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ABSTRACT Recently, the time-updating q-norm sparse covariance-based estimator (q-SPICE) was devel-

oped for online spectral estimation of stationary signals. In this work, this development is furthered to deal

with non-stationary signals. By introducing a weighting matrix defined by a forgetting factor, the generalized

least absolute shrinkage and selection operator (LASSO) is generalized, in order to allow for changes in the

spectral content. As shown here, the resulting LASSO formulation can be solved in a simple manner using

cyclic minimization, enabling recursive estimation for non-stationary signals. The proposed generalized

time-updating q-SPICE offers the same benefits as the original estimator, including being computationally

efficient at constant computational and storage cost, but also allows for substantial improvements when

dealing with non-stationary signals. The performance of the method is evaluated using both stationary and

non-stationary signals, indicating the preferable performance of the generalized formulation as compared to

the original time-updating SPICE algorithm.

INDEX TERMS Time-updating, sparse covariance-based spectral estimation, non-stationary signals.

I. INTRODUCTION

The problem of estimating the spectral content of periodic

or quasi-periodic signals occurs in a wide variety of appli-

cations, such as in audio and speech processing, biologi-

cal signal processing, and radar imaging (see e.g. [1]–[3]).

In applications requiring the resulting estimate to have higher

resolution than the periodogram, one often uses paramet-

ric or data-adaptive non-parametric estimation techniques.

Generally, parametric approaches rely heavily on accurate

a priori information of both themodel structure and themodel

order of the assumed signal. This is a major drawback as

such information is typically difficult to assess in practical

situations [4]. Non-parametric approaches on the other hand

are inherently robust to model assumptions, but in turn suffers

from low resolution [5]. To allow for the strengths of both

approaches, there has recently been significant interest in

semi-parametric approaches, which makes some weak model
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structure assumptions, such as the vector of parameters con-

sisting of a few dominant or nonzero elements, but does not

assume detailed information of the model order. Such formu-

lations have been found to allow for high resolution estimates

by exploiting sparse reconstruction approaches [6], although

typically do so by relying on one or more hyperparameters.

It is often a non-trivial task to select such hyperparameters

properly, although there is somework indicating that onemay

formulate selection algorithms for this (see e.g. [7], and the

references therein).

The sparse iterative covariance-based estimator (SPICE)

is a hyperparameter free semi-parametric approach that was

proposed in [4]. The method is globally convergent, and

has been shown to outperform several dense and sparse

estimators, yielding both superior resolution and low side-

lobe levels. In view of its excellent performance, several

works have examined and extended upon the framework

[8]–[16], and it has been shown that SPICE is a weighted

version of the square-root least absolute shrinkage and selec-

tion operator (LASSO) [10]–[12], with the selected weight
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being close to optimal. In [13], the SPICE algorithm was

generalized by introducing separate penalties on the sig-

nal and noise terms, yielding the so called q-SPICE algo-

rithm, which was found to substantially improve the resulting

estimates.

Regrettably, the brute force implementation of SPICE is

computationally cumbersome. Tomitigate this, several works

have examined efficient implementations for the SPICE

framework. Inspired by previous fast implementations for

the Capon estimator, the amplitude and phase estimation

(APES), and the iterative adaptive approach (IAA) [18]–[26],

a fast SPICE algorithm based on Gohberg-Semencul (GS)

factorization was proposed in [17], exploiting the inherent

Fourier structure of the dictionary and the Toeplitz structure

of the covariance matrix. However, such an implementation

neglects the inherent sparsity of the parameter space. In [15],

a wideband SPICE algorithm was developed by introducing

the use of integrated dictionary elements spanning bands

of the considered parameter space, which enables a reli-

able sparse signal reconstruction at a much lower compu-

tational cost. Both these fast implementations consider the

case of batch processing, where the entire signal is processed

simultaneously.

In a recent effort, a time-updating SPICE was proposed,

offering the possibility of online spectral estimation [16].

The time-updating SPICE is capable of recursively updating

and refining the estimates by each obtained sample, thereby

allowing for real-time processing, for instance, when the

data is obtained as a stream of measurement. This allows

the algorithm to scale well with the growing size of the

data, resulting in an overall reduction of both the com-

putational time and the storage cost in memory. In [27],

the online implementation was extended to also allow for

the q-SPICE algorithm. Both these implementations assume

stationary signals. When dealing with non-stationary signals,

however, they are incapable of recovering the evolution of the

time-varying spectral content, as all samples are given equal

importance. Different from stationary signals, the spectral

content of non-stationary signals varies with time. Therefore,

new samples may bring new information on the current spec-

tral content, and it is therefore desirable to weight more recent

samples more than those of the distant past. Following this

train of thought, and to overcome the shortcoming of the

current time-updating SPICE algorithm, this paper proposes

a generalized time-updating q-SPICE algorithm that forms

an online estimate of the spectrum for non-stationary signals

by introducing a forgetting factor in the updating of the

estimate. The resulting algorithm offers the same benefits

as the original time-updating q-SPICE, including full control

over the sparsity in the estimate in a data adaptive and noise

independent manner, while allowing for a simple implemen-

tation using a cyclic minimizing of an equivalent LASSO

problem, enabling an implementation that is computationally

efficient with a constant computational and storage cost, even

for cases when processing large amounts of data. The choice

TABLE 1. Notation.

of the forgetting factor allows for changes in the spectral

content.

The remainder of this paper is organized as follows: in

section II, we reviews the q-SPICE algorithm, and formulate

the problem of interest. Then, in Section III, the proposed

generalized time-updating q-SPICE is detailed. Numerical

examples are provided in section IV, illustrating the per-

formance of the proposed method on both stationary and

non-stationary signals. Finally, section V contains our con-

clusions.

Notation: We denote vectors and matrices by boldface

letters. The kth component of a vector u is written as uk .

Further symbols are summarized in Table 1.

II. BACKGROUND

Let y (t) denote the signal of interest. Under the assumption

that y (t) contains an unknown number of sinusoidal compo-

nents, one may represent the signal as

y = Fθ + e (1)

where y = [y (t1) , y (t2) , . . . , y (tM )]
T is an M × 1 vec-

tor containing a sequence of measurements sampled at (the

possibly non-uniform sampling) times t1, t2, . . . , tM , and F

a known M × K regressor matrix containing a dictionary of

potential candidate sinusoids, such that

F =
[

f1 f2 · · · fK
]

=











h1
h2
...

hM











(2)

with

fk =
[

1 ejωk · · · ejωk (M−1)
]T

(3)

ωk = 2π

K
(k − 1) (4)

for k = 1, 2, . . . ,K , where K denotes the num-

ber of candidate frequencies, which is assumed to be

selected sufficiently large to allow some of the candi-

date pitches to approximate the true frequencies reason-

ably well. Furthermore, θ = [θ1, θ2, . . . , θK ]
T denotes

the (unknown) complex-valued amplitudes of the candidate

elements, with only a few elements assumed to be non-zero,
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whereas e = [e (t1) , e (t2) , . . . , e (tM )]
T denotes an addi-

tive noise vector containing the background noise and any

non-periodic signal components.

The problem of interest may therefore be expressed as a

sparse estimation problem, wherein both the amplitudes and

the number of non-zero amplitudes are sought.

A. SPICE

A now classical approach to express this problem as a sparse

reconstruction problem [6]

minimize
θ

‖y − Fθ‖22 + µ‖θ‖1 (5)

where µ is a user set regularization parameter dictating the

tradeoff between the fit of the signal and the sparsity of

the solution. Although typically easier than the model order

estimation problem, it is often a non-trivial task to select

µ suitably. An interesting alternative was introduced in [4],

where the authors proposed a novel sparse reconstruction

technique based on a covariance fitting criteria that avoids the

selection of any user parameters. The resulting minimization

criteria is then formed as

minimize
pk≥0

∥

∥

∥
R−1/2

(

yyH − R
)∥

∥

∥

2

F
(6)

where

R = APAH (7)

A =
[

F I
]

(8)

1= [a1, a2, . . . , aM+K ] (9)

P = diag (p) (10)

p =
[

|θ1|2, |θ2|2, . . . , |θK |2, σ 2
1 , σ

2
2 , . . . , σ

2
M

]T
(11)

1= [p1, p2, . . . , pM+K ]
T (12)

with R−1/2 denoting the Hermitian positive definite square

root of R−1, I theM ×M identity matrix, diag (·) a diagonal
matrix formed by the specified vector, and σ 2

m the noise

variance for sample m, for m = 1, . . . ,M . As shown in [4],

minimizing (6) is equivalent to

minimize
pk≥0

yHR−1y + ‖Wp‖1 (13)

where

W = diag ([w1,w2, . . . ,wM+K ]) (14)

wk = ‖ak‖2

‖y‖2
, k = 1, 2, . . .M + K (15)

It is worth noting that as (13) minimizes a signal fitting

criteria, which measures the distance through the inverse of

the (model) covariance matrix, no explicit regularization is

required.

B. q-SPICE

The constraint in (13) is a weighted 1-norm, enabling a

sparse solution to be formed. However, as it is formulated

in (13), both the signal and the noise components are penal-

ized jointly. Consequently, the minimization will also impose

a sparse solution on the noise variances, causing the solu-

tion to be non-sparse in order to ensure that the resulting

covariance matrix is invertible. In order to remedy this draw-

back, the generalized SPICE modifies the criterion in (13)

as [13]

minimize
pk≥0

yHR−1y + ‖Wsps‖1 + ‖Wnpn‖q (16)

where

ps = [p1, p2, . . . , pK ]
T (17)

pn = [pK+1, pK+2, . . . , pM+K ]
T (18)

Ws = diag ([w1,w2, . . . ,wK ]) (19)

Wn = diag ([wK+1,wK+2, . . . ,wM+K ]) (20)

with the choice of q allowing for direct control of the sparse-

ness for the dense estimate on the noise variance. Thus,

the original SPICE is obtained when q = 1. Onemay increase

the norm for the second term in (16) to control the robustness

of the estimate, as discussed in [13].

C. PROBLEM FORMULATION

For real-time processing, the batch mode of the current

implementations of the q-SPICE is not suitable, as the

computational complexity and storage complexity quickly

become cumbersome with increasing data size. Further-

more, for non-stationary signals, the current batch imple-

mentations cannot track frequency changes in the spectral

content.

In order to do so, and to alleviate the cumbersome nature

of the batch implementations, one may preferably implement

the optimization recursively.

Over past decades, approaches designed for online pro-

cessing, coupled with spectral analysis of non-stationary

signals have been well developed, with examples includ-

ing the classical recursive least squares (RLS), and the

recently developed time-recursive IAA (see e.g. [18], [19],

[28], [29]). Many of these methods are filterbank-based,

assuming that the input signal is stationary during a short

time, and then estimate the spectral content using a set

of sliding-windowed data. The windowing procedure may

provide the ability for tracking the varying spectral con-

tent, but results in a degraded resolution and high sidelobe

levels.

In this paper, based on the inherent connection between

the q-SPICE and the LASSO, we instead propose a

time-updating implementation of the q-SPICE, which allow-

ing for the forming of a recursive estimate in an online

fashion.
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III. GENERALIZED TIME-UPDATING q-SPICE

It has been proved that q-SPICE is equivalent to solv-

ing a weighted hyperparameter-free square-root LASSO

problem [13]

minimize
θ

‖y − Fθ‖2 + ‖Dθ‖1 (21)

where

D = diag





√

‖f1‖22
M1/q

,

√

‖f2‖22
M1/q

, . . . ,

√

‖fK‖22
M1/q



 (22)

Based on this equivalence, the time-updating q-SPICE

implementation has recently been developed in [16], [27],

although this implementation is incapable of also tracking

time-varying spectral content.

For non-stationary signals that contain time-varying fre-

quencies, the goal is to recover the evolution of the spectral

content as it varies over time. As new samples bring more

information on the current spectral contents, it is desired

to weight the more recent samples more than the earlier

samples. Following this train of thought, to allow for changes

in the spectral content, we here introduce a forgetting factor,

0 ≤ λ ≤ 1, in the equivalent formulation in (21), such

that

minimize
θ

‖3(y − Fθ)‖2 + ‖D1θ‖1 (23)

where 3 = diag
([

λM−1, λM−2, . . . , 1
])

, which gives older

samples less importance than newer samples, and

with

D1 = diag





√

‖3f1‖22
M1/q

,

√

‖3f2‖22
M1/q

, . . . ,

√

‖3fK‖22
M1/q



 (24)

We proceed to show that the resulting generalized LASSO

problem in (23) can be solved in a simple manner using cyclic

minimization.

A. CYCLIC MINIMIZATION

With respect to one component θk , for k = 1, . . . ,K , the cost

function in (23) may be re-written as

J (θk) =
[

‖3(xk − fkθk)‖22
]1/2

+ dkk |θk | + Nk (25)

where

xk = y −
K
∑

i=1,i 6=k
fiθi (26)

with dkk denoting the kth diagonal element of D1, and

Nk =
K
∑

i=1,i 6=k
dii |θi| (27)

is a constant independent of θk . Let θk = rke
jϕk , where rk >

0, and ϕk ∈ [−π, π). Following the derivation in [16], [27],

the quadratic term in (25) may be reformulated using polar

coordinates, such that

ψ = ‖3(xk − fkθk)‖22
=
∥

∥

∥
3

(

xk − fkrke
jϕk
)∥

∥

∥

2

2

= ‖3xk‖22 +
∥

∥

∥
3fkrke

jϕk
∥

∥

∥

2

2

− 2Re
{

rk f
H
k 3

H3xke
−jϕk

}

= ‖3xk‖22 + ‖3fk‖22 r2k
− 2rk

∣

∣

∣
fHk 3

H3xk

∣

∣

∣
cos

[

arg
(

fHk 3
H3xk

)

− ϕk

]

(28)

yielding

J (θk) = J (rk , ϕk)

= ψ1/2 + dkkri (29)

where the constantNk has been omitted in the interest brevity.

The minimizing ϕk is simply

ϕ̂k = arg
(

fHk 3
H3xk

)

(30)

Let

αk = ‖3xk‖22
βk = ‖3fk‖22
γk =

∣

∣

∣
fHk 3

H3xk

∣

∣

∣
(31)

such that (25) may be expressed as

J (rk , ϕk) =
(

αk + βkr
2
k − 2γkrk

)1/2
+ diiri (32)

According to the Cauchy-Schwarz inequality, we have

αkβk − r2k ≥ 0 (33)

Following the derivations in [16], [27], the cost function (25)

is convex with respect to rk . Consequently, the optimal solu-

tion to minimize (25) can be then expressed as [16]

θ̂k =
{

r̂ke
jϕ̂k , if

√
M1/q − 1γk >

√

αkβk − γ 2
k

0, else
(34)

where

r̂k = γk

βk
− 1

βk

(

αkβk − γ 2
k

M1/q − 1

)1/2

(35)

Thus, the estimate of θ̂k relies on xk , which depends on the

unknown θ̂i, i = 1, . . . ,K , i 6= k that are also to be estimated.

To handle this, one may set initial values on θ̂i, i = 1, . . . ,K ,

and then iteratively update the estimation on θ̂k while holding

the remaining elements θ̂i, i = 1, . . . ,K , i 6= k constant, until

convergence. Because the function shown by (25) is convex,

such an iterative process is global convergent. Practically,

one may instead simply stop the iteration after L iterations.

The behaviour of the iterative process has been investigated

in [16], where only a small number of iterations was shown

to be required.
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TABLE 2. Generalized time-updating q-SPICE.

B. ONLINE FORMULATION

In the case of online processing, the length of the input

data,M , is incrementally increased over the observation time.

To explicitly derive the recursive estimate, unless otherwise

specified, the here used symbols refer to the measurements,

temporary variants, or estimates at time sampleM .

Given the current estimate denoted by θ̃ , let

z = y − Fθ̃ (36)

denote an auxiliary variable. Then,

xk = z + fk θ̃k (37)

Therefore, the variables in (31) may be expressed as

αk = ‖3xk‖22
=
∥

∥

∥
3

(

z + fk θ̃k

)∥

∥

∥

2

2

= ‖3z‖22 + ‖3fk‖22
∣

∣

∣
θ̃k

∣

∣

∣

2
+ 2Re

{

θ̃∗
k f

∗
k3

H3z
}

FIGURE 1. Effect of input data length, M, on the relative error between
the batch and (generalized) time-updating q-SPICE estimates.

βk = ‖3fk‖22
γk =

∣

∣

∣
fHk 3

H3xk

∣

∣

∣

=
∣

∣

∣
fHk 3

H3

(

z + fk θ̃k

)∣

∣

∣
(38)

Next, introduce the auxiliary variables

η = ‖3z‖22 (39)

ζ = FH3H3z (40)

and the recursively computed variables

Ŵ(M) = FH3H3F = λ2Ŵ (M − 1)+ hHMhM (41)

ρ(M) = FH3H3y = λ2ρ (M − 1)+ hHMy (tM ) (42)

κ(M) = yH3H3y = λ2κ (M − 1)+ |y (tM )|2 (43)

where Ŵ (M − 1), ρ (M − 1), and κ (M − 1) denote tempo-

rary variables at time sample M − 1. Then, (38) may be

simplified as

αk = η + Ŵkk

∣

∣

∣
θ̃k

∣

∣

∣

2
+ 2Re

{

θ̃∗
k ζk

}

βk = Ŵkk

γk =
∣

∣

∣
ζk + Ŵkk θ̃k

∣

∣

∣
(44)

where Ŵkk denotes the kth diagonal entry of Ŵ(M), and ζk the

kth entry of ζ . Similarly, (35) can be expressed as

ϕk = arg
(

ζk + Ŵkk θ̃k

)

(45)

Therefore, the computation of θ̂ can be expressed in terms

of (44) and (45), together with the current estimate θ̃ .

Once θ̂ has been obtained, the current estimate, θ̃ , must be

updated along with the auxiliary variables, z, to compute the

subsequent coefficients of θ̂ . The remaining derivation then

follows the one in [16], [27], and is therefore omitted here.

The resulting algorithm is summarized in Table 2.
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FIGURE 2. Comparison between the batch and (generalized) time-updating q-SPICE estimates under varying input
data length, M, for (a) M = 0.1K , (b) M = 0.3K , (c) M = 0.5K , and (d) M = 0.7K .

C. COMPUTATIONAL COMPLEXITY ANALYSIS

As may be noted from the resulting expression, using λ = 1

yields the conventional time-updating q-SPICE algorithm.

Therefore, the benefits of the conventional algorithm are

well preserved by the proposed generalized time-updating

q-SPICE algorithm, being computationally efficient at a con-

stant computational cost of O
(

LK 2
)

operations per new

sample, independent of the data length [16], [27]. In contrast,

the batch SPICE implementation requires repeated inversions

of M ×M matrices, costing O
(

M3
)

operations.

D. EFFECT OF THE CHOICE OF THE

FORGETTING FACTOR λ

The choice of λ reflects assumptions on the variability of the

spectral content of the signal, with λ = 1 implying a station-

ary signal, whereas a smaller value will allow for a quicker

adaption to changes in the spectral content. However, a too

large or too small value of λ will degrade the performance

of the estimate. On one hand, if λ is too large, the impor-

tance of older samples is increased, which will weaken the

adapting ability for changes in the spectral content. On the

other hand, the estimate requires an adequate number of

samples to converge to the global minimizer in (34). If λ is

selected too small, more samples will in effect be discarded

or partially neglected, which may result in that the estimate

cannot converge to the global minimizer. According to our

experience, the choice of 0.95 < λ < 0.97 can well

balance the tradeoff between the recoveries of stationary and

non-stationary contents.

IV. NUMERICAL RESULTS

We proceed to examine the numerical performance of the

presented online implementation, and illustrate the achiev-

able performance gain in the resulting spectral estimate as

compared to the conventional time-updating q-SPICE for-

mulation proposed in [16], [27], as well as several existing

online spectral analysis methods. Here, we consider additive

zero-mean complex white Gaussian noise, and define the

signal-to-noise ratio (SNR) as

SNR = 10log10
Ps

σ 2
(46)

in decibels (dB), where Ps is the power of the signal compo-

nent, whereas σ 2 denotes the noise variance. The presented

simulations do not examine the influences of the choice of

q and the iteration number, L, as they have been thoroughly

investigated in previous works [13], [16], [27]. Here, we set

q = 1 and L = 2.
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FIGURE 3. Evolution of spectral estimates for frequency hopping signals. (a) Ground-truth. (b) STFT, W = 25. (c) Sliding
window IAA, W = 25. (d) Sliding window q-SPICE, W = 25. (e) Original time-updating q-SPICE proposed in [16], [27].
(f) Generalized time-updating q-SPICE (λ = 0.95).

A. STATIONARY SIGNALS

We begin by comparing the performance of the batch and

time-updating implementations. Consider a signal containing

three unit amplitude complex sinusoidal components at fre-

quencies f1 = 0.2, f2 = 0.6, and f3 = 0.7, with SNR =
5 dB. Initially considering stationary signals, the forgetting

factor is set to λ = 1. To evaluate the difference between the

batch and (generalized) time-updating q-SPICE estimates,

denoted by θ̂batch and θ̂online, respectively, we define the

relative error

ε =

∥

∥

∥
θ̂batch − θ̂online

∥

∥

∥

2
∥

∥

∥
θ̂batch

∥

∥

∥

2

(47)

Figure 1 shows the relative error as a function of the ratio

between the length of input data and the number of poten-

tial candidate frequencies, M/K . For a given M/K ratio,

the choice of K has almost no impact on the relative error,
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FIGURE 4. Evolution of spectral estimates for frequency hopping signals. (a) Ground-truth. (b) Sliding window IAA,
W = 50. (c) Sliding window q-SPICE, W = 50. (d) Generalized time-updating q-SPICE (λ = 0.95).

with the results converging, as may be expected, as the ratio

approach two. Figure 2 illustrates further examples, where

the power and frequency estimates of each algorithm for

varying M are plotted. The number of potential candidate

frequencies is here set to K = 200. It may be seen that both

the batch and time-updating q-SPICE provide much better

results than the periodogram, with both higher resolution and

lower sidelobes. Although there is a notable performance

difference between the two kinds of q-SPICE implementation

when M is relatively small, the difference decreases as M

increases. Especially for the cases of moderate or large M

(as compared to K ), the difference between the frequency

estimates becomes marginal.

B. NON-STATIONARY SIGNALS

Frequency hopping signals are widely used in applications of

wireless communication and radar electron warfare. We pro-

ceed to examine such a frequency hopping signal, with length

M = 1000, as shown in Figure 3(a), using a dictionary con-

taining K = 500 potential candidate frequencies. To allow

for the spectral content changes, the forgetting factor for

the proposed method is set to λ = 0.95. The result of

the classical short-time Fourier transform (STFT) is shown

in Figure 3(b), with a window size of W = 25, illus-

trating the low resolution of the STFT and its poor side-

lobe suppression. Figure 3(c) and Figure 3(d) illustrate the

results of the sliding window IAA and q-SPICE, using the

same window size. Although the frequency resolution has

been improved significantly, some closely spaced frequen-

cies cannot be clearly resolved. As seen from Figure 3(e),

the original time-updating q-SPICE is incapable of recover-

ing the evolution of the time-varying spectrum. In contrast,

by introducing a forgetting factor, the proposed method can

successfully reflect the change in the spectral content, with

a higher frequency resolution as compared to the aforemen-

tionedmethods, as shown in Figure 3(f). As the size of sliding

window, W , balances the tradeoff between the time and fre-

quency resolution of the sliding window IAA and q-SPICE

methods, it is necessary to compare them further with the

proposed generalized time-updating q-SPICE for larger W .

As shown by Figure 4, when W is increased to 50, the slid-

ing window IAA and q-SPICE methods provide similar fre-

quency resolution as the proposed method. However, as may

be seen from the figures, the sliding window implementations

in these cases suffer severer leakage problems in the time

dimension.
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FIGURE 5. Evolution of spectral estimates for signals containing stationary and non-stationary content.
(a) Ground-truth. (b) STFT, W = 50. (c) Sliding window IAA, W = 50. (d) Sliding window q-SPICE, W = 50. (e) Original
time-updating q-SPICE proposed in [16], [27]. (f) Generalized time-updating q-SPICE (λ = 0.95).

Next, we consider the case of a signal containing both

stationary and non-stationary components, as shown in

Figure 5(a). The non-stationary signal has a continuously

varying frequency content. The number of potential candidate

frequencies is set to K = 200. Figure 5(b) shows the result

of the STFT, using a window size of W = 50. Figure 5(c)

and Figure 5(d) illustrate the results of the sliding window

IAA and q-SPICE methods, using the same window size,

clearly yielding preferable performance as compared to the

STFT estimate. However, both contain artifacts for the esti-

mates of the non-stationary signal. As seen from Figure 5(e),

the original time-updating can only work for the stationary

components. In contrast, the proposed method can success-

fully track changes in the spectral content change, main-

taining the high resolution for the stationary signal, with a

forgetting factor λ = 0.95, as shown by Figure 5(f). Although

the frequency resolution for the non-stationary component

is somewhat inferior to that of the sliding window IAA and
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FIGURE 6. Effect of the choice of the forgetting factor λ. (a) λ = 0.97. (b) λ = 0.95. (c) λ = 0.92. (d) λ = 0.89.

q-SPICEmethods, the resulting estimate contains no spurious

artifacts.

C. EFFECT OF THE CHOICE OF THE FORGETTING FACTOR λ

Figure 6 illustrates a further comparison for the degree of

forgetting, for the signal shown in Figure 5(a). It may be

seen that a larger λ will aggravate the blurring effect on

the estimates of the non-stationary content. However, a too

small λ will degrade the performance of the estimates of the

stationary content. Practically, for problems similar to these,

our recommendation is to choose 0.95 < λ < 0.97 to well

balance the tradeoff between the recoveries of stationary and

non-stationary contents.

V. CONCLUSION

This paper derives a generalized time-updating q-SPICE

estimator, able to allow for non-stationary signals, while

still allowing for the substantial performance improvement

offered by the time-updating q-SPICE as compared to

the batch q-SPICE. The performance of the implemen-

tation has been demonstrated using numerical examples,

clearly indicating the improved performance as compared

to the original time-updating q-SPICE, as well as to other

recent online spectral estimators. The user parameter λ may

be selected to trade-off between tracking rapidly chang-

ing spectral content and to retain conservatism to small

changes.
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