
Generalized Time Warping for

Multi-modal Alignment of Human Motion

Feng Zhou Fernando De la Torre

Robotics Institute, Carnegie Mellon University

www.f-zhou.com ftorre@cs.cmu.edu

Abstract

Temporal alignment of human motion has been a topic

of recent interest due to its applications in animation, tele-

rehabilitation and activity recognition among others. This

paper presents generalized time warping (GTW), an exten-

sion of dynamic time warping (DTW) for temporally align-

ing multi-modal sequences from multiple subjects perform-

ing similar activities. GTW solves three major drawbacks

of existing approaches based on DTW: (1) GTW provides a

feature weighting layer to adapt different modalities (e.g.,

video and motion capture data), (2) GTW extends DTW

by allowing a more flexible time warping as combination

of monotonic functions, (3) unlike DTW that typically in-

curs in quadratic cost, GTW has linear complexity. Exper-

imental results demonstrate that GTW can efficiently solve

the multi-modal temporal alignment problem and outper-

forms state-of-the-art DTW methods for temporal alignment

of time series within the same modality.

1. Introduction

Alignment of time series is an important unsolved prob-

lem in many scientific disciplines. Some applications in-

clude speech recognition [23], curve matching [29], chro-

matographic and micro-array data analysis [18], activity

recognition [14], temporal segmentation [35] and synthe-

sis of human motion [13, 22]. In particular, alignment of

human motion has recently received increasing attention in

computer vision and computer graphics. Major challenges

for an accurate temporal alignment of human motion in-

clude modeling the difference in subjects’ physical charac-

teristics, view point changes, motion style and speed of the

action [30, 31]. Unlike existing work, this paper addresses

the challenging problem of multi-modal alignment of time-

series coming from different sensors where subjects are per-

forming a similar activity. For instance, consider the prob-

lem illustrated in Fig. 1. How can we solve for the temporal

correspondence between the frames of a video, the samples

of motion capture data, and the accelerometer signal from

different people kicking a ball?

Figure 1. Temporal alignment of three sequences of different sub-

jects kicking a ball recorded with different sensors (top row video,

middle row motion capture and bottom row accelerometers).

Our work is motivated by recent success in extending dy-

namic time warping (DTW) for aligning human behavior.

Zhou and De la Torre [34] proposed canonical time warp-

ing (CTW). CTW combines DTW with canonical correla-

tion analysis to temporally align data of different dimen-

sionality (e.g., motion capture and video). More recently,

Gong and Mendioni [7] proposed dynamic manifold warp-

ing (DMW) that extends CTW to incorporate more complex

spatial transformations through manifold learning. How-

ever, CTW and DMW have three main limitations due to

reliance in DTW: (1) Their computational complexity is

quadratic in space and time; (2) They address the problem

of aligning two sequences, and it is unclear how to extend

it to the alignment of multiple sequences; (3) They com-

pute the temporal alignment using DTW, which relies on

dynamic programming to find the optimal path; however, it

is unclear how to adaptively constrain the temporal warping.

To overcome these limitations, this paper proposes general-

ized time warping (GTW), which allows an efficient and

flexible alignment between two or more multi-dimensional

time series of different modalities. GTW uses multi-set

canonical correlation analysis to find the spatial transfor-

mations, and extends DTW by parameterizing the tempo-

ral warping as a combination of monotonic basis functions.

Unlike existing DTW approaches based on dynamic pro-
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gramming that usually have quadratic cost, GTW uses a

Gauss-Newton algorithm that has linear complexity in the

length of the sequence. Moreover, GTW allows to align

several multi-modal time series.

The remaining of the paper is organized as follows. Sec-

tion 2 reviews previous work on temporal alignment. Sec-

tion 3 reviews previous work on DTW. Section 4 describes

GTW. Section 5 illustrates the benefits of GTW on synthetic

and real data.

2. Previous work

This section reviews previous work on temporal align-

ment of human motion. In particular, we discuss the chal-

lenges of aligning human motion from sensory data in the

context of computer graphics and computer vision.

In the computer graphics literature, time warping of mo-

tion capture data has been a key component in many anima-

tion systems [32, 16]. However, most existing techniques

are challenged when applied to placing stylistically differ-

ent motions into correspondence. To account for the varia-

tions of human motion performed by different subjects, one

popular strategy is to augument DTW with certain regres-

sion models. For instance, Hsu et al. [13] proposed to com-

bine DTW with a space warping step, in which each in-

dividual degree of freedom from motion capture data can

be scaled and translated. In [12], a weighted PCA algo-

rithm [6] was used to find a low dimensional embedding

such that the stylistic part of gesture sequences can be re-

moved. Although these methods yield promising alignment

results for motion capture data, they have several limitations

when the extracted features in the sequences are very noisy

(e.g., video) or come from different modalities (e.g., video

and motion capture).

In the computer vision literature, a challenge in sequence

alignment is to build view-invariant representations. In a

multi-camera setting, it has been shown that both 2-D ho-

mography and 3-D epipolar geometries can form a powerful

cue for alignment of two or more sequences. For instance,

homography-based constraints [1, 2, 21] have been shown

to be useful to align sequences in a planar scene. In addi-

tion, the fundamental matrix [25, 10] can be used to guide

DTW to eliminate the distortion generated by the projec-

tion from 3D to 2D. Li and Chellappa [17] proposed a gen-

eral framework for video alignment by optimizing various

2-D and 3-D constraints on a Riemannian manifold. Recent

work [3] also illustrated the stability of the self-similarity

matrix of actions under view changes. Built upon this ob-

servation, Junejo et al. [14] proposed a view-independent

descriptor for video alignment using DTW. Observe that

most existing works rely on certain explicit or implicit es-

timation of the underlying camera geometry. Unlike these

works, GTW is able to efficiently align semantically similar

multi-modal sequences.

3. Dynamic time warping

Given two time series1, X = [x1, · · · ,xnx
] ∈ R

d×nx

and Y = [y1, · · · ,yny
] ∈ R

d×ny , dynamic time warping
(DTW) [23] is a technique to align X and Y such that the
following sum-of-square cost error is minimized [34]:

Jdtw(Wx,Wy) = ‖XWx −YWy‖
2
F , (1)

where Wx = W(px) ∈ {0, 1}
nx×l and Wy = W(py) ∈

{0, 1}ny×l are binary replication matrices (i.e., only repli-

cate columns) associated with the warping paths (px and

py) by a non-linear mapping, W(p) : {1 : n}l →
{0, 1}n×l, which sets wpt,t = 1 for t ∈ {1 : l} and zero

otherwise. l ≥ max(nx, ny) is the number of steps needed

to align both signals. Recall that the optimal l is automat-

ically selected by the DTW algorithm. The warping paths,

px ∈ {1 : nx}
l and py ∈ {1 : ny}

l, denote the correspon-

dence indexes between frames. For instance, the ith frame

in X and the jth frame in Y are aligned iff there exists

pxt = i and p
y
t = j for some t.

In order to find a polynomial solution, the warping paths

(px and py) have to satisfy three constraints: (1) Bound-

ary conditions: [px1 , p
y
1] = [1, 1] and [pxl , p

y
l ] = [nx, ny].

(2) Monotonicity: t1 ≥ t2 ⇒ pxt1 ≥ pxt2 and p
y
t1
≥ p

y
t2

. (3)

Continuity: [pxt , p
y
t ] − [pxt−1, p

y
t−1] ∈ {[0, 1], [1, 0], [1, 1]}.

Notice that the choice of step size is not unique. For in-

stance, replacing the step size by {[2, 1], [1, 2], [1, 1]} can

avoid the degenerated case in which a single frame of one

sequence may be assigned to many consecutive frames in

the other sequence. See [23] for an extensive review on

several DTW’s modifications to control the warping paths.

4. Generalized time warping

Generally speaking, there are three major limitations of

using DTW to align multi-modal and multi-dimensional

time series: (1) DTW relies on dynamic programming (DP)

to exhaustively search over all possible warping paths. This

search has quadratic computational complexity (O(nxny))
in both time and space. This might be restrictive when ap-

plying DTW to aligning long sequences. (2) A direct exten-

sion of DTW to align more than two sequences is usually

infeasible due to the combinatorial explosion of possible

warping paths. For instance, a DP-based alignment of m

1Bold capital letters denote a matrix X, bold lower-case letters a col-

umn vector x. xi and x(i) represent the ith column and ith row of the ma-

trix X respectively. xij denotes the scalar in the ith row and jth column

of the matrix X. All non-bold letters represent scalars. 1m×n,0m×n ∈
R
m×n are matrices of ones and zeros. In ∈ R

n×n is an identity matrix.

‖x‖p = p
√

∑

|xi|p denotes the p-norm. ‖X‖2
F

= tr(XTX) desig-

nates the Frobenious norm. vec(X) denotes the vectorization of matrix

X. X ◦Y is the Hadamard product of matrices. {i : j} lists the integers,

{i, i + 1, · · · , j − 1, j}. [⇒i Ai], [⇓i Ai], [
⇒

i
Ai] are the horizontal,

vertical, diagonal concatenation respectively. ⊖ denotes the titled minus,

e.g., A6×2 ⊖B2×2 = A6×2 − (13×1 ⊗B2×2).
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Figure 2. Temporal warping function. (a) Six common choices

for monotonically increasing function q́. (b) An example of time

warping XW(Qa) ∈ R
1×70 of 1-D time series X ∈ R

1×50. The

warping function is a linear combination of three basis functions

including a constant function and two monotonically increasing

functions.

sequences incurs a complexity of O(
∏m

i=1 ni) in both time

and space. (3) DTW lacks a feature weighting mechanism.

To address these issues, this section proposes general-

ized time warping (GTW), a technique for efficient spatio-

temporal alignment of multiple time series. To accom-

modate for subject variability and to take into account the

difference in the dimensionality of the signals, GTW uses

multi-set canonical correlation analysis. To compensate for

temporal changes, GTW extends DTW by incorporating

a more flexible temporal warping parameterized by a set

of monotonic basis functions. Unlike existing approaches

based on DP with quadratic complexity, GTW efficiently

optimizes the time warping function using a Gauss-Newton

algorithm, which has linear complexity in the length of the

sequence.

4.1. Objective function

Given a collection of m time series, {X1, · · · ,Xm},
where Xi = [xi

1, · · · ,x
i
ni
] ∈ R

di×ni . GTW finds for each

Xi, a non-linear temporal transformation Wi ∈ {0, 1}
ni×l

and a low-dimensional spatial embedding Vi ∈ R
di×d,

such that the resulting sequence VT
i XiWi ∈ R

d×l is well
aligned with the others in the least-squares sense. In a nut-
shell, GTW minimizes the sum of pairwise distances:

Jgtw({Wi,Vi}) =

m
∑

i=1

m
∑

j=1

1

2
‖VT

i XiWi −V
T
j XjWj‖

2
F

+
(

m
∑

i=1

ψ(Wi) + φ(Vi)
)

, (2)

s. t. Wi ∈ Ψ and Vi ∈ Φ, ∀i ∈ {1 : m},

where ψ(·) and φ(·) are regularization functions, which bias

the solution in the space of temporal transformations Wi

and the embedding for spatial transformation Vi, respec-

tively. Ψ and Φ represent the domains for Wi and Vi. The

explicit form for Ψ and Φ will be discussed in the following

sections.

Generally speaking, optimizing Jgtw (Eq. 2) is a non-

convex optimization problem with respect to the alignment

(Wi) and projection matrices (Vi). We alternate between

solving for Wi using a Gauss-Newton algorithm, and opti-

mally computing Vi using mCCA. These steps monotoni-

cally decrease Jgtw, and because the function is bounded

below the alternating scheme will converge to a critical

point.

4.2. Parameterization of the temporal warping
To simplify the discussion, let’s consider the tempo-

ral warping matrix W ∈ {0, 1}n×l for a single sequence
X ∈ R

d×n. The DP-based approach to optimize W has a
computational cost ofO(nl), which quickly becomes infea-
sible as the sequence length increases. In order to reduce the
computational complexity and to provide a flexible way to
control the warping path, GTW approximates the warping
path p ∈ {1 : n}l, which parameterizes the warping ma-
trix W(p), as a linear combination of monotonic functions
q ∈ [1, n]l, that is:

p ≈

k̄
∑

c̄=1

āc̄q̄c̄ +

ḱ
∑

ć=1

áćq́ć = Q̄ā+ Q́á = Qa,

where a = [ā; á] ∈ R
k, k = k̄ + ḱ is the weight vec-

tor and Q = [Q̄, Q́] ∈ R
l×k is the basis set composed of

(1) constant function Q̄ = [q̄1, · · · , q̄k̄] ∈ [1, n]l×k̄ and

(2) monotonically increasing function Q́ = [q́1, · · · , q́ḱ
] ∈

[1, n]l×ḱ. Fig. 2a illustrates six common choices for q́, in-

cluding (1) step function, (2) polynomial function (axb), (3)

exponential function (exp(ax + b)), (4) logarithm function

(log(ax + b)), (5) I-spline, (6) hyperbolic tangent function

(tanh(ax + b)). Recall that [5] also used hyperbolic tan-

gent functions as temporal basis, and the weights were op-

timized using a non-negative least squares algorithm. GTW

differs from Fisher et al. [5] in three aspects: (1) GTW al-

lows aligning multidimensional time series that have differ-

ent features. Fisher et al. can only align one-dimensional

time-series. (2) Unlike [5], we used a more efficient Eigen-

decomposition to solve CCA and QP for optimizing the

weights. (3) We propose to use a family of monotonic func-

tions that allow for a more general warping (e.g., subse-

quence matching), and constraints to regularize the solution.

As in DTW, we incorporate the following constraints on

the weight a to constrain the warping path p = Qa.

Boundary conditions: We enforce the position of the

first frame, p1 = q(1)a ≥ 1, and the last frame, pl =
q(l)a ≤ n, where q(1) ∈ R

1×k and q(l) ∈ R
1×k are the first

and last rows of the basis matrix Q ∈ R
l×k respectively. In

contrast to DTW that imposes tight boundary (i.e., p1 = 1
and pl = n), GTW relaxes the equality with inequality con-

straints to allow for a sub-part of X being indexed by p.

This relaxation can be used for sub-sequence matching.

Monotonicity: We enforce t1 ≤ t2 ⇒ pt1 ≤ pt2 by

constraining the sign of weight: á ≥ 0. Notice that con-

straining the weights is only a sufficient condition to ensure

3



monotonicity but it is not necessary. See [24, 26, 33] for

in-depth discussions on monotonic functions.

Continuity: To approximate the hard constraint on the

step size (e.g., pt − pt−1 ∈ {0, 1}), we penalize the cur-

vature of the warping path,
∑l

t=1 ‖∇q
(t)a‖22 ≈ ‖FQa‖22

where F ∈ R
l×l is the 1st order differential operator.

In summary, we constrain the warping path2 as:

ψa(a) = η‖FQa‖22, Ψa = {a | La ≤ b},

where L =





0ḱ×k̄ −Iḱ
−q̄(1) −q́(1)

q̄(l) q́(l)



 and b =





0ḱ

−1
n



 .

Therefore, given a basis set of k monotone functions, all

feasible weights belong to a polyhedron in R
k parameter-

ized by L ∈ R
(ḱ+2)×k and b ∈ R

ḱ+2. For instance, Fig. 2b

illustrates an example of a warping function (red solid line)

as a combination of three monotone functions (blue dotted

lines).

4.3. Optimization of the temporal weights
Suppose that ki basis functions, Qi = [qi

1, · · · ,q
i
ki
] ∈

R
l×ki , are associated with the ith sequence Xi, then the op-

timization of Jgtw (Eq. 2) with respect to the time warping
parameter Wi minimizes:

Jgtw({ai}) =

m
∑

i=1

m
∑

j=1

1

2
‖VT

i XiW(Qiai)−V
T
j XjW(Qjaj)‖

2
F

+

m
∑

i=1

ηi‖FQiai‖
2
2, (3)

s. t. Liai ≤ bi, ∀i ∈ {1 : m}.

To optimize Eq. 3, we linearize the expression and use a
Gauss-Newton method similar to the Lucas-Kanade frame-
work [19] for image alignment, where the nonlinear expres-
sion in Eq 3 is linearized by performing a first order Taylor
approximation on VT

i XiW(Qi(ai+δi)) ∈ R
d×l given the

increment δi ∈ R
ki , that is:

vec
(

V
T
i XiW(Qi(ai + δi))

)

≈ vi +Giδi, (4)

where vi = vec
(

V
T
i XiW(Qiai)

)

∈ R
dl
,

Gi = [⇓t ∇(VT
i xq

(t)
i

ai
)q

(t)
i ] ∈ R

dl×ki .

Plugging Eq. 4 in Eq. 3 yields:

Jgtw({ai + δi}) ≈
m
∑

i=1

m
∑

j=1

1

2
‖vi +Giδi − vj −Gjδj‖

2
2

+

m
∑

i=1

ηi‖FiQi(ai + δi)‖
2
2. (5)

2Notice that the constraints of ψ and Ψ in Eq. 2 associated with the

warping matrix W are replaced by the constraints (ψa and Ψa) associated

with the weight a.

Minimizing Eq. 5 with respect to the weight increment δi ∈
R

ki yields a quadratic programming problem:

min
δ

1

2
δ
T
Hδ + f

T
δ, s. t. Lδ ≤ b− La, (6)

where k̇ =
m
∑

i=1

ki, δ = [⇓i δi] ∈ R
k̇
,

H = m[⇒
i
G

T
i Gi]− [⇓i G

T
i ][⇒j Gj ]

+ [⇒
i
ηiQ

T
i F

T
i FiQi] ∈ R

k̇×k̇
,

f = [⇒
i
G

T
i ]
(

m[⇓i vi]⊖ [⇒i vi]1m

)

+ [⇓i ηiQ
T
i F

T
i FiQiai] ∈ R

k̇
,

L = [⇒
j
Li] ∈ R

(k̇+m)×k̇
,

a = [⇓i ai] ∈ R
k̇
, b = [⇓i bi] ∈ R

(k̇+m)
.

In all our experiments, we initialize ai by uniformly

aligning the sequences (the curve of GN-Init in Fig. 3b).

The length of the warping path l is usually set to l =
1.1maxmi=1 ni. In practice, when the sequence length ni is

very large, an additional pre-conditioner should be used to

obtain a numerically stable solution. For instance, a nor-

malized version of Eq. 6 minimizes 1
2δ

TR−1HR−1δ +
fTR−1δ subject to LR−1δ ≤ b − La, where R =

[⇒
i
niIki

] ∈ R
k̇×k̇ is the scaling matrix. After solving this

new quadratic optimization problem, we need to rescale the

result as δ ← R−1δ. The computational complexity of the

algorithm is O(dlk̇ + k̇3).
As discussed in [23, 28], there are various techniques

that have been proposed to accelerate and improve DTW.

For instance, the Sakoe-Chiba band (DTW-SC) and the

Itakura Parallelogram band (DTW-IP) reduce the complex-

ity of the original DTW algorithm to O(βn2) by constrain-

ing the warping path, assuming β < 1. However, using

a narrow band (a small β) might cut off potential warp-

ing space, leading to a sub-optimal solution. For instance,

Fig. 3a shows an example of two 1-D time series and the

alignment results calculated by different algorithms. The

results computed by DTW-SC and DTW-IP are less accu-

rate than the one computed by Gauss-Newton (GN). This

is because both the SC and IP bands are over-constrained

(Fig. 3b).

To provide a quantitative evaluation, we synthetically

generated 1-D sequences at 15 scales. For DTW-SC, we

set the band width as β = 0.1. For GN, we varied k

among 6, 10, 14 to investigate the effect of the number of

bases. For each scale, we randomly generated 100 pairs of

sequences. The error is computed with Eq. 9 and shown

in Fig. 3cd. DTW obtains the lowest error but takes the

most time to compute. This is because DTW exhaustively

searches the entire parameter space to find the global op-

tima. Both DTW-SC and DTW-IP need less time than DTW

because they need to search a smaller space constrained
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by different bands. Empirically, DTW-IP is more accurate

than DTW-SC for our synthetic dataset. This is because the

global optima is more likely to lie in the IP band than the

SC band. Compared to DTW, DTW-SC and DTW-IP, GN

is more computationally efficient because it has linear com-

plexity in terms of sequence length. Moreover, increasing

the number of bases monotonically reduces the error.

4.4. Optimization of the spatial embedding
To optimize over Vi we used multi-set canonical correla-

tion analysis (mCCA) [11], and we constrain the embedding
Vi as:

φ({Vi}) =
mλi

1− λi

‖Vi‖
2
F , (7)

Φ = {Vi |

m
∑

i=1

V
T
i

(

(1− λi)XiWiW
T
i X

T
i + λiIdi

)

Vi = Id},

where λi ∈ [0, 1] is the regularization term. Consider the
special case when λi → 1, the constraint is equivalent to
the one used in multi-set partial least squares (mPLS) [27].
Plugging Eq. 7 into Eq. 2 yields:

max
V

tr(VT
CV), s. t. V

T
DV = Id, (8)

where ḋ =
m
∑

i=1

di, V = [⇓i Vi] ∈ R
ḋ×d

,

C = [⇓iXiWi][⇒j W
T
j X

T
j ]− [⇒

i
XiWiW

T
i X

T
i ] ∈ R

ḋ×ḋ
,

D = [⇒
i
(1− λi)XiWiW

T
i X

T
i + λiIdi ] ∈ R

ḋ×ḋ
.

The optimal V of Eq. 8 can be solved in closed form us-

ing a generalized Eigen decomposition, i.e., CV = DVΛ.

The dimension d is selected to preserve 90% of the total

correlation.

5. Experiments

This section compares GTW against state-of-the-art

DTW approaches in three experimental settings: (1) align-

ing time series with known ground truth to provide a quan-

titative comparison, (2) aligning several video sequences of

different people performing similar actions using different

visual features for each sequence, and (3) aligning three se-

quences of different subjects performing a similar action

recorded with different sensors (motion capture data, ac-

celerometers and video).

5.1. Other methods for comparison

We compared GTW against several versions of Pro-

crustes analysis [4], which are used as baselines.

Procrustes dynamic time warping (pDTW): Pro-
crustes analysis [4] has been extensively used for shape
for alignment. We proposed a simple temporal extension

pDTW, which aligns multiple time series by minimizing:

Jpdtw({Wi}) =

m
∑

i=1

m
∑

j=1

1

2
‖XiWi −XjWj‖

2
F

= m

m
∑

i=1

‖XiWi −
1

m

m
∑

j=1

XjWj‖
2
F .

pDTW alternates between solving the warping matrix

Wi ∈ {0, 1}
ni×l by a slightly modified DTW and com-

puting the mean sequence 1
m

∑m

j=1 XjWj ∈ R
d×l.

Procrustes derivative dynamic time warping
(pDDTW): In order to make DTW invariant to trans-
lation, derivative dynamic time warping (DDTW) [15]
uses the derivatives of the original features. Similar to
pDTW, we combined DDTW and Procrustes framework to
minimize:

Jpddtw({Wi}) =
m
∑

i=1

m
∑

j=1

1

2
‖XiF

T
i Wi −XjF

T
j Wj‖

2
F ,

where Fi ∈ R
ni×ni is the 1st order differential operator.

Procrustes iterative motion warping (pIMW): Similar
to GTW, iterative motion warping (IMW) [13] alternates be-
tween time warping and spatial transformation to align two
sequences. In our experiment, we extended IMW to align
multiple sequences by minimizing:

Jpimw({Wi,Ai,Bi})

=

m
∑

i=1

m
∑

j=1

1

2
‖(Xi ◦Ai +Bi)Wi − (Xj ◦Aj +Bj)Wj‖

2
F

+

m
∑

i=1

(

λ
a
i ‖AiF

a
i
T ‖2F + λ

b
i‖BiF

b
i

T
‖2F

)

,

where Ai,Bi ∈ R
d×ni are the scaling and translation pa-

rameter for the ith sequence Xi, respectively. Fa
i ,F

b
i ∈

R
ni×ni are 1st order differential operators, enforcing a

smooth change in the columns of Ai and Bi.
To evaluate the time warping results, we proposed

to compute the difference between the warping matrix

W
alg
i ∈ {0, 1}ni×lalg given by the algorithm (e.g., GTW,

pDTW, pDDTW, pIMW) and the ground-truth Wtru
i ∈

{0, 1}ni×ltru . Recall that the number of warping steps can
be different, i.e., lalg 6= ltru. Equivalently, we could com-

pare the warping path Palg = [palg
1 , · · · ,palg

m ] ∈ R
lalg×m

and Ptru = [ptru
1 , · · · ,ptru

m ] ∈ R
ltru×m, that is:

erralg =
dist(Palg,Ptru) + dist(Ptru,Palg)

lalg + ltru
, (9)

where dist(P1,P2) =

l1
∑

i=1

l2

min
j=1

‖p
(i)
1 − p

(j)
2 ‖2,

where p
(i)
alg ∈ R

1×m and p
(j)
tru ∈ R

1×m are the ith row of

Palg and jth row of Ptru respectively. Let’s consider each

warping path P ∈ R
l×m as a curve in R

m with l points.

Thus the term of minl2j=1 ‖p
i
1 − p

j
2‖2 can be interpreted as

the closest distance between point pi
1 and the curve P2.
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5.2. Synthetic dataset

In the first experiment we synthetically generated 3-D

spatio-temporal signals (2-D in space and 1-D in time) to

evaluate the performance of GTW. The first two spatial di-

mensions and the time dimension are generated as follows:

Xi =

[

UT
i (Z+ bi1

T
l )Mi

eTi

]

∈ R
3×ni , i ∈ {1 : 3}

where Z ∈ R
2×l is a curve in two dimensions (Fig. 4a

top). Ui ∈ R
2×2 and bi ∈ R

2 are randomly generated

projection matrix and translation vector, respectively, see

Fig. 4a top. The binary matrix Mi ∈ {0, 1}
l×ni is gen-

erated by randomly choosing ni ≤ l columns from Il for

temporal distortion (Fig. 4a bottom). The third spatial di-

mension ei ∈ R
ni is generated with zero-mean Gaussian

noise (Fig. 4b top). Notice that in the case of synthetic

data we are able to obtain the ground truth alignment ma-

trix Wtru
i = MT

i . The error between the ground truth and

a given alignment Walg is computed by Eq. 9 (Fig. 4g).

We initialize all methods by uniformly aligning the three

sequences, i.e., pi = round(linspace(1, ni, l))
′, where

round(·) and linspace(·) are MATLAB functions.

We set the length of the latent sequence to l = 300. For

GTW, we set ηi = λi = 0 and selected d to preserve 90%
of the total correlation. We selected three hyperbolic tan-

gent and three polynomial functions as bases for monotonic

warping function.

Fig. 4b-e show the spatial-temporal warping estimated

by each algorithm. Fig. 4g shows the erralg (Eq. 9) for

100 new generated time series. As can be observed in

Fig. 4e GTW obtains the best performance. pDTW (Fig. 4b

fails in this case since the sequences have been distorted

in space. pDDTW (Fig. 4c) cannot deal with this exam-

ple because the feature derivatives do not capture well the

structure of the sequence. pIMW (Fig. 4d) warps sequences

towards others by translating and re-scaling each frame in

each dimension. Moreover, pIMW has more parameters

(
∑m

i=1 lni + 2dni) than GTW (
∑m

i=1 ki + ddi), and hence

pIMW is more prone to over-fitting. Furthermore, pIMW

6



tries to fit the noisy dimension (3rd spatial component) bias-

ing alignment in time, whereas GTW has a feature selection

mechanism which effectively cancels the third dimension.

5.3. Aligning videos with different features
In the second experiment we applied GTW to align video

sequences of different people performing a similar action.

Each video is encoded using different visual features. The

video sequence are taken from the Weizmann database [8],

which contains 9 people performing 10 actions. To extract

dynamic features from video, we extract the silhouette with

background subtraction (Fig. 5a). We computed three pop-

ular shape features (Fig. 5b) for each 70-by-35 re-scaled

mask image, including (1) binary image, (2) Euclidean dis-

tance transform [20], and (3) solution of Poisson equation

[9]. In order to reduce the feature dimension (2450), we

picked the top 123 principal components that preserve 99%
of the total energy. To evaluate the performance, we ran-

domly selected three walking sequences, each of which is

manually cropped into two cycles of human walking. The

ground-truth alignment was approximated by using pDTW

using the same features, and it provided an accurate visual

temporal alignment.

GTW was initialized with uniform alignment, and we

used the parameter λ = 0.1. We used five hyperbolic tan-

gent and five polynomial functions as the monotonic bases

(Fig. 5f middle-top).

Fig. 5g shows the erralg for 10 randomly generated sets

of videos. Notice that neither pDTW (Fig. 5c) nor pDDTW

(Fig. 5d) is able to align the videos because both of them

lack the ability to solve for correspondence between signals

of different nature. As observed from Fig. 5e, pIMW reg-

isters the top three components well in space; however, it

overfits all the dimensions and thus obtains a biased time

warping path. In contrast, GTW (Fig. 5f) warps the se-

quences accurately in both space and time. Fig. 5b illus-

trates the temporal correspondence found by GTW.

5.4. Multi­modal sequence alignment
This experiment applies GTW to align sequences of dif-

ferent people performing a similar activity but recorded

with different sensors. We selected one motion capture se-

quence (Subject 12, Trial 29) from the CMU motion cap-

ture database, one video sequence (Eli, jacking) from the

Weizmann database [8], and we collected the accelerome-

ter signal of a subject performing a jacking exercise. Some

instances of the multi-modal data can be seen in Fig. 6d.

Observe, that to make the problem more challenging, while

in the mocap (top row) and video (middle row) the two sub-

jects are performing the same activity, in the accelerometer

sequence (bottom row) the subject only moves one hand and

not the legs. Even in this challenging scenario, GTW is able

to solve for the temporal correspondence that maximizes the

correlation between signals.

For the mocap data, we computed the quaternions for the

20 joints resulting in a 60 dimensional feature vector that

describes the body configuration. In the case of the Weiz-

mann dataset, we computed the Euclidean distance trans-

form as described earlier. The data from the accelerometers

is collected in X, Y, and Z axes by an X6-2mini USB ac-

celerometer (Fig. 6a) at a rate of 40Hz. GTW was initial-

ized by uniformly aligning the three sequences. We used

five hyperbolic tangent and five polynomial functions as

monotonic bases. Fig. 6b shows the first components of the

three sequences projected separately by PCA. As shown in

Fig. 6c, GTW found an accurate temporal correspondence

between the three sequences. Unfortunately, we do not have

ground-truth for this experiment, however visual inspection

of the video suggest that results are consistent with human

labeling. Fig. 6d shows several frames that have been put in

correspondence by GTW.

6. Conclusions
This paper describes GTW, a technique for temporally

aligning multiple multi-modal sequences. The GTW algo-

rithm offers a more flexible and efficient framework than

the state-of-art DTW algorithms because we parameterize

the time warping function as a linear combination of mono-

tonic bases.

Although GTW has shown promising preliminary re-

sults, there are still unresolved issues. First, the Gauss-

Newton algorithm for time warping converges poorly in

the area where the objective function Jgtw is non-smooth.

Second, GTW is subject to local minima. A well known

strategy to escape from local minima in image alignment

has been to adopt a coarse-to-fine approach for optimizing

GTW at different temporal scales. Third, although the ex-

periments show admissible time warping results with fixed

bases, it is more desirable to automatically learn the mono-

tonic bases. We plan to explore these issues in future work.
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nition from temporal self-similarities. IEEE Trans. Pattern Anal. Mach. Intell.,

2010.

[15] E. J. Keogh and M. J. Pazzani. Derivative dynamic time warping. In SDM,

2001.

[16] L. Kovar and M. Gleicher. Automated extraction and parameterization of mo-

tions in large data sets. ACM Trans. Graph., 23(3):559–568, 2004.

[17] R. Li and R. Chellappa. Aligning spatio-temporal signals on a special manifold.

In ECCV, 2010.

[18] J. Listgarten, R. M. Neal, S. T. Roweis, and A. Emili. Multiple alignment of

continuous time series. In NIPS, 2005.

[19] B. D. Lucas and T. Kanade. An iterative image registration technique with an

application to stereo vision. In IJCAI, 1981.

[20] C. R. Maurer, R. Qi, and V. V. Raghavan. A linear time algorithm for computing

exact euclidean distance transforms of binary images in arbitrary dimensions.

IEEE Trans. Pattern Anal. Mach. Intell., 25(2):265–270, 2003.
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