduces to yet
another first-order system with a time constant similar to (6),
i.e.,

(17)

Hence, in general, the terms are zero-value time constants as-
sociated with the capacitor or the inductor given by (14) or (17).

Note that the sum of zero-value time constants in (16) is
exactly equal to the sum of pole characteristic times
which is also equal to , as can be easily seen by comparing (1)
and (2). However, it is very important to note that in general10

there is no one-to-one correspondence between the individual
zero-value time constant, , and pole frequency, . (For one
thing, the individual poles can be complex while the time con-
stants are always real. Also, as we will see in Section VI-A, the
number of the poles and the number of time constants are not
necessarily the same.)

B. Determination of

Next, we determine the numerator coefficient , which can
be used to approximate the effect of the zeros. We will see that

can be written in terms of the zero-value time constants
already determined in calculation of and low-frequency
transfer constants evaluated with one reactive element infi-
nite-valued at a time. We rely on the first-order system result of
Section III to determine the coefficients in (12).

When in (13) while the other elements are still at
zero value, (Fig. 4) the transfer function from the input to the
output reduces to a constant, i.e.,

(18)

where is a first-order transfer constant between the input and
the output with the single reactive element at its infinite value
(i.e., short circuited capacitor or open circuited inductor) and
all others zero-valued.11 We have already determined to be

in (15), which leads to from (18). Therefore,
. Thus, we can write

(19)

which is the sum of the products of zero-value time constants
given by (14) or (17) and the first-order transfer constants, ,
evaluated with the energy storing element at the port at its
infinite value, as shown in Fig. 4. Note that transfer constants

10Unless all poles are decoupled, as defined in Section VI-B.
11From a notation perspective, we place the index(es) of the infinite valued

element(s) in the superscript. An index 0 in the superscript (as in � ) simply
indicates that no reactive element is infinite valued, i.e., all elements are at their
zero values.

Fig. 4. Calculation of � � ������ with � shorted (infinite
valued) and all other inductors and capacitors zero valued.

are easily evaluated using the low frequency calculations.
The same line of argument can be applied for a combination of
capacitors and inductors.

Note that the time constants have already been computed
in determination of , and, hence, all that needs to be calcu-
lated to determine are transfer constants, namely the co-
efficients. Also as we will see later, it is the ratios of ’s to
that determine the zero location, and, hence, the exact details
of ’s do not matter to the extent we know how it is changed
with respect to , eliminating the need for recalculation of all
parameters with a change in the circuit.

Equation (19) suggests that if all transfer constants of dif-
ferent orders are zero, there will be no zeros in the transfer func-
tion. This suggests an easy test to determine whether there is a
zero in the transfer function by looking for capacitors shorting
of which (or inductors opening of which) results in a nonzero
low-frequency transfer function.12 We will see in Section V
how this concept can be generalized to determine the number
and location of the zeros. We will see in Section VI-D and Ex-
ample VII-3 how (19) is used to include the effect of zeros in
ZVT calculations. Next, we discuss the general case.

V. HIGHER ORDER TERMS: GENERALIZED TIME AND

TRANSFER CONSTANTS (TTC)

In this section, we generalize the approach to be able to deter-
mine the transfer function to any degree of accuracy (including
exact result) by calculating higher-order and terms in (1).
As we discussed earlier, the transfer function of the th-order
system of Fig. 2 can be expressed in the form of (12). Note
that in (12), the higher order sums are defined in such a way
that for any two indexes and only one of the and

is present in the sum to avoid multiple permutations of
the same product.13 Since relabeling the capacitors should not
change the poles and zeros of the transfer function, we conclude
that . A similar argument can be applied to the nu-
merator to conclude that . Also note that the higher
order terms in (12) denoted by have coefficients that are
sums of products of at least three different capacitors.

We showed in Section IV that and in (1) are always
given by (16) and (19), respectively, i.e., and

in (12). Now we determine higher order coefficients in

12Sometimes the transfer function has a pole that exactly coincides with a
zero. When that happens the above procedure still predicts the existence of a
zero, while there will be a pole at exactly the same location. An example is a
parallel �� network not connected to the rest of the circuit, which generates a
at ���� and a zero at exactly the same frequency.

13More generally, we can expect that any circular rotation of the ��	 � � � in-
dexes in the superscript of 
 and � should result in the same value
due to the same invariance to the labeling of the capacitors.
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Fig. 5. The network with a single capacitor � present, while � is infinite
valued (shorted) and all the inductors and capacitors zero valued.

(1). Next assume that we set to infinity and consider a capac-
itor at port while all other capacitors have a value of zero
(i.e., are open). The network will look like Fig. 5. This is yet an-
other first-order system different from the one in Fig. 3 used to
determine . The time constant of this new first-order system is

(20)

where is the resistance seen at port with port infinite
valued (capacitor shorted). Evaluating (12) with
and all other capacitors other than and at their zero value
(i.e., open), we obtain

(21)
which is the transfer function of the new first-order system
shown in Fig. 5. Equating the coefficient of in the denominator
of (21) to (20), we obtain

(22)

where we have used (15) in the last step. The second coefficient
of the denominator, , can be calculated as

(23)

which, in general, can be written as

(24)

One important point is that since , as discussed
earlier, we conclude

(25)

This equality provides alternative ways of calculating higher
order time constant products, some of which may be more
straightforward to calculate in the actual circuit. Equivalently,
we have the more useful form

(26)

Now to obtain , we will let both and to go to infinity
(short circuited) and all other reactive elements to be zero valued

(e.g., open capacitors). The second-order input-output transfer
constants are simply given by

(27)

Since we have already determined in (22), we determine that
and thus

(28)

which again more generally can be written as

(29)

where is the low-frequency input-output transfer constant
with both ports and shorted (or in general the reactive ele-
ments at ports and at their infinite value). The above approach
can be continued by induction to determine higher order and

coefficients using an inductive line of argument to (12).
In general, the th-order coefficient of the denominator is

given by

(30)

which is the same result as in [6], written in a more compact
form.

The coefficient for the numerator is

(31)

where corresponds to the time constant due to the reactive
element at port and the low frequency resistance seen at port

when ports whose indexes are in the superscript are
infinite valued (shorted capacitors and opened inductors). In the
presence of inductors a similar line of argument can be applied,
noting that the time constant associated with inductor
is simply the inductance divided by which is the resistance
seen at port with the reactive elements at ports at their
infinite values.14 So, the time constants in (30) and (31) will
have one of the following forms depending on whether there is
an inductor or a capacitor connected to port . For capacitor,

(32)

and for inductor,

(33)

14Equation (25) can be generalized noting the invariance of the � to a
rotation of the indexes to produce

� � � � � �� � � � � � �� � �
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Finally, is the th-order transfer constant evaluated with
the energy storing elements at ports at their infinite
values (shorted capacitors and opened inductors) and all others
zero valued (opened capacitors and shorted inductors). It is note-
worthy that (30) indicates that the poles of the transfer function
are independent of the definition of input and output and are
only characteristics of the network itself, while the zeros are
not a global property of the circuit and depend on the definition
of the input and output ports and variables, as evident from the
presence of the terms. This is consistent with the fact that
poles are the roots of the determinant of the matrix [1] defined
independent of the input and output ports.

Several observations are in order about this approach. First
of all this approach is exact and makes it possible to determine
the transfer function completely and exactly. More importantly,
unlike writing nodal or mesh equations, one does not need to
carry the analysis to its end to be able to obtain useful informa-
tion about the circuit. Additional information about higher order
poles and zeros can be obtained by carrying the analysis through
enough steps to obtain the results to the desired level of accu-
racy. Also, the analysis is equally applicable to real and complex
poles and zeros. Once mastered, this analysis method provides
a fast and insightful means of evaluating transfer functions, as
well as input and output impedances for general circuits. The
generalized time and transfer constants (TTC) approach has sev-
eral important and useful corollaries that will be discussed in the
next section.

VI. COROLLARIES AND APPLICATIONS

A. Number of Poles and Zeros

It is a well known result that the number of poles (i.e., the
number of natural frequencies) of a circuit is equal to the max-
imum number of independent initial conditions we can set for
energy-storing elements. This result can also be easily deduced
from (30), where the highest order nonzero is determined by
the highest order nonzero time constant, in the system.

It is easy to see that each purely capacitive loop with no other
elements in the loop reduces the order of the system by one.
This is because the highest order time constant associated with
the last capacitor, when all the other ones are infinite valued
(shorted) is zero, since the resistance seen by that capacitor in
that case is zero15 (see Example VII-2 in Section VII). The same
effect holds for an inductive cut-set, where only inductors are
attached to a node. Again the time constant associated with the
last inductor, when all others are infinite-valued (opened) is zero
since the resistance seen is infinity.

The number of zeros can also be determined easily in the ap-
proach presented here. The number of zeros is determined by
the order of the numerator polynomial, which is in turned deter-
mined by the highest order nonzero transfer constant, , in

15In general, in a circuit with � � � nodes (including ground), we can have
up to �������� distinct capacitors connected among the nodes. Despite this
potentially large number of distinct capacitors, we can only define � indepen-
dent initial conditions. This can be seen if we assume that the voltages between
individual capacitors from each node to ground is set. This sets all the node volt-
ages, and, thus, no more initial condition can be defined independently, meaning
we can have a maximum of � poles in such a circuit.

(31). In other words, the number of zeros in the circuit is equal to
the maximum number of energy-storing elements that can be si-
multaneously infinite-valued while producing a nonzero transfer
constant from the input to the output. This way we can
easily determine how many zeros there are in the transfer func-
tion of the system by inspection without having to write any
equations (see Examples VII-2, VII-3, and VII-8). This is one
of the advantages of this approach over that presented in [15].

B. Decoupled Poles

The second important corollary of the TTC relates to decou-
pled poles of the circuits. As we mentioned in Section IV-A,
there is no one-to-one correspondence between the zero-valued
time constants, and the poles’ characteristic times .
However, an important exception is when a time-constant is de-
coupled from all other ones. This happens when a time constant
does not change for any combination of shorting and opening of
other energy-storing elements, i.e., in our notation

(34)

In this case, the term can be factored out of the de-
nominator and the pole associated with it is simply a real one at

.16

This concept can be generalized to a group or groups of time
constants that can be decoupled from the rest of the time con-
stants but internally coupled. An example is a multistage am-
plifier, with no interstage capacitors, where the time constants
within each stage may be coupled and cannot be factored into
products of first-order terms, however, it is possible to factor the
numerator and denominator into product of lower order polyno-
mials each associated with one set of externally uncoupled yet
internally coupled set of time constants internal to each stage.
This can be viewed as a partitioning of time constants into these
mutually uncoupled subsets. (See Example VII-4).

16This can be proved rather easily by reordering the terms of the denominator
as

���� �� � � �� � � � � � �

��� � � � � � � � � � �

��� � � � �

� � � � � � � � � � �

� �� �� � �� �� � �

� �� �� � � � � � � �

� �� �� � � � �

�� � � � � �

where the term in the bracket is of order of � .
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C. Bandwidth Estimation Using ZVT’s

The coefficient calculated in (16) can be used to form a
first-order estimate of , the 3 dB bandwidth of a circuit with
a low-pass response.17 More importantly, it is a powerful de-
sign tool allowing the designer to identify the primary source of
bandwidth limitation and can serve as a guide in making quali-
tative (e.g., topological) and quantitative (e.g., element values)
changes to the circuit.

There are several simplifying assumptions involved in appli-
cation of the basic ZVT method to bandwidth estimation. The
original ZVT approach [5] assumes that there are no (dominant)
zeros in the transfer function. Next in Section VI-D, we will aug-
ment the approach to account for dominant zeros in the transfer
function and how to determine if they are present.

For now let us assume there are no dominant zeros in the
transfer function. In this case, the transfer function can be ap-
proximated as

(35)

which is the transfer function of low-pass system with a low-
frequency value of .

At dc , the only term in the denominator that matters
is the leading 1. As the frequency goes up and approaches ,
the first term that becomes non-negligible would be , so in
the vicinity of the , (35) can be further approximated as a
first-order system

(36)

This implies that , bandwidth of the complete system, can be
approximated as [5]

(37)

where are the zero value time constants defined by (14) and
(17) for capacitors and inductors, respectively.18 This approxi-
mation is conservative and underestimates the bandwidth [16].

As mentioned earlier, the coefficient is the sum of the pole
characteristic times with no one-to-one corresponds
among ’s and ’s, in general. Therefore, the imaginary parts
of complex conjugate pole pairs cancel each other in the sum.
As a result, ZVT method by itself does not provide any infor-
mation about the imaginary part of the poles and is completely
oblivious to it. This can result in gross underestimation of the
bandwidth using (37), when the circuit has dominant complex

17As we saw in Section II, we can split a bandpass response with a well-
defined mid-band gain into a low-pass and a high-pass one. We can arrive at the
low pass response by setting certain biasing elements such as bypass capacitors,
coupling capacitors, and RF chokes to their infinite values (shorted capacitor
and open inductor). Then using the method of zero-value time constants we can
approximate � . A dual process called the method of infinite-value time (IVT)
constants discussed in Section VI-G can be use to estimate � in the high-pass
system.

18Intuitively, � is the frequency at which the total output amplitude drops
by a factor of

�
� with respect to � . Under normal circumstances, at this point,

the contribution of each one of the energy-storing elements is relatively small,
and, hence, (37) can be thought of as the sum of their individual contributions
to the gain reduction, assuming the other ones are not present.

poles which could lead to peaking in the frequency response. We
will see how we can determine whether or not complex poles
are present and how to estimate their quality factor in Sec-
tion VI-F and Example VII-5.

D. Modified ZVT Bandwidth Estimation for a System With
Zeros

The ZVT approximation of (37) can be improved in the light
of (19). In the presence of zeros using a similar argument used to
arrive at (36), we conclude that close to , the transfer function
can be estimated as

(38)

which is a first-order system with a pole at and a zero at
. The zero has the opposite effect on the magnitude of

the transfer function compared to the pole since it increases the
magnitude of the transfer function with frequency. According
to (19), we have

(39)

First, let us assume that all terms are positive. In this
case, the numerator’s first-order coefficient, , will be posi-
tive and the dominant zero is left-half plane (LHP). In this case,
using the first Taylor series expansion terms of the numerator
and the denominator, the estimate can be modified to

(40)

If some of the terms are negative, it means that the
transfer function has right-half plane (RHP) zeros. However, the
RHP zeros have exactly the same effect on the amplitude as LHP
ones unlike their phase response. Since only depends on the
amplitude response and not the phase, a LHP zero at a given fre-
quency should produce the exact same as a RHP zero at the
same frequency. Therefore, in general, a better approximation
for (assuming it exists) is

(41)

where

(42)

are modified ZVT’s that are only different from the original
ZVT’s for reactive element which result in nonzero transfer con-
stants when infinite valued (e.g., capacitors shorting of which
does not make the gain zero). Also note that (41) and (42) sub-
sume (40) for LHP zeros and reduces to (37) when there are no
zeros, i.e., all terms are zero (corresponding to ). Usu-
ally only a few of the original ZVT’s need be modified. Note that
the correction to the time constants can be done at the same time
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Fig. 6. Step response of a first-order system decomposed as the sum of the step response of a first-order low-pass system, � ��� and high-pass systems, � ���.

TABLE I
RELATIVE POSITION OF THE POLE AND ZERO IN A FIRST-ORDER SYSTEM

they are calculated simply by evaluating the change in the low
frequency transfer function when the element is infinite valued.

Example VII-3 shows how the modified ZVT’s produce a
useful result in the presence of zeros, while regular ZVT’s result
is substantially inaccurate.

E. Creation and Effect of Zeros

Unlike poles that are natural frequencies of the circuit and,
hence, are not affected by the choice of the input and output
variables, zeros change with the choice of the input and output
variables, as evident by the presence of terms in the ’s.
As mentioned earlier, as long as infinite valuing of some reac-
tive elements results in nonzero low-frequency transfer func-
tion, there are zeros in the system.

1) Zeros in a First-Order System: For a first-order system
with a single energy-storing element, we can easily obtain the
following relation between the pole and the zero from (11)

(43)

This expression is sufficient to evaluate the relative position of
the zero with respect to the pole. It is clear from (43) that if the
infinite- and zero-value transfer constants have opposite signs,
the pole and the zero will be on two opposite half-planes. For
instance, these correspond to low frequency gain of the system
with a capacitor short- and open-circuited. In stable systems
where the pole is in the LHP, the zero will be on the RHP for
opposite polarities of and , as in Example VII-2. On the
other hand if and have the same polarity, the pole and
the zero will be both on the LHP (see Example VII-3).

The magnitude of determines which one occurs
at a lower frequency. As evident from (43), the zero happens
first (at a lower frequency than the pole, i.e., ) when

. Alternatively, the pole occurs before the zero
, for . This assessment can almost

always be done by inspection because we only need to know
the relative size and magnitude of and , as summarized
in Table I.

Fig. 7. System consisting of two signal paths each with a first-order response
followed by unilateral ideal voltage amplifiers.

2) Time-Domain Response Due to a Zero: In a first-order
system, the transfer function of (11) can be expressed as the sum
of a first-order low-pass and a first-order high-pass system, i.e.,

(44)

resulting in a step response of

(45)

where is the unit step. Since both responses have the same
time constant, , the overall response would be an exponential
with an initial value, , and a final value, , and a time con-
stant, , as shown in Fig. 6. Again, the relative size and polarities
of and determines the general behavior of the response.

When and have opposite polarities, the low- and high-
pass responses will go in different directions resulting in an un-
dershoot. On the other hand, when and have the same
polarities, but , the step response’s initial value

is greater than its final value , and, hence, there will
be an overshoot. For , the step response starts at the
smaller value at and then increases exponentially to
its final value (similar to Fig. 6.)

Next, let us consider a second-order system with two arbitrary
real poles and a single zero. The transfer function of such a
system can be written as

where is the zero-value transfer constant of the circuit. We
can assume (i.e., ) without loss of generality.
The zero can be LHP or RHP and can be written, as the
sum of partial fractions, as depicted in Fig. 7 [17]. and
are given by

(46a)

(46b)
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Fig. 8. Step responses of two paths with a) same polarities �� � ��� (droop); b) opposite polarities �� � � �� and �� � � �� � (overshoot); c) opposite
polarities �� � � �� and �� � � �� � (undershoot).

(47)

where and are the pole characteristic
times and we have

(48)

This system can be completely modeled using the dual-path
system of Fig. 7, where the upper path with the low-frequency
gain is slower than the lower one with the gain . It has two
first-order parallel paths each with a single pole transfer function
and no zeros. While the two-path system of Fig. 7 may appear
quite idealized, it can be used to represent any second-order
system with two LHP real poles and a zero. Each of these poles
would be at exactly the same frequency as those of the real poles
of the original second-order system. Interestingly, a new real
zero is created that did not exist in either of the constitutive
first-order systems of Fig. 7. This is essentially due to the fact
that the summation of the two different responses in the two
parallel systems will result in the two responses canceling each
other at a complex frequency.

Using the decomposition of Fig. 7, we conclude that the time-
domain response is the sum of the responses of the two first-
order single-pole systems, i.e.,

(49)

A careful look at (48) indicates that if the gains of the two
paths have the same polarities (i.e., ), the zero is LHP
and falls between the two poles, as (48) could be looked at as
the weighted average of and . In this case, the response is
the sum of two exponentials going in the same direction with
two different time constants as shown in Fig. 8(a), resulting in
a droop, as the response associated with settles quickly but
the response corresponding to takes a while longer to reach
its final value.

The condition results in a LHP zero closer
to the origin than either and . Again using the equivalent
system of Fig. 7, we see that the two paths have opposite polari-
ties and the magnitude of the slower path’s gain is smaller
than the faster path , as shown in Fig. 8(b). The faster path
which has a higher gain results in an overshoot in the response

Fig. 9. Impact of the location of the zero on the step response behavior and the
implied relative polarity of the paths in its two-path equivalent.

that is eventually reduced by the slower path. Note that this over-
shoot is not caused by complex poles, rather by the zero in the
transfer function.

We have a LHP zero if , but the zero is at a
higher frequency than either and and, hence, usually has a
negligible effect. Another way to see this is by noting that in this
case slow response has significantly higher gain than the faster
one, so it modifies the slope of the response of the primary path
slightly but its effect is completely diminished by the time the
high-gain slower path reaches steady-state.

When the gains have opposite polarities and their ratio is in
the range , we have a RHP zero. The
slower path still has a larger gain magnitude but the faster one
has high enough gain to produce an undershoot, as in Fig. 8(c).
The undershoot is a trait associated with RHP zeros.

To summarize, two parallel paths with the same polarity result
in a real zero between and which causes a droop in the step
response. Having two signal paths with opposite polarities can
result in an undershoot if the faster path has a smaller gain and
an overshoot if it has a larger gain. These results are summarized
in Fig. 9.

As a side note, although in the dual path system of Fig. 7 there
are two capacitors, and , shorting of either one results in
a nonzero transfer function. Nonetheless, there is only one zero
in the transfer function, since simultaneous shorting (infinite-
valuing) of both results in a zero transfer function ,
as given by the criterion discussed in Section VI-A.

F. Properties of Second-Order Systems

The transfer function of a second-order system can be ex-
pressed in terms of the natural frequency, , and the quality
factor,

(50)
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where is the numerator and is a measure of
the energy loss per cycle in the system ( is called the damping
ratio). Note that the quality factor and the damping factor are
defined independent of the numerator. Evaluating (50) in terms
of coefficients, we obtain

(51)

which for a second-order system can be written in terms of the
time-constants

(52)

where (26) has been used in the last step to arrive at a more
symmetrical result. It is easy to see from quadratic roots of the
denominator of (50) that for the roots of the denom-
inator become complex.

The undamped resonance or natural frequency, , can be
readily related to the by

(53)

which can be written in terms of the time constants as

(54)

Equations (51) and (53) are useful in the light of the relatively
straightforward relation between and with and
coefficients given by (51) (see Example VII-5). They are
also useful as approximations in higher order to estimate the
amplitude and the frequency of peaking of the response (see
Example VII-5).

G. Infinite Value Time Constants

We saw earlier in Section II (3) that the transfer function of a
bandpass system with a well-defined pass-band can be factored
into the part responsible for the low-frequency behavior in terms
of inverse poles and zeros, which results in a high pass response
and a part responsible for the high-frequency behavior in terms
of conventional poles and zeroes that form a low pass response.
We can apply the infinite value time-constant (IVT) approach
to determine the low-frequency behavior, in particular, its low

3-dB frequency, .
To have a unity response at high frequencies in a high-pass

response, the numerator should be of the same order as the de-
nominator. If there are no zeros close to , we have

(55)

Fig. 10. a) Common-emitter stage with capacitors � and �� driving a load
capacitor, � ; b) its small-signal equivalent assuming � is large (or absorbed
into � ).

where is the gain at very high frequencies. As
we lower the frequency, the most dominant term affecting is

.
For an th-order high-pass system, we can approximate

with , i.e.,

(56)

where we have used the rotational symmetry discussed in the 14.
The time constant, , which we will denote as,

, is the time constant for the th element with all other ports
at infinite values, hence called an infinite-value time constant,
IVT.19

This can be summarized as

(57)

where

(58)

for capacitor, , and

(59)

for inductor . Resistance is the resistance seen looking
into port when the capacitors and inductors at all other ports
are at their infinite values (shorted capacitors and opened
inductors).

VII. EXAMPLES

In this section, we present several examples of the application
of the TTC method. We use well-known circuits to demonstrate
application of the method in a familiar context.

1) Common-Emitter, ZVT’s: Consider the common-emitter
stage of Fig. 10(a) with three capacitors, , , and
connected at the output. The equivalent small-signal model for

19When the energy-storing elements are capacitors only, this method is often
referred to as the method of short-circuit time constants. Obviously, the term
infinite value time-constant is advantageous because it applies to both capacitors
and inductors.
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Fig. 11. Equivalent circuit used to calculate for the common-emitter stage of Fig. 10: a) � , b) � , c) � .

this stage is shown in Fig. 10(b). The low-frequency gain is
obviously

First let us calculate the coefficient by calculating the three
ZVT’s associated with capacitors. In this example, we will use
the , , and indexes to identify the elements. To determine
the zero-value resistance seen by , we null (short-circuit) the
input voltage source and by inspection, we have20

The resistance seen by we have

and the zero-value resistance seen by is trivial as nulling the
sets the dependent current source to zero (open circuit) and

hence

20A useful result in many of these calculations is the resistance seen by ca-
pacitors connected between various terminals of a three terminal transistor with
external resistors, � , � , and � from the base (gate), collector (drain), and
emitter (source) to ac ground respectively. It can be shown that ignoring tran-
sistor’s intrinsic output resistance, � , the base-emitter (or gate-source) resis-
tance, � , is given by

� � � �
� ��

� � � �
�

The base-collector (or gate-drain) resistance, � is given by

� � � �� �� � �

where

� �� � �� � �� � ��� �

� ��

� �
�

� ��
�

�

� � � �
�

Note that � it the resistance seen between the base (gate) and the ac ground
which reduces to � for a MOSFET �� � ��. Resistance � is the re-
sistance between the collector (drain) and ac ground, and finally � is the ef-
fective trans-conductance. The resistance seen between the collector and the
emitter (drain and source), � , is given by

� �
� ��

� � � �

where the approximation disappears for � ��. Note that � is not the same
as the resistance seen between the collector and ground, namely, � .

Applying (16), we obtain

(60)

In a numerical example21 we have and the time
constants are ps, ps, and ps
leading to a bandwidth estimate of MHz. A
SPICE simulation predicts a 3 dB bandwidth of MHz
in close agreement with the above result.

2) Common-Emitter, Exact Transfer Function: The common
emitter stage of Fig. 10 has three capacitors, but in fact we can
only set two independent initial conditions because of the capac-
itive loop, i.e., it has only two independent degrees of freedom.

We have already determined the coefficient in (60). Now
let us determine using (24). To do so, we determine three
time constants by short-circuiting the associated element with
the superscript and looking at the impedance seen by the ele-
ments designated by the subscripts. Unlike ZVT’s, all of which
we needed, there are six such combinations of these time con-
stants ( , , , , , and ), out of which we can pick any
three to cover each two-way combination once and only once to
be coupled with the ZVT’s. There are many combinations, but
noting that the expression for is longer than other ZVT’s, we
try to pick the ones that avoid it to make our calculation more
straightforward, i.e.,

that are calculated using the circuits shown in Fig. 11. These
combined with the ZVT’s calculated in (60) produce

(61)

21We assume the following parameters: a collector current of 1 mA (trans-
lating to � � �	 mS), � � �		, � � 
	 fF, � � 
	 fF, � � �	 fF,
and � � 
 ps which corresponds to a � � � � � �	 fF/mA at room
temperature, leading to � � � � � � �		 fF and � � � � 
	 fF.
Now consider an external capacitor on the output of � � ��	 fF which to-
gether with � form � � � � � � 
		 fF. These values correspond
to a transistor cut-off frequency, 	 � � GHz. We also assume � � � k�
and � � 
 k� in the circuit of Fig. 10.
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Fig. 12. Common-emitter stage with a capacitor � in parallel with the input
resistance � .

From (30), we see that with three energy-storing elements,
which has to be zero since due to the capaci-

tive loop. Thus, the system is only second-order with two poles
as expected.

Since and are zero, we only need to calculate .
Shorting , the circuit reduced to a resistive divider between

and . The voltage gain is simply given by the
resistive divider ratio, i.e.,

(62)

Hence, the voltage transfer function can be determined from
(11)

where the and were calculated (60) and (61), respectively.
It is noteworthy that in this example, and have opposite
signs, which results in a RHP zero, , in the transfer
function as expected. Note the relative ease of calculation of this
transfer function compared to writing the nodal equations.

3) Common-Emitter, Input Zero: Let us consider the
common emitter stage of previous examples where a capacitor

is introduced in parallel with at the input, as shown in
Fig. 12. The time constants calculated in Example VII-1 remain
the same. Only a new time constant, , associated with
will appear in , which is easily calculated to be

Applying (16) to estimate the bandwidth, the ZVT simply pre-
dicts a smaller than when is not there since we have just
added a new, and potentially large time constant to the sum.

Numerically, with pF and all other values the same
as those in Example VII-1, we have ns and the band-
width estimate according to the conventional ZVT given in (16)
is MHz. However, this time SPICE predicts a

3 dB bandwidth of MHz which is more than an
order of magnitude higher! The reason is that introduces a
LHP zero since shorting it results in a nonzero transfer function

with the same polarity as . In this example, the frequency
of this zero has been adjusted by choosing the right value of

to coincide with the first pole of the transfer function effectively
canceling it.

In this example, although (16) is still providing a conservative
value, it is too far off to be of much use. The basic premise for
the approximation in the conventional ZVT is the absence of any
zeros close to or below . Once this assumption is violated, the
conventional ZVT does not provide much useful information.

This problem can be remedied by using the modified ZVT’s,
as defined in (42). To determine which time-constant must be
modified, we calculate the low-frequency transfer functions

Determination of (which is the only coefficient with a
significant value in this case) is straightforward, as it is simply
the gain without the input voltage divider. Since and are
nonzero, the two ZVT’s that need to be modified are

As can be seen, the modification to is negligible, while the
modified has a significant impact.

The new bandwidth estimate using the effective time con-
stants in (41) is ps ns ps ps

MHz which is much closer to the SPICE results of
MHz than the estimate of 34 MHz obtained from

the conventional ZVT’s. As we can see after the correction, it
is the time constants associated with and in conjunction
with that become significant and determine the bandwidth.
This result can be further improved by calculating coefficient
using (24).

One thing to note is that we can quickly verify whether we
need to use the approximation of (40), or (37) simply suffices,
by determining if setting any of the energy-storing elements to
its infinite value results in a nonzero transfer function, namely
if we have any nonzero terms. For nonzero we should
evaluate and see if its inclusion has a considerable
effect on . If that is the case, it should be subtracted from
and otherwise simply ignored.

4) Cascode Stage: The cascode stage is illustrated in
Fig. 13(a) with its small signal equivalent circuit in Fig. 13(b).
We note that for a large transistor output resistance, , the
time constants associated with , , , and are
decoupled from those of , , and , since the time-con-
stant of one group remains unaffected by any combination
of shorting and opening of the other batch. A closer look
also indicates that capacitors and are in par-
allel, so are , , and , and, hence, we define

and , and deal with
four capacitors from this point on.



1118 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 57, NO. 6, JUNE 2010

Fig. 13. a) Cascode stage driving a load capacitor, � ; b) its approximate small-signal equivalent circuit assuming large � .

The four ZVT time constants for these capacitors are

We notice that which was the dominant source bandwidth
reduction in the common emitter of Example VII-1, is now re-
duced significantly, which explains the well-known advantage
of the cascode. A numerical calculation of the ZVT’s with the
same values as the previous examples, predicts

MHz, where SPICE simulations indicate a 3 dB frequency
of MHz.

Noting that is decoupled from the other time constants, we
can express the transfer function as

where

and

thereby determining the transfer function exactly with much less
effort and more insight that nodal analysis.

5) Source Follower With Capacitive Load: Now we consider
the gain of the source-follower stage with a source resistance
driving a capacitive load, as shown in Fig. 14.22 Considering
and , the ZVT’s are

and is given by

22This could be the case if the stage is biased with a current source.

Fig. 14. Source follower stage driving a capacitive load, � .

In a numerical example,23 we have, ps
and ps . Using (51) and (53), we obtain,

(about 10 dB of peaking) and GHz. The
fact that is greater than 0.5 clearly indicates that we have a
pair of complex-conjugate poles.

Using (40) we obtain24 an estimate for of 15.9 GHz, while
the conventional ZVT’s predict GHz, which
is twice as large. A SPICE simulations of this circuit shows
10.2 dB of peaking at 9.8 GHz, with an GHz
all very close to the predictions obtained from our calculations.
Note that in practice, this peaking is usually attenuated by
and is not as pronounced as shown in this example. Nonethe-
less, the poles usually remain complex as the is often greater
than 0.5.

6) Reactive Bandpass Filter: In this example we apply the
approach to determine the exact transfer function of the reactive
bandpass network of Fig. 15. The time constants are

All transfer constants are zero with the exception of

23Assuming � � � � �� fF, � � �� mS and an � � � k�.
24The only nonzero � terms are � � � and � � � leading to � � �,

� � � � , and � � �.
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Fig. 15. Third-order reactive bandpass filter.

Fig. 16. Negative resistance cross-coupled oscillator.

which immediately results in the following transfer function:

demonstrating the ease of application of the method to a passive
lossless reactive network.

7) Negative Resistance: In this example, we analyze the
cross-coupled NMOS pair connected across and RLC resonator,
as shown in Fig. 16, where biasing details are not shown.25

Considering the input to be the differential current source, ,
and the output to be the differential voltage, , we determine
the transfer function. The time constants are

All transfer constants with the exception of are zero.
Defining , we easily see that .
These time and transfer constants correspond to ,

, and , as well as and .
Hence, we can write the transfer function as

(69)

25For instance, the transistors could be biased through the center tap of the
inductor.

Fig. 17. Common-source amplifier with a parallel LC trap in series.

As can be easily seen, for the denominator has
a pair of RHP complex conjugate poles, corresponding to an
exponentially growing response consistent with the start-up of
a cross-coupled LC oscillator [18]. This example shows that the
TTC approach is applicable to both stable and unstable circuits.

8) Parallel in Series: In the common-source amplifier of
Fig. 17, we have introduced a parallel in series. If we ignore
the transistor parasitic capacitors, the ZVT’s are

Since and according to (26), we can
avoid an indeterminant case26 by calculating
and hence

The transfer constants are

which result in

where according to (51), we have

As can be seen from the transfer function, there is a pair of
imaginary zeros at . Since the simultaneously infinite
valued inductor and capacitor result in a nonzero transfer func-
tion, , there are two zeros in the system.27

9) Input Impedance of Source Follower With Capacitive
Load: Consider the source follower of Fig. 18(a), driving a
capacitive load, (considering only and ). Calculating
the input admittance, , and inverting it is easier since
the input impedance with both capacitors open is infinite. To
calculate we must drive the input with a voltage source

26Since � � � and � � ���, the product is indeterminant. If one insists
on using the product � � , it can be determined by placing a resistor � in
series with � and setting it to zero in the final result.

27Note that in this example, � is zero while � is not; thus, the zeros are a
conjugate imaginary pair on the ��-axis.
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Fig. 18. a) Source-follower with � driving a load capacitor � ; b) the same
stage with an infinitesimal resistance � in series with � .

(the stimulus) and take the input current as the output variable,
as seen in Fig. 18(a).

First let us calculate when both capacitors are open. We
simply have

similarly

Now consider . When both and are shorted, a short is
seen looking into the input, and hence . While correct
this results in an indeterminant case, since for this configuration

which results in a zero times infinity case for
the coefficient. This can be easily resolved by introducing
a resistance, , (which is always there in practice anyway) in
series with the (or the input) and setting it to zero later, as
shown in Fig. 18(b). The previously calculated , , and
terms are still zero. The new is determined by inspection
to be

Now to find the zero-value time constants, we see by inspec-
tion that

and finally we go ahead and calculate as

Using these time-constants and low-frequency transfer func-
tions and setting , we obtain the input admittance

Note that the above expression has a single pole, because of
the arrangement of Fig. 18 where and form a capacitive
loop with the voltage source drive nulled (shorted). The above
expression can be used to find the input impedance

which is modeled as series combination of a capacitor and what
is sometimes referred to as a “super capacitor” since it has a
behavior [19], [20] More accurately it is a frequency dependent
negative resistance (FDNR), as setting we see that it
presents a negative resistance of

at the input. This can useful in making oscillators or filters.

VIII. CONCLUSION

The transfer function of circuits can be expressed to the de-
sired level of accuracy in terms of time and transfer constants
calculated under different combinations of shorted and opened
energy-storing elements using exclusively low frequency calcu-
lations. The approach has several useful corollaries in the design
of analog circuits.
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