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A system of equations is introduced and discussed that describe the nonlinear dynamics of magnetic 
perturbations in a magnetized, high-temperature plasma. Diamagnetism, ion gyroradii effects, and 
finite electron mass are taken into account. These equations govern Alfven as well as electrostatic 
waves and vortices and describe the nonlinear evolution of reconnecting modes. Electrons are 
treated in a fluid model. The equation for the ion response is new and is a nonlinear generalization 
to all orders in the thermal ion gyroradius of the nonlinear fluid model. This system of equations 
conserves two fluxes that are different from, but related to, the magnetic flux. Two-dimensional 
equilibrium solutions in the form of stationary propagating magnetic structures are obtained with the 
methods introduced in the theory of vector nonlinearities in electrostatic drift vortices. In the 
noncollisional regimes of interest the inertia of the electrons resolves the singularity in the current 
density that tends to develop at magnetic separatrices. The positions of the X points of the conserved 
fluxes are mirror symmetric and at a distance of the order of the electron skin depth from the 
resonant surface. The set of equations admits an energy integral and can be cast in noncanonical 
Hamiltonian form. The role of the Casimir invariants, that are functions of the conserved fluxes, is 
investigated and the connection with "reduced magnetohydrodynamics" is emphasized. 

I. INTRODUCTION 

Small-scale processes determine many aspects of the 
global behavior of magnetically confined toroidal plasmas. A 
well-known example is the so-called "internal disruption," 
where reconnection of magnetic field lines in a narrow layer 
near the rational magnetic surface results in a global redis­
tribution of the plasma density and temperature profiles. An­
other example is anomalous transport. According to current 
ideas the formation of small-scale coherent nonlinear struc­
tures, like magnetic islands, vortices, etc., may play an im­
portant role in the physics of enhanced heat and particle 
flows in a plasma. 

Coherent nonlinear magnetic structures, such as mag­
netic islands and current sheets, have been studied in the zero 
frequency limit. 1 In this case the current density is constant 
on magnetic surfaces. In high-temperature plasmas, however, 
resistive modes, that lead to reconnection of magnetic field 
lines, are found to propagate with a finite velocity2,3 when 
diamagnetic andlor finite gyroradius effects are accounted 
for. 

In this paper we present a set of equations that governs 
the linear and nonlinear evolution of plasma phenomena with 
frequencies below the ion cyclotron and the magneto sonic 
and above the ion-acoustic frequency. Diamagnetism, finite 
electron mass and full ion gyroradius effects are taken into 
account. The spatial scales of the phenomena may range 
from magnetohydrodynamic (MHD) scales down to the in­
ertia electron skin depth. In a high-temperature plasma, this 
skin depth is smaller than the gyro radius of a thermal ion. 
Our set of equations is based on a fluid description of elec­
trons and on a hybrid model for the ions. The equation that 

describes the ion response is a generalization of both the 
nonlinear fluid ion response and of the linear response that is 
valid for all values of the thermal ion gyroradius.z The non­
linearities in the equations arise from the EX B advection 
and from the gradients of the electron pressure and current 
density along the total magnetic field. 

In part of this paper we focus the discussion on two­
dimensional (2-D) magnetic structures and extend the exist­
ing treatments4

-
8 to include finite electron mass and full ion 

gyroradius effects.9 These structures are characterized by a 
current density distribution that is not constant on magnetic 
surfaces and tend to develop large currents at magnetic sepa­
ratrices. Electron mass effects arise from the electron inertia 
term and from a finite gyro radius contribution to the electron 
stress tensor.9 In the highly noncoIlisional regimes of interest 
finite electron mass effects resolve the current singularity at 
separatrices. Current density gradients, however, can still be 
large. The effect of electron inertia on reconnect ion and on 
linear reconnecting modes was examined in Refs. 10 and 11. 

For stationary propagating modes and for arbitrary val­
ues of the ratio of the thermal ion gyroradius to the charac­
teristic scale length of the structures, the electron equations 
can be integrated once following the methods introduced in 
the theory of vector nonlinearities in electrostatic drift 
vortices.12 This leads to an equilibrium equation for the mag­
netic flux function that is a nonlinear eigenvalue equation for 
the propagation velocity. Although solutions to this equation 
are not known, a number of general properties, like the po­
sition of the X points, are derived. 

The set of equations admits an energy integral that plays 
the role of the Hamiltonian functional, and the equations can 
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be cast in Hamiltonian form in terms of noncanonical Pois­
son brackets. 13,14 The integral invariants (the conservation 
laws) determine which states are attainable by a system. One 
class of integral invariants consists of the Hamiltonian func­
tional and of the functionals that are related to its symmetry 
properties. Another class, the Casimir invariants, arises from 
the algebraic properties of the Poisson brackets. The knowl­
edge of a full set of integral invariants provides a general 
description of "equilibrium" solutions and gives the tools to 
investigate their nonlinear stabilityY It will be shown that in 
the three-dimensional (3-D) case, two electron and one ion 
Casimir functional exist. In the cold ion limit the ion Casimir 
is replaced by an infinite set. Similarly, if the problem is 
restricted to 2-D perturbations that are aligned with the back­
ground magnetic field, the two electron Casimirs are re­
placed by two infinite sets. 

This paper is organized as follows. In Sees. II and III we 
introduce a set of three coupled nonlinear equations that are 
first order in time. In Sec. IV the linear limit of this set is 
briefly discussed since it serves as a boundary condition for 
the stationary propagating solutions discussed in Sees. V and 
VI. In Sec. V stationary propagating solutions are investi­
gated in the limits of zero electron mass and the structure of 
the resulting singularity of the current density at the mag­
netic separatrices is analyzed in the limit of large and of 
small ion gyro radii. Electron inertia effects are reintroduced 
in Sec. VI. The nonlinear system of equations is integrated 
once in terms of two arbitrary functions. These depend on 
two linear combinations, denoted by f:t, of the generalized 
magnetic flux 'Ve , which is the fluid analog of the general­
ized electron momentum, and of the logarithm of the elec­
tron density In n. The profile of the magnetic shear field and 
the linearized boundary conditions fix the two arbitrary func­
tions in the regions outside the separatrices of f:t . A nonlin­
ear differential equation is then obtained for the flux function 
'1ft. A number of properties that characterize the spatial struc­
ture of the solutions of this equation near the separatrices are 
discussed in different frequency intervals and the relation­
ship between linear and nonlinear solutions is clarified. In 
particular the position of the X points of f:t is analyzed. In 
Sec. VII the equations are cast in a Hamiltonian functional 
form. It is shown that the two infinite sets of electron Ca­
simirs are functionals of f:t , that are the conserved quantities 
of our dynamical system. Thus neither '1ft nor '1ft e is con­
served, and X points of f:t do not coincide with X points of 
'1ft or '1ft". The generalized flux 'lfte is conserved only in the 
limit of zero electron temperature. We show that these con­
clusions hold irrespective of the ion response. Finally in Sec. 
VIII the conclusions are drawn and the validity of the fluid 
electron model adopted is discussed. 

II. ELECTRON EQUATIONS 

In this and in the following section we derive a set of 
equations that describe the time evolution of nonlinear elec­
tric and magnetic structures, such as vortices, islands, and 
current layers. Important characteristics of these equations 
are that they include the effects played by electron inertia in 
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limiting the electron current in regimes where the plasma 
coIlisionality is low and that they are valid to all orders in the 
thermal ion gyroradius. 

We start from the electron momentum balance and the 
continuity equation 16 

(1) 

and 

an 
- +V·nv=O at ' (2) 

where all symbols have their usual meaning; v" is the 
electron-ion collision frequency. 

We will neglect magnetic curvature effects and approxi­
mate the geometry of a 10w-f3 toroidal configuration by a 
plane slab which is periodic in (y,z) and inhomogeneous 
along the x direction. The magnetic field is 

(3) 

where Bo is the constant field at the surface x=O. The flux 'V 
corresponds to the helical flux function in a torus and is the 
sum of the shear flux 'lfto(x) of the background field and a 
fluctuating part q,(x,t). The electric field is 

Boa'V 
E=-V"'+--e. 

'f' c at Z 
(4) 

Neglecting perpendicular inertia and resistivity, one ob­
tains from (1) the velocity in the (x,y) plane, 

The last term is supposed to be small with respect to the 
ExB drift. 

The contribution from the stress tensor n to the parallel 
momentum balance (v·n)z= -(cmeleBo)VnTxez'Vuz 
cancels the pressure gradient contribution to v.l· Vv z in the 
inertia term. 

The density can be written as n(x,t)=no(x)[l +ii(x,t)J, 
where no(x) is the density of the background plasma and Ii 
represents the density fluctuations. Although ii remains 
small, we take Vii-V In no(x)/no. Further, we assume that 
the parallel ion velocity is much smaller than the electron 
velocity v z • Thus, using Ampere's law, the velocity is related 
to the flux function according to vz= -Jz/eno 
=-(cBo/47Teno)Vlqr, where no=no(O). In the Iow­
collisionality regime under consideration, the electron fluid 
behaves isothermally along magnetic field lines. For simplic­
ity we will take the electron temperature to be constant 
throughout the fluid. 

After substitution of the perpendicular velocity (5), the 
parallel component of the momentum balance (1) and the 
continuity equation (2) become 
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a~e [n] -- +a[<I>,~e]+a 'I',ln-
at no 

a<l> a n 7]c 2 2-
=a--a-ln-+-V'I' az az nO 4'lT .L 

(6) 

and 

!....In ~ +a[<I>,ln ~]-~ ['I',J]=~ aJ , 
at no no f3e f3e az 

(7) 

respectively, where 

~ e= 'I' + vz/Oe= 'I' -d;vi '1', (8) 

is the generalized flux function, de = C / W pe being the electron 
inertial skin depth, the brackets denote 

(9) 

and cf)=ecp/T,J=vi'l', a=cT/(eBo), and f3e=4'lTnoT/Bij. 
We have included resistivity in Ohm's law (6). As will tum 
out, current gradients will be large so that electron viscosity 
should also be taken into account. However, we will consider 
ideal time scales on which dissipative processes do not play 
a role. 

In part of this paper we will consider solutions that 
propagate with velocity u in the y direction at an angle with 
respect to the z axis determined by a, so that all quantities 
depend only on r=t,x and A=y - ut+ az. 

Stationary propagating modes, a/a1'=O, are solutions of 

[<1>-; x,'I'e+ ax] +['1'+ aX,ln :J=o (10) 

and 

[
un] 1 2 <I> - - x,ln - -- ['I' + ax, V.L '1'] = O. 
a no f3e 

(11) 

The electron density n is related to the ion density n i through 
the quasineutrality condition. 

III. ION RESPONSE 

We assume that the nonlinear ion response to modes 
with parallel phase velocities above the ion thermal velocity 
is governed by 

!.... (In ~ + 1'i(1-fo)<I» +a[<I>,ln ~ + 1'i(l-fo)<I>] 
at no no 

+aLj[Lj<l>,ln :J=o, (12) 

where Ti= T/Ti , and f 0 is the integral operator 
fo=exp(p7Vi)Io( - prvi), Pi being the thermal ion gyrora­
dius and 10 the Bessel function of the first kind. The operator 
L is defined as 

L=ejLj=exLx+eyLY=PiV.L( ~ akP7kvik) , (13) 
k=O 

where the coefficients a k have to be such that L 2 = f 0 -1. In 
addition we require that L r-+ i/21/2 for Pi-+oo• Summation 
over the index j in the (x,y) plane is assumed. The operators 

Phys. Plasmas, Vol. 1, No.9, September 1994 

in 1 - f 0 and L act on fluctuating quantities and can be inter­
preted in terms of a Pade approximation2 fo-+1!(l-prVI), 
L-+PiV.L/(I-prvDl/2. 

The shear field coupling to the parallel ion motion has 
been neglected. We take Eq. (12) to be valid in a homoge­
neous magnetic field and in the limit of constant ion tem­
perature. We expect that this model can be extended to finite 
ion temperature gradients as long as the ratio of the tempera­
ture and the density scale lengths is below a threshold 
valueY The nonlinear equation (12) is defined for all values 
of the ion gyroradius. It is an ansatz and it is not rigorously 
derived from the Vlasov equation. However, it contains the 
well-known linear response and it leads to the correct non­
linear ion equations in the limits of small and large ion gy­
roradii. Note that the operator structure in Eq. (12) is analo­
gous to the one in nonlinear gyro kinetic theory.I8 In addition 
it is such that the system consisting of Eq. (12) and the 
electron equations (6) and (7) leads to an energy integral and 
as will be demonstrated in Sec. VII, that it can be written in 
Hamiltonian form. 

Linearizing Eq. (12) and neglecting higher-order deriva­
tives of the background density, it is easily seen that the 
linear Vlasov ion response is recovered. In the large-Pi limit, 
where fo-+O and Lj-+i/21!2, Eq. (12) yields the nonlinear 
Boltzmann response 

n 
In -( -) = - Ti<l>. 

no x 
(14) 

In the small-Pi limit, Eq. (12) can be written in the form 

!.... (In !!...-TiP7V'i<l» +a(1+P7Vi)[<I>,ln!!...] 
at no no 

- a P7V .L . [ <1>, V .L ( In :0 + Ti<l> ) ] = O. (15) 

By multiplying with 1-p~vi and by neglecting terms of 
order pi, Eq. (15) becomes 

!.... (In ~- pfvi h) + a[<I>'ln ~] - apfV {<I>, V .Lh] = 0, 
at no no 

(16) 

where h=lnn/no+Ti<l>. This expression is identical to the 
one that is obtained from fluid equations when the collision­
less gyroviscosity contributions to the stress tensor are taken 
into account. 16 

For stationary propagating modes with velocity u in the 
y direction, Eq. (12) can be written as 

[ <I> -~ x,ln !!... + Ti(1- f 0)<1>] + L j[L j<l>,ln !!...] = o. 
a no no 

(17) 

For small values of Pi' this equation is to leading order 
[<I>-ux/a, In n/no]=O, which has the solution 
Inn/no=F(<I>-ux/a) with arbitrary function F. It follows 
that to first order in p~, Eq. (17) can be written as 

[ 
U 22 n 22] <1>-- x+ Pi V.L <1>, In -- TiPi V.L <I> =0. 
a no 

(18) 
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The set of our basic equations consists of the electron 
equations (6) and (7) and the ion equation (12). They de­
scribe the linear and nonlinear behavior of phenomena with 
frequencies below the ion cyclotron frequency and the mag­
netosonic frequency. Their spatial scales may be large or 
small as compared to the ion gyroradius and may range from 
MHD lengths to the electron inertia skin depth. 

By multiplying Eq. (6) by J=vI'It, Eq. (7) by 
f31! In(n/no) and Eq. (12) by <1>, we obtain the energy integral 

H=~ f d3X[IV.L 'lt12+d;J2 + f3e In2 !!... 
2 no 

+ ,8e 'T;<P ( 1- f 0)<P). (19) 

The contributions to H represent the magnetic energy, the 
kinetic energy of the electron motion along field lines, the 
electron potential energy, and the ion energy, respectively. 
For non localized modes that are periodic in A we find 

aH =(~ A' aqr2\ (20) 
at 2 at /' 

where the angular brackets denote an average over A at large 
values of x, and A''''''(2/~)(a'ir/ax) is the well-known loga­
rithmic derivative at the boundary of the domain of integra­
tion. Here it is assumed that the perturbed current density, the 
particle density, and the potential van!sh at the boundary 
faster than the perturbed flux function 'It. 

In the next three sections we will focus on stationary 
propagating modes. These modes are described by the elec­
tron equations (10) and (11) and by the ion equation (17). 
There, we will consider a background plasma with an expo­
nential density profile and a linear shear field: 

no(x) x 
In -- =-- and 

no In 
(21) 

where In and Is are the scale lengths of the density and of the 
shear field, respectively. As is well known, such a magnet~c 
geometry is topologically unstable against perturbations 'It 
that are even in x. 

As far as the wave-number ratio a is concerned, there 
exist two limiting cases. For localized structures with radial 
scale length lr such that a'$>lrl(2Is), the effect of the shear 
field is negligible and our set of equations describes Alfven­
type vortices. In the literature19

,20 these vortices are treated in 
the small-Pi (MHD) limit. Our general ion response (12) will 
allow this theory to be extended to arbitrary spatial scale 
lengths with respect to the ion gyroradius. In this paper we 
will emphasize the opposite limit a4,lr/(2Is}, where mag­
netic shear is dominant. In this limit our equations describe 
the nonlinear evolution of reconnecting modes. 

IV. LINEAR PERTURBATIONS 

Linear perturbations of a background plasma with pro­
files given by Eq. (21) are of the form 
<P(x,y) = <P(x)exp(ikyY - wt). The linearized forms of Eqs. 
(6), (7), and (12) are 
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(23) 

and 

U * _ _ 
In n -- f 0<P= - 'Ti( 1- f 0)<P, 

u 
(24) 

respectively, where w=kyu. Note that u!u*=w!w*, where 
w* =kyu * is the electron drift frequency. The linear expres­
sions (22)-(24) will be used in the next sections as boundary 
conditions on nonlinear solutions. Introducing the function 
o = (In/ls)('T;4> +In n) and using the Pade approximation to 
fo, we can write Eqs. (22)-(24) in the form 

(25) 

and 

2 ) 1 llC 2 -V.L qt, 
41Tiky u 

(26) 
A 2 2 

where ae= ulu * -1, ai= 1 + 7iU/U_* ' and ,8= (/slln),8e. Ac-
cording to Eq. (14), the function 0 vanishes in the large-Pi 
limit so that Eqs. (35) and (26) become decoupled. For col­
lisionless modes with real frequency such that 
(u/u*)ai=(wlw*)( 7iW/W* + 1»0, the coefficient of the 
current density in (26) vanishes at 

(27) 

where 

ds = /J1!2de . (28) 

This corresponds to an infinite effective potential when Eq. 
(26) is written in Schrodinger form. This means that a regu­
lar perturbation must vanish at x s' Hence, finite electron 
mass effects tend to shield the resonant surface from the 
perturbations. It will be shown that this property pertains in 
the nonlinear case. 

In the absence of electron mass effects, Eqs. (25) and 
(26) are the equations in coordinate form corresponding to 
the equations discussed in Ref. 2. Several limiting cases of 
Eqs. (25) and (26) are treated in Ref. 10. In Ref. 21 it is 
shown that an MHD model which includes the Hall effect is 
equivalent to the approximate limit of a two-fluid model in 
which the Vlasov ion response is taken in the Pade approxi­
mation. 

V. PROPAGATING NONLINEAR SOLUTIONS IN THE 
LIMIT OF ZERO ELECTRON INERTIA 

In this and in the following section we will investigate 
the properties of stationary solutions that propagate station­
ary with velocity u in the Y direction. The modes we con­
sider are non localized in the sense that at large values of x 
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they connect to the linear solutions discussed in the previous 
section. We start by neglecting electron inertia. 

The limit of zero electron mass corresponds to the case 
where de is small compared to the other relevant scale 
length. In this limit 'I' e and 'I' coincide. Then, the momentum 
balance (10) and the continuity equation (11) become 

[ <I> - ~ x - In ~ ,'I'] = 0 
a no 

(29) 

and 

[
un ] 1 2 <I> -- x,ln - --13 ['I', V 1. '1']=0, 
a no e 

(30) 

respectively. These equations can be solved following the 
method of Ref. 12 

<P-ux/a-In n/no=F('I'), (31) 

where F is an arbitrary flux function. Inserting expression 
(31) into the continuity equation (30), we obtain 

['I',(13eF' In n/no-Vi'l')]=o, (32) 

with solution 

(33) 

where a prime denotes the derivative with respect to the ar­
gument. The flux functions F and Hare determined4

,6 by 
imposing that far from the rational surface at x=O, the ex­
pressions (31) and (33) reproduce the linearized equations 
(22) and (23). These boundary conditions yield 

a (21 )1/2 
F ( 'I' ) = - e I S 0'( 'I' S - 'I' ) 1/2, 

n 

H('I') = a;p , 
s 

(34) 

where 'l's is the reconnected flux and 0'= sgn x. Inserting 
these expressions into the nonlinear solutions (31) and (33), 
we obtain 

and 

- _ 2 - _ aJ3 (In In nino ) 
]=V1.'I'--y;- (2Is)1I2 0' ('I's-'I')112 +1 . (36) 

The boundary conditions (22) and (23) and the expressions 
(34) for F and H do not apply in the zero-frequency MHD 
limit which corresponds to u, 1!ln-+O. The density response 
in this limit arises from the ion polarization drift. If this ion 
inertia effect is neglected, (31) and (33) give that <I> and] are 
flux functions. 

Equations (35) and (36) hold irrespective of the form of 
the density response. Because of quasineutrality, the density 
is determined by the ion response which depends on the ratio 
of the ion gyroradius to the characteristic radial scale of the 
propagating structures. This scale may be either large or 
small as compared to the thermal ion gyroradius Pi' as 
sketched in Fig. 1. 
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current singularity 

~ 

FIG. 1. Illustration of the relative sizes of an ion gyro-orbit, of a standard 
island, and of the singular current layer (shaded area). 

In this section we consider the small-Pi limit. The ion 
response as obtained from (18) for an exponential density 
profile is, 

n u* u* 2 2 
In -( -) =- <1>+- aiPi V 1. <1>. 

no x u u 
(37) 

Upon combining this expression with (31) one obtains 

n x F u ai 2 2 
In -(-) =-1 +- +- -Z Pi V 1.F . 

no x n a e u* a e 
(38) 

Since in the small-Pi limit the last term is small, the density 
is almost a flux function with the exponential form 

n(x,A) (F) (-0'(2Is)1/2('I's-'I')1/2) 
--- =exp - =exp . 

no a e In 
(39) 

This suggests that the excitation of ion-acoustic waves that 
would flatten the density gradient along field lines will playa 
minor role.22 Substituting this expression into (33) and using 
the expression (34) for F and H, leads to Ampere's law in 
the form 

V 2 q,=13e F'(F+.!!.... aj P2V2F)+H 
1. a e u* a e I 1. 

p U 2 Vi('I's-'I')I12 
= -i U- aiPi ('I' _'I')!7Z 

s * s 

(40) 

We see that the current density is not a flux function. This is 
due to the fact that the small term in expression (38) for the 
density is dominant in Eq. (40). 

Near the singular layer, the mode equation (40) can be 
solved in the limit J/JX'PJ/JA. Recalling that 
'I'=-x2/2Is+qt, Eq. (40) can now be brought to the energy 
form 

(8/)2 g(A)+/2 (41) 
ax /2- O'A ' 

where f=IAI- l12('I's-'I')l/2 is positive, x=(2IsIAI)-1/2x , 
A =(/3/2Is)(u/u*)aiP;, O'A =sgnA and g(X,) is an integra­
tion constant. 
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It is seen that a singularity occurs at f= 1 for uA = 1, i.e., 
for velocities such that (u/u *)( 'Tiu/u * + 1) >0. The solution 
of Eq. (41) near the singularity x=xo(x') is 

'¥s- '1'= IA Il= IA 1+ (61s1A /)2/3( 1 + g) 1/3 

X[x-xo(x,)]2/3 (x>xo). (42) 

It follows that the current density, the magnetic field, and the 
density are singular. 

Assume that inside the curve x =xo(x') the flux 'I' is 
unperturbed, so that '1'5=0 and '¥=-x2/21s for X<XO(A). 
Then from Eq. (42) we obtain xo=(2IsIAI)1!2 
= (a;u/u*)1I2j;1I2 Pi which is independent of A. In the veloc­
ity interval (u/u *)( 'TiU/U * + 1 )<0, no singularity occurs so 
that current layers cannot be formed and resistive instabili­
ties do not exist. Near the singularity the small-Pi limit 
breaks down since the scale length Xo is of the order Pi' In 
this region the large-Pi limit to the ion response is more 
appropriate. As will be pointed out in the next section, in the 
latter limit the current density is found to be singular along 
magnetic separatrices where '¥='¥s' This singularity is re­
moved by the inertia of the electrons. 

VI. ELECTRON INERTIA 

When electron inertia is taken into account, stationary 
propagating modes are described by Eqs. (10) and (11). Tak­
ing a=O, we first rewrite these these equations in the follow­
ing form: 

[
un ) 2[ n 2] <I> - - x - In - , 'I' - d In - ,V 'I' = 0 
a no e e no .1 

(43) 

and 

[
un n) 1 2 <1>-- x-In - ,In - -- ['I' e,v.l '1']=0. 
a no no f3e 

(44) 

Upon mUltiplying (44) by f3!12de> one obtains after adding 
and subtracting Eqs. (43) and (44) 

[
un de 2 1/2 n ] <1>-- x-In - :±:f31/2 V.l '1','1' e:±:f3e de In - =0. (45) 
a no e no 

The general solution is 

112 n _ (u n de 2 ) 'I' e:±:f3e de In - -F:!:. <1>-- x-In - :±:f31!2 V.L 'I' , 
no , a no e 

(46) 

where the functions F:!:. are determined by the background 
profiles and the boundary conditions. 

In the case of a background plasma with density profile 
and shear flux given by Eq. (21), the solutions that satisfy at 
large Ixl the linearized expressions (22) and (23) are 

(47) 

where 

(48) 

and 
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vf =0 ........... -._.-.-...... j 
.; ' ... 

,.."'" ........ , / , , 
" .' '. ,. ,:<. .>~, ,*" '... ..."" .. ...... ....................... . .. ~ .............. . 

FIG. 2. Geometry of the f .. separatrices and X points. The quadratic solu· 
tion for f+(f-) is valid outside the solid (dotted) lines. None of these 
solutions is valid in the shaded area. 

ds 2 - • -In ( n x) 
g:!:.=-~f3 (V.L'¥ls-aef3):±:- <I>-ln-(-)-ae -

Z 
• 

ae a e nO x n 

(49) 
These expressions contain two length scales related with the 
electron mass: the inertial skin depth de and the inertial scale 
length ds given by Eq. (28). 

In the absence of perturbations f:!:. = (x± ds)2, and 
g:!: = ds±x are the background values of f:!: and g;!: . 

The functions g;!: and f;!: obey the "mirror" symmetry 
g +(X,A) = g _( -X,A) and f +(x,x') = f _( - x,x'), which en­
sures that '1', '¥e' andJ=Vi'¥ are even functions of x, while 
<I> and In n/no(x) are odd. The solutions (47) are valid out­
side regions where f:t =const lines are confined to a finite 
part of the (X,A) plane. The critical points of f:t are given by 
V f;!: = O. These points are mirror symmetric for f + and for f _ 
and, thus, do not coincide with the critical points of even 
functions like 'I' or 'I' e . The geometry of f:t separatrices and 
X points are sketched in Fig. 2. Inside island structures the 
relationship (47) is not necessarily valid and different rela­
tionships f:t = F(g;!:) may be assigned that have to satisfy 
certain matching conditions across separatrices. 

Upon adding and subtracting Eqs. (47), it follows that 

n x ae 
<I>-ln ---a - = -- uG 

no(x) e In In 
(50) 

and 

(51) 

where 

G=(2Is)112 '¥s-'¥+""":' ~ __ s_. Viqr Vlqr 
[ 

d2 ( I ) ]1/2 
ae u* 2ae f3 

(52) 

In the above derivation it comes out natural that 'I' and 
'¥s occur in the combination '¥-'¥S' so that the linear per­
turbed flux is qr= 'I' - 'I' 0 - '¥s. This is related to the fact 
that the boundary conditions are satisfied before the square 
root is taken. This procedure resolves the ambiguity that 
could arise in the zero electron mass limit where the proce­
dure of integrating the equations is such that the square root 
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turns up directly. This has led in the literature to the form4 

(_qr)1I2_(_qry12 in addition to the form (-'I' + 'I's)1I2. 
These two forms lead to quite different current distributions. 

In the zero electron mass limit d;~O, Eqs. (50) and (51) 
are equivalent to Eqs. (35) and (36). Electron mass leads to 
three separate contributions arising from inertia and the elec­
tron stress tensor that add to the function under the square 
root in (52). Hence, the inclusion of electron mass effects is 
essential near the singular curve 'I'='I's . 

Electron inertia only counts in a region with width of the 
order of the inertia skin depth de = C / W pe . In a hot plasma de 
is smaller or at most of the order of the ion gyroradius. 
Therefore, we consider Eqs. (50) and (51) in the large-p; 
limit where the density response is In n/no(x)= - T;<I>. The 
electric potential is 

x ae 
(1 + Ti)<I>-a e 1= -T aG. 

II II 

(53) 

The elimination of <I> and In nino from Eqs. (50) and (51) 
gives the mode equation (49) with the square root replaced 
by its finite inertia expression, 

2 - j3 ( Ixl) 
V.L'I'=aeai (1 + Ti)ls I-a' (54) 

with G given by (52). Equations (52) and (54) can be seen as 
a fourth-order polynomial in the current density with coeffi­
cients depending on x and the flux function '1'. 

While the explicit numerical solutions of Eq. (54) and of 
the related nonlinear eigenvalue problem are beyond the 
scope of the present paper, a number of qualitative properties 
of its solutions can be investigated analytically. 

First, it is seen from (52) and (54) that in the limit of 
zero electron mass G~(2Is)I/2[qrs-'I']1/2, so that the cur­
rent density (54) is singular on surfaces 'I'='I's . The current 
density remains finite when inertia is included. It is seen that 
then G can only vanish at x=O [if x=O belongs to the do­
main where (47) is valid] where G<xx. 

Second, we may require that the current gradients re­
main finite. In contrast to the finiteness of the current, this 
condition is not built-in in the above equations, but can be 
imposed as a regularity condition. Using the relationship 

dsai x Ti 
g:!: = ( 1 + Ti) G - 1 + T; a ed s ± G, (55) 

we see that at the critical points (>I.c ,xc) of g:!::, where 
V g:!:: =0, these regularity conditions require that 

G=aO+al(x-xc)+'" (ao>O, ifxcofoO), (56) 

where the constants ao(Ac) and a(Ac) are related to the values 
of the current density and of its gradient at the X points 

(57) 
ai aeai/3 1 ( Xc) 
axc = - (1 + Ti)ls ao 1-al ao . 

The distance Xc of the X points from the rational surface 
x=O is given by 
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(58) 

Assuming all terms to be of the same order, we obtain 

(59) 

We see that the characteristic distance from the resonant sur­
face x = 0 of the X points of G:!:: is of order d s' These X 
points do not necessarily coincide with the (possible) X 
points of 'I' or of 'I' e' We conclude from Eq. (59) and from 
the linear dispersion equation (26), that it is not the inertia 
skin depth de but its ,Be-modified version d s that is the natu­
ral scale length on which electron inertia acts. For d s ~O, the 
current] c at the X points remains finite, but aJ; axc~oo, 
while the X points of g:!:: coincide with those of '1'. 

The general expression of the current gradient in the 
domain where (47) is valid if 

(60) 

where the numerator N and the denominator DN are given 
by 

and 

3 2 ai (u Is-) DN=G -xds -- ---A J . 
I+T; U* ae,B 

(61) 

If there is a curve Xs(A) where DN vanishes within the do­
main of validity of (47), regularity of vi requires that N 
vanishes on the same curve Xs(A). A class of solutions can 
then be constructed for which the resonant surface x =0 is 
shielded, i.e., the background configuration is not modified 
in the domain delimited by the curve Xs(A) inside which 
'I'=-x2/2I s and ]=0. Requiring that V'I' is continuous 
across the curve one obtains that the curve Xs(A) is the 
straight line given by Eq. (27). These shielded solutions can 
occur only if (TiU/u* + l)u/u*?O which is the nonlinear 
counterpart of the result obtained for regular perturbations in 
the linear limit [see Sec. IV below Eq. (16)]. 

It has been shown that in the frequency interval 
(TiU/U * + 1 lulu * <0, the linear equation (26) does not ex­
hibit a singularity in the effective potential. In the same in­
terval the nonlinear MHD solution remains regular and the 
large-Pi solutions are unshielded. It can be concluded that the 
quadratic relationship (47) is valid over all space up to the 
resonant surface x = 0. This implies that islands and current 
sheets are not formed in this frequency interval. On the con­
trary, for frequencies such that (T;u/u*+1)u/u*>O, both 
the linear effective potential and the nonlinear MHD solution 
are singular. In the large-Pi limit infinite current gradients 
tend to develop. For a limited class of solutions this singu­
larity can be removed by shielding. However, in the general 
case, it implies a breakdown of the quadratic relationship 
(47). This means that islands and current sheets exist. 
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VII. HAMILTONIAN FORMULATION 

In the remainder of this paper we will return to the non­
linear electron equations (6) and (7), and to the nonlinear ion 
equation (12) and we will investigate their Hamiltonian 
structure. First we show that our set of equations can be put 
in noncanonical Hamiltonian form. In order to do this we 
first rewrite our equations. We define the variables 

n 
l: =d f3112 In -
~2 e e ' no 

(62) 

The functional derivatives of the energy integral (19) are 

oH _ _ 2 
ott - -J - - V.l 'It, 

oH f3!/2 
ot3 = - ---;J; <"P. 

(63) 

With these expressions, our set of equations can be written as 

(64) 

(65) 

and 

f3!/2 ag3 [ OHJ [ OH] 
ad

e 
at = - ~3' otJ +Lk ~2,Lk otJ . (66) 

Noncanonical Poisson brackets are defined by 

ade f 3 [OF OGJ 
{F,G}= f3!/2 d x W;j Oti' ot

j 

ade f 3 w\Z) of a oG 
- f3!/2 d x ij ott az otj 

ade f 3 [OF oG J + f3!t2 d x ~2 Lk ot3 ' Lk ot3 ' (67) 

where the symmetric matrices Wij and H'lJ) are defined by 

(
0 1 0) 

WlJl= 1 0 ° . 
000 

(68) 

It can be verified directly that the noncanonical Poisson 
brackets (67) are antisymmetric and satisfy the Jacobi iden­
tity {F,{ G,H}} + {G,{H,F}} + {H,{F,G}}= O. 

Equations (64)-(66) read in Hamiltonian form 

a~i at ={gi,H}, i= 1,2,3. (69) 

Apart from the ~2 contribution to the integrand in the last 
term in Eq. (67), we see from the form of the matrices (68) 
that the Poisson brackets do not contain any coupling be-
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tween ~1,2 and g3' Coupling would arise when ion currents 
are no longer negligible and/or when charge neutrality is 
violated. 

We will explore the constants of the motion that arise 
from the structure of the Poisson brackets and that do not 
depend on the specific form of the Hamiltonian. 

In the general case, our Hamiltonian system admits three 
global constants of the motion 

Qi= f d3x ~i (1 = 1,2,3). (70) 

These constants are Casimirs since they commute with all 
functionals F, Le., {Q;,F}=O. In the cold ion limit, Ti-+O, 
the operators Lk in (67) vanish. Then the system contains an 
infinite number of Casimirs involving ~J only 

(71) 

with h an arbitrary function. Note that in this limit 
~3= -de f3!/2[ln(nlno)- p;VI<I>J. In the case of linear MHD 
where agi at = 0, g3 either vanishes or is a constant in func­
tional space (g3 is an explicit function of coordinates only), 
Then the Casimirs (71) become trivial. 

In the remainder of this section we will restrict ourselves 
to the two-dimensional case, and consider all quantities to 
depend on the coordinates r= t, x, and A = Y + az - u t. All 
relevant equations are obtained in terms of these coordinates 
by taking IJ/az=O and applying the following transformation 
to the expressions given in this section 

(--->T, (x,y,z)-+(x,X), d3x-+d2x=dx dX, 

u 
(72) 

<"P-+<"P- - x 'It -> 'It + ax. 
a ' 

In this 2-D case our Poisson brackets admit two additional 
infinite set of Casimirs, 

f 2 f 2 ( f3!
/2

de lnn) C:,:= d x h:!:.(~1±~2)== d x h:,: 'It~± no ' 

(73) 

with h:!:. arbitrary functions. Note that the arguments ~l ± g2 

are just the functions f:,: defined in Eq. (48) of the preceding 
section. This is quite natural since the first variation of the 
Hamiltonian (19), keeping all the Casimirs constant (isoto­
pological variation 15), yields the equilibrium equations (45). 
The Casimirs (73) exist for all values of the ion gyroradius. 
The dominant scale length involved in these Casimirs is 
ds= f3! 12dJ/ln, where Is and In are the characteristic scale 
lengths of the magnetic field and of the density. 

The Casimirs (71) and (73) generalize in an elegantly 
symmetrical way different special limits. In the limit me-+O, 
u->O, In nlno-,p;VIcp=o, where 0 is the normalized vor­
ticity, the Hamiltonian functional (19) becomes 

H=~ f d 2x[(V'lt)2+ f3e02 - f3e<"PO], (74) 

with CA the Alfven velocity in the field Bo. [n this reduced 
system the Casimirs (71) become trivial, while the Casimirs 
(73) become thoseO of reduced MH023 
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C 1= I d2xF(,\}!) and c2 = I d2xflG('\}!). (75) 

Another interesting limit corresponds to the case of cold 
electrons T --0. Then the Hamiltonian functional becomes 

H= ~ I d 2x[ (Vqr)2+d;(Vi'lJf)2+ PeT/I>( 1-r o)cf>], 

(76) 

and the Casimirs (73) become 

C 1 = I d 2x F('IJf e) and c2=Id2XG(qre) In.!!..... 
no 

(77) 

It is seen from Eq. (75), that in the reduced MHD model the 
magnetic flux is conserved, while according to Eq. (77), the 
generalized flux 'I' e is conserved in the zero temperature 
limit. In the general case where electron inertia and finite 
temperature are accounted for, neither of these fluxes are 
conserved. Instead the more subtle conservation (73) is valid. 
This implies that magnetic reconnection in '\}! e and/or 'IJf can 
occur in the presence of an infinite set of conservation laws. 
This is due to the fact that inertia is particularly important in 
regions where the reconnection process can occur. 

VIll. CONCLUSIONS 

In this paper we have presented a set of nonlinear, gen­
eralized two-fluid equations that describe low-frequency 
phenomena in hot plasmas over a wide range of spatial scale 
lengths. The hybrid nonlinear model for the ion response, 
that is valid for all values of the ion thermal gyroradius, is a 
new ingredient of the theory. It is shown that two­
dimensional equilibrium solutions in the form of stationary 
propagating modes tend to develop large currents at mag­
netic separatrices. The current density is prevented from be­
coming singular by electron inertia, but current gradients can 
still be large. 

The set of equations has an energy integral that allows 
for a Hamiltonian representation in terms of noncanonical 
Poisson brackets. We have explored the algebraic invariance 
(Casimirs) of the Poisson brackets which represent the physi­
cal quantities that are conserved by the plasma dynamics. 
The number of Casimirs depends on the dimensionality of 
the problem and on the physical regime. The infinite set of 
ion Casimirs, that exist in the cold ion limit, is reduced to a 
single Casimir when finite ion gyroradius effects are taken 
into account. In 2-D problems, two infinite sets of electron 
Casimirs are found, C:!: = f d 2x h(qr e± p!!2de In nino). This 
implies that neither the magnetic flux '1', nor its generalized 
form 'IJf e' is conserved by the plasma motion. The conserved 
quantities are f:!: == 'I' e ± p!12d e In nino, and their X points 
do not coincide with the X points of 'I' or 'IJf e' We have 
shown in Sec. VI that the natural scale length associated with 
the X points of the conserved quantities is the Pe modified 
electron skin depth d s defined by Eq. (28). We note, how­
ever, that at this scale length we find for propagating modes 
with phase velocity u of the order of the diamagnetic veloc­
ity u *, u - u * - (dslls)vth e' so that Landau resonances 
become important and the fluid model breaks down. 
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