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Generalized two-leg Hubbard ladder at half filling: Phase diagram and quantum criticalities
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Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
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The ground-state phase diagram of the half-filled two-leg Hubbard ladder with intersite Coulomb repulsions

and exchange coupling is studied by using the strong-coupling perturbation theory and the weak-coupling

bosonization method. Considered here as possible ground states of the ladder model are four types of density-

wave states with different angular momentum (s-density-wave state, p-density-wave state, d-density-wave

state, and f-density-wave state! and four types of quantum disordered states, i.e., Mott insulating states

(S-Mott, D-Mott, S8-Mott, and D8-Mott states, where S and D stand for s- and d-wave symmetry!. The

s-density-wave state, the d-density-wave state, and the D-Mott state are also known as the charge-density-wave

state, the staggered-flux state, and the rung-singlet state, respectively. Strong-coupling approach naturally leads

to the Ising model in a transverse field as an effective theory for the quantum phase transitions between the

staggered-flux state and the D-Mott state and between the charge-density-wave state and the S-Mott state,

where the Ising ordered states correspond to doubly degenerate ground states in the staggered-flux or the

charge-density-wave state. From the weak-coupling bosonization approach it is shown that there are three cases

in the quantum phase transitions between a density-wave state and a Mott state: the Ising (Z2) criticality, the

SU(2)2 criticality, and a first-order transition. The quantum phase transitions between Mott states and between

density-wave states are found to be the U~1! Gaussian criticality. The ground-state phase diagram is determined

by integrating perturbative renormalization-group equations. It is shown that the S-Mott state and the

staggered-flux state exist in the region sandwiched by the charge-density-wave phase and the D-Mott phase.

The p-density-wave state, the S8-Mott state, and the D8-Mott state also appear in the phase diagram when the

next-nearest-neighbor repulsion is included. The correspondence between Mott states in extended Hubbard

ladders and spin-liquid states in spin ladders is also discussed.

DOI: 10.1103/PhysRevB.66.245106 PACS number~s!: 71.10.Fd, 71.10.Hf, 71.10.Pm, 71.30.1h

I. INTRODUCTION

Ladder systems have been studied intensively over the

years as a simplified model system that shows variety of

quantum phenomena due to strong electron correlations.1

Since the ladder models can be analyzed with powerful non-
perturbative methods such as bosonization and conformal
field theory as well as with large-scale numerical calcula-
tions, they provide a useful testing ground for various theo-
retical ideas developed for the two-dimensional case. More-
over, the studies of ladder systems have been strongly
stimulated by experimental developments in synthesizing
compounds with ladder structure that show superconductiv-
ity and spin-liquid behavior.2–4 A good example is the ladder
compound Sr 14Cu 24O 41 that shows d-wave superconducting
order5 under pressure with Ca doping and charge-density-
wave ~CDW! order as recently suggested experimentally.6,7

Theoretical studies on doped ladder models such as the Hub-
bard and t-J ladders1,8–22 have established that the dominant
correlation is indeed a d-wave-like superconducting order, a
feature that is reminiscent of the d-wave superconductivity in
high-Tc cuprates. On the other hand, undoped half-filled
Hubbard and Heisenberg ladders are insulators that have a
gap in both charge and spin excitations.1,10,14,15,23–26 This
spin-liquid behavior is caused by singlet formation on each
rung, and the state is said to be in the rung-singlet phase. It is
also named D-Mott phase25 because of its close connection
to the d-wave-like paring state.

Recent theoretical interest on the ladder models has been
focused on the search of exotic phases in these systems. In

particular, the staggered-flux ~SF! state,27 which is also

known as the orbital antiferromagnet28–30 and the d-density

wave,31,32 has received a lot of attention.33–38 For more than

a decade the SF state has been intensively studied in connec-

tion with the pseudogap phase in the two-dimensional high-
Tc cuprates.27,31,32,39–43 The SF state has spontaneous cur-
rents flowing around plaquettes, breaking the time-reversal
symmetry. Even though ladders are one-dimensional ~1D!,
the long-range order of the SF correlation is possible at half
filling, since the symmetry broken in this state is discrete.
This point was emphasized recently in Ref. 38, where it was
also suggested that the SF phase should occur in the phase
diagram of the SO~5! symmetric Hubbard model.44,45 Be-
sides the SF phase, the ground-state phase diagram of the
ladder models can include the D-Mott phase mentioned
above, the CDW phase,46 and other phases.

Motivated by these developments, in this paper we at-
tempt systematic exploration of the ground-state phase dia-
gram of a generalized two-leg Hubbard ladder at half filling
that has not only repulsive on-site and intersite interactions
but also antiferromagnetic ~AF! exchange interaction and
pair hoppings between the legs. To map out the possible
phases in the parameter space of the model and to analyze
various quantum phase transitions, we employ both the
strong-coupling perturbation theory and the weak-coupling
bosonization method. We find that the inclusion of the addi-
tional interactions leads to emergence of various new phases.

In the strong-coupling approach, we describe the SF state
as an AF ordered state of pseudospins that represent currents
flowing on the rungs. The effective theory near the phase
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boundary between the SF state and the D-Mott state is then

found to be the 1D Ising model in a transverse field. The

D-Mott phase is thus interpreted as a disordered state of the

Ising model. We also present a similar mapping to the 1D

quantum Ising model for the quantum phase transition be-

tween the CDW phase and the S-Mott phase.25 Here the
CDW state and the S-Mott state correspond to the ordered
and quantum disordered states of the Ising model, respec-
tively. Furthermore, we show that a low-energy effective
theory near the phase transition between the D-Mott and the
S-Mott phases is the XXZ spin chain in a staggered field,
which exhibits a U~1! Gaussian criticality.

In the weak-coupling limit, we follow the standard ap-
proach of taking continuum limit and bosonizing the Hamil-
tonian. We obtain a coupled sine-Gordon model for four
bosonic modes ~charge/spin and even/odd modes! and ana-
lyze it by perturbative renormalization-group ~RG! method
and a semiclassical approximation. The scaling equations we
derive are equivalent to those obtained earlier by Lin,
Balents, and Fisher.25 We depart here from the earlier work.
We consider four types of density-wave states with different
angular momentum:31 s-density wave ~5 CDW!, p-density
wave ~PDW, which is equivalent to the spin-Peierls state!,
d-density wave ~5 SF!, and f-density wave ~FDW!. These
density-wave states break Z2 symmetry and can have long-
range order at zero temperature. We find that, in general,
there should appear four types of Mott insulating phases
~called S-Mott, D-Mott, S8-Mott, and D8-Mott states!, each
of which can be obtained as a quantum disordered state from
one of the four Z2-symmetry-breaking density-wave states.
We then study quantum phase transitions among these eight
phases and show that a transition between a density-wave
state and a Mott state is either second order @in the Ising or
SU(2)2 universality class# or first order.47 Phase transitions
between density-wave states and between Mott states are
U~1! Gaussian criticalities. After classifying the phases and
the quantum phase transitions, we determine the ground-state
phase diagram of the extended Hubbard model with extra
inter-site repulsion and the exchange interaction. We find that
the S-Mott and the SF phases appear in the parameter space
of couplings where the D-Mott and the CDW phases com-
pete. We also show that the next-nearest-neighbor repulsion
stabilizes the S8-Mott state and the PDW state; the latter
state is connected to the D-Mott state through the SU(2)2

criticality.
This paper is organized as follows. In Sec. II the model

we analyze in this paper is introduced. In Sec. III we study
the ground-state phase diagram by the strong-coupling per-
turbation theory, and examine phase transitions between the
competing ground states: the SF, D-Mott, CDW, and S-Mott
states. In Sec. IV we apply the weak-coupling bosonization
method to study the ground-state phase diagram. We derive
effective low-energy theory for the charge mode and for the
spin mode that describe the Gaussian, Ising, and SU(2)2

criticalities. The connection of our results to the phase dia-
gram of spin ladders with spin liquid ground states is also
discussed. We then determine the phase diagram of the gen-
eralized Hubbard ladder from perturbative RG equations. Fi-
nally, the results are summarized in Sec. V.

II. MODEL

We consider a half-filled two-leg Hubbard ladder with
onsite and intersite Coulomb repulsions and rung exchange
interaction. The Hamiltonian we study in this paper is given
by

H5H t i
1H t

'
1H int1HV i

1HV8
1Hpair . ~2.1!

The first two terms describe hopping along and between the
legs, respectively,

H t i
52t i (

j ,s ,l
~c j ,l ,s

† c j11,l ,s1H.c.!, ~2.2!

H t
'

52t'(
j ,s

~c j ,1,s
† c2,j ,s1H.c.!, ~2.3!

where c j ,l ,s annihilates an electron of spin s(5↑ ,↓) on rung
j and leg l(51,2). The Hamiltonian H int5HU1HV

'
1HJ

'

consists of three terms representing interactions within a
rung: the on-site repulsion,

HU5U(
j ,l

n j ,l ,↑n j ,l ,↓ , ~2.4!

the nearest-neighbor repulsion on a rung,

HV
'

5V'(
j

n j ,1n j ,2 , ~2.5!

and the nearest-neighbor exchange interaction on a rung,

HJ
'

5J'(
j

Sj ,1•Sj ,2 . ~2.6!

The density operators are n j ,l ,s5c j ,l ,s
† c j ,l ,s and n j ,l5n j ,l ,↑

1n j ,l ,↓ , and the spin- 1
2 operator is given by

Sj ,l5
1

2 (
s1 ,s2

c j ,l ,s1

† ss1 ,s2
c j ,l ,s2

, ~2.7!

where ss1 ,s2
are the Pauli matrices. The Hamiltonian ~2.1!

also has nearest-neighbor repulsive interaction within a leg,

HV i
5V i(

j ,l
n j ,ln j11,l , ~2.8!

and next-nearest-neighbor repulsion,

HV8
5V8(

j
~n j ,1n j11,21n j ,2n j11,1!. ~2.9!

The last component of the Hamiltonian ~2.1! is the pair hop-
ping between the legs,

Hpair5tpair(
j

~c j ,1,↑
† c j ,1,↓

† c j ,2,↓c j ,2,↑1H.c.!. ~2.10!

The coupling constants, U, V' , V i , V8, J' , and tpair , are
assumed to be either zero or positive. ~Most of our discus-
sions are actually concerned with the case V i5V85tpair
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50.! In this paper we consider only the half-filled case
where ( j ,ln j ,l equals the number of total lattice sites.

III. STRONG-COUPLING APPROACH

In this section, we perform strong-coupling analysis start-
ing from the independent rungs and discuss transitions be-
tween various insulating phases.

We begin with eigenstates of H int for decoupled rungs at
half filling. Convenient basis states for two electrons on a

single rung ~e.g., j th rung! with S j ,1
z

1S j ,2
z

50 are

u1& j5U↑
↓
L

j

[c j ,1,↑
† c j ,2,↓

† u0&, ~3.1!

u2& j5U↓
↑
L

j

[c j ,1,↓
† c j ,2,↑

† u0&, ~3.2!

u3& j5U↑↓

2
L

j

[c j ,1,↑
† c j ,1,↓

† u0&, ~3.3!

u4& j5U 2

↑↓
L

j

[c j ,2,↑
† c j ,2,↓

† u0&. ~3.4!

The interaction Hamiltonian H int is diagonalized as

H int

u1& j2u2& j

A2
5S V'2

3

4
J'D u1& j2u2& j

A2
, ~3.5!

H int

u1& j1u2& j

A2
5S V'1

1

4
J'D u1& j1u2& j

A2
, ~3.6!

H intu3& j5Uu3& j , ~3.7!

H intu4& j5Uu4& j. ~3.8!

Comparing the eigenvalues, we find that the lowest-
energy state of H int for U.V'23J'/4 is

uD-Mott&5)
j

1

A2
FU↑↓L

j

2U↓
↑
L

j

G . ~3.9!

This state is a direct product of rung singlets and is nothing
but the strong-coupling limit of the D-Mott phase25 or the
Mott insulating phase of a half-filled Hubbard ladder.

When U,V'23J'/4, on the other hand, the doubly oc-
cupied states u3& and u4& become lowest-energy states. In
this case, one of the possible ground states is the on-site
paired insulating state realized in the S-Mott phase,25

uS-Mott&5)
j

1

A2
FU↑↓

2
L

j

1U 2

↑↓
L

j

G . ~3.10!

Another possible ground state is the CDW state,

uCDW&15)
j

FU↑↓

2
L

2 j21

U 2

↑↓
L

2 j

G ~3.11a!

and

uCDW&25)
j

FU 2

↑↓
L

2 j21

U↑↓

2
L

2 j

G . ~3.11b!

In the next subsections we study phase transitions be-
tween these phases.

A. CDW–S-Mott transition: Ising criticality

In this subsection we discuss the phase transition between
the S-Mott phase25 and the CDW phase25,46 for U,V'

23J'/4. This can be analyzed by mapping the system onto
an effective spin model. A similar analysis for the SO~5!
symmetric ladder is reported in Refs. 44 and 45.

We restrict ourselves to the lowest-energy states u3& and
u4& and denote them as

u1& j[u3& j, u2& j[u4& j ~3.12!

to make the connection to a spin model more evident. We
regard u6& as the pseudospin up/down states. In this picture,
the antiferromagnetic ordering of the spins corresponds to
the CDW ordering. We will treat the single-particle hopping
terms H t i

and H t
'

as weak perturbations to derive effective

Hamiltonian in the Hilbert space of u1& and u2&. The
lowest-order contributions come from the second-order pro-
cesses,

H (2a)
5H t i

1

E02H int

H t i
, ~3.13!

H (2b)
5H t

'

1

E02H int

H t
'

, ~3.14!

where E05NU with N being the number of rungs. The non-
zero matrix elements of H (2a) and H (2b) are given by

^6 ,7uH (2a)u6 ,7& j5

4t i
2

U22V'

, ~3.15!

^6uH (2b)u6& j5^6uH (2b)u7& j5

2t
'

2

U2V'13J'/4
,

~3.16!

where us ,s8& j[us& jus8& j11 (s ,s856). The above Hamil-
tonian is written in terms of pseudospin operators as

H (2a)
5

2t i
2

2V'2U (
j

~t j
zt j11

z
21 !, ~3.17!

H (2b)
5

2t
'

2

U2V'13J'/4 (
j

t j
x
1const, ~3.18!

where t j
z and t j

x are Pauli matrices acting on the pseudospin

states: t j
zu6& j56u6& j and t j

xu6& j5u7& j . Here we find that

H (2a) favors antiferromagnetic ordering, while H (2b) pre-
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vents the order. We thus find that the effective Hamiltonian

for the doubly occupied states HCS
eff

5H (2a)
1H (2b) is given

by the one-dimensional quantum Ising model,

HCS
eff

5(
j

~Kt j
zt j11

z
2ht j

x!, ~3.19!

where the antiferromagnetic exchange coupling K and the
magnitude of the transverse field h are given by

K5

2t i
2

2V'2U
, h5

2t
'

2

V'23J'/42U
. ~3.20!

This model exhibits the Ising criticality at K5h between the
ordered phase ~i.e., the CDW phase! for K.h and the disor-
dered phase for K,h . The ground state in the disordered
phase is essentially the eigenstate of tx with eigenvalue 11,
which is nothing but the S-Mott phase,

utx
511& j5

u1& j1u2& j

A2
→uS-Mott&. ~3.21!

The condition for the CDW phase to appear is given in
terms of the Hubbard interactions as

V'.

12~ t' /t i!
2

122~ t' /t i!
2

U1

3

4@122~ t' /t i!
2#

J' , ~3.22!

where 0,t' /t i,1/A2. When t' /t i.1/A2, the CDW phase
is not realized within our approximation.

Here we briefly discuss effects of HV i
, HV8

, and Hpair ,

treating them as small perturbations. The lowest-order con-
tributions come from the first-order perturbation, H (1a)

5HV i
1HV8

and H (1b)
5Hpair , which can be written in terms

of the pseudospin operators as H (1a)
52V i( j(t j

zt j11
z

11)

22V8( j(t j
zt j11

z
21) and H (1b)

5tpair( jt j
x . The coupling

constants in the quantum Ising model are modified to

K5

2t i
2

2V'2U
12V i22V8, ~3.23!

h5

2t
'

2

V'23J'/42U
2tpair . ~3.24!

Thus, HV i
, HV8

, and Hpair do not change the Ising univer-

sality and only affect the coupling constants. Their main ef-
fect is to move the phase boundary. The V i and tpair interac-
tions favor the Ising ordered phase or the CDW phase, while
the V8 interaction is in favor of the S-Mott phase.

B. D-Mott–S-Mott transition: Gaussian criticality

Next we discuss the parameter region U'V'23J'/4. In
this case the low-energy states of H int are formed out of

(u1& j2u2& j)/A2, u3& j , and u4& j ; see Eqs. ~3.5!–~3.8!. The
analysis in the preceding subsection indicates that, among
the states made of u3& j and u4& j , only the S-Mott phase can
appear for U'V'23J'/4 due to the large transverse field h.
We thus keep only the two states,

u1&& j[
u1& j2u2& j

A2
, u2&& j[

u3& j1u4& j

A2
, ~3.25!

for each rung and derive an effective low-energy Hamil-
tonian for these states to study the competition between the
S-Mott and D-Mott phases. In this basis, H int and H t

'
on the

j th rung read

H int5S V'2

3

4
J'

0

0 U
D , ~3.26!

H t
'

5S 0 22t'

22t' 0
D , ~3.27!

where u1&& j5
t(1,0) and u2&& j5

t(0,1). Since we are inter-
ested in the region near the level crossing point U5V'

23J'/4, we split the Hamiltonian as

H int1H t
'

1H t i
5HDS

(0)
1HDS8 , ~3.28!

where the unperturbed Hamiltonian HDS
(0) and the perturbation

term HDS8 are given by HDS
(0)

5U( j(n j ,1,↑n j ,1,↓1n j ,2,↑n j ,2,↓

1n j ,1n j ,2) and HDS8 5(V'2U)( jn j ,1n j ,21HJ
'

1H t
'

1H t i
.

Up to second order in HDS8 the effective Hamiltonian is ob-

tained as H (0)
1H (1)

1H (2),

H j
(0)

5S U 0

0 U
D , ~3.29!

H j
(1)

5S 2S U2V'1

3

4
J'D 22t'

22t' 0
D , ~3.30!

H (2)
5H t i

1

E02HDS
~0 ! H t i

, ~3.31!

where H (0)
5( jH j

(0) , H (1)
5( jH j

(1) , and E05NU . Now we

introduce spin-1/2 operators S̃ j
x , S̃ j

y , and S̃ j
z and identify the

two states u1&& j and u2&& j with up and down states of the

pseudospin S̃ j
z . The first-order term H (1) ~3.30! is then writ-

ten as

H (1)
52S U2V'1

3

4
J'D(

j
S S̃ j

z
1

1

2
D24t'(

j
S̃ j

x.

~3.32!

The energy difference between the u6&& j states and the rung
hopping are represented as the longitudinal and transverse
magnetic fields, respectively. The nonzero matrix elements
of H (2) ~3.31! are given by

^^6 ,6uH (2)u6 ,6&& j52

2t i
2

U
, ~3.33!

^^6 ,6uH (2)u7 ,7&& j51

2t i
2

U
, ~3.34!
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^^6 ,7uH (2)u6 ,7&& j52

t i
2

2U
, ~3.35!

^^6 ,7uH (2)u7 ,6&& j51

t i
2

2U
, ~3.36!

where us ,s8&& j[us&& jus8&& j11 (s ,s856). Thus the second-
order contribution H (2) is written in terms of the pseudospin
operators as

H (2)
52

t i
2

U (
j

S 3 S̃ j
zS̃ j11

z
1

5

4
D1

2t i
2

U (
j

~ S̃ j
1S̃ j11

1

1 S̃ j
2S̃ j11

2 !1

t i
2

2U (
j

~ S̃ j
1S̃ j11

2
1 S̃ j

2S̃ j11
1 !.

~3.37!

From Eqs. ~3.32! and ~3.37! we find that, for U'V'

23J'/4, the low-energy effective Hamiltonian HDS
eff

5H (1)

1H (2) is given by the anisotropic spin chain under the lon-
gitudinal and transverse magnetic fields,

HDS
eff

5(
j

@JxS̃ j
xS̃ j11

x
2Jyz~ S̃ j

yS̃ j11
y

1 S̃ j
zS̃ j11

z !#

2(
j

~hxS̃ j
x
1hzS̃ j

z!, ~3.38!

where Jx
55t i

2/U , Jyz
53t i

2/U , hx
54t' , and hz

5U2V'

13J'/4. We are interested in the case where the Zeeman

field in the z direction hz is weak. When hz
50, HDS

eff is

equivalent to the XXZ model with the exchange anisotropy
D5Jx/Jyz

55/3 and a uniform field in the z direction. It is
known48,49 that the XXZ model is in the massless phase gov-
erned by the c51 conformal field theory ~CFT! with a com-

pactification radius R (1/2Ap,R,1/Ap), if the uniform
field is in the range 0.175Jyz

&hx
,

8
3 Jyz. The weak perturba-

tion hz is acting on this gapless system. From the transfor-

mation S̃ j
y ,z→(21) jS̃ j

y ,z we see that the Zeeman field hz acts

as a staggered transverse field in the antiferromagnetic XXZ

model. Since the scaling dimension of (21) jS̃y ,z is pR2, it
is a relevant perturbation leading to the opening of a gap.50

Hence we find that, when hzÞ0, the hz term is always
relevant and generates a mass gap, while for hz

50 the sys-
tem reduces to the c51 CFT or the Gaussian model. There-
fore the D-Mott–S-Mott transition is a Gaussian U~1! criti-
cality with the central charge c51. The critical point is at
hz

50, i.e.,

U2V'1

3

4
J'50. ~3.39!

The character of the gapped phases at hzÞ0 is deduced by
looking at the dominant hz term. Since the gapped phases
should correspond to states minimizing the relevant hz-term,

2hz( jS̃ j
z , in Eq. ~3.38!, we conclude that for hz

.0 (hz

,0) the ground state is a ferromagnetically ordered state

with positive ~negative! magnetization ^S̃z&, or equivalently,
in the D-Mott (S-Mott! phase in the original Hubbard ladder
model; see Eq. ~3.25!.

The phase diagram obtained from the strong-coupling per-
turbation theory is shown in Fig. 1, where parameters are
taken as t'5t i/2 and J'50. The phase transition between
the D-Mott state and the S-Mott state is described as the
Gaussian criticality, while the phase transition between the
S-Mott state and the CDW state is in the universality of the
Ising phase transition. The phase diagram for nonzero J' is
shown in Fig. 2. The CDW phase is realized when the con-
dition ~3.22! is satisfied. We note that, within the strong-
coupling expansion to second order, the CDW phase does
not exist for t i5t' .

Finally we discuss effects of the remaining interactions,
HV i

, HV8
, and Hpair . We find that we may ignore HV i

and

HV8
since they yield only a constant energy shift in the

second-order perturbation theory. By contrast, the pair-
hopping term changes the phase boundary. Since Hpairu1&& j

50 and Hpairu2&& j5tpairu2&& j , the interaction part of the

Hamiltonian Eq. ~3.26! is modified as H int8 5H int1Hpair ,

where

H int8 5S V'2

3

4
J'

0

0 U1tpair

D . ~3.40!

FIG. 1. Strong-coupling phase diagram of H t i
1H t

'
1H int at

t'5t i/2 and J'50. The CDW–S-Mott transition is in the Ising

universality class, while the S-Mott–D-Mott transition is in the

U~1! ~Gaussian! universality class. The CDW (S-Mott! phase cor-

responds to the ordered ~disordered! phase in the effective quantum

Ising model ~3.19!. The S-Mott and D-Mott phases are the ferro-

magnetically ordered phases of the effective spin model ~3.38!.

FIG. 2. Strong-coupling phase diagram of H t i
1H t

'
1H int at

t'5t i/2 on the plane of V' /U and J' /U . The CDW phase occu-

pies the parameter region where the condition ~3.22! is satisfied.
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The main effect of tpair is to change the coupling constant hz

in Eq. ~3.38! to hz
5U2V'13J'/41tpair . In this case, the

critical behavior is still governed by the Gaussian theory, and
the critical point appears at

U2V'1

3

4
J'1tpair50. ~3.41!

Thus, for tpair.0, the pair hopping term tends to stabilize the
D-Mott phase. As shown in the preceding subsection, it also
stabilizes the CDW phase, and the net effect of the pair hop-
ping is to suppress the S-Mott phase sandwiched by the
D-Mott and the CDW phases.

C. SF state as AF ordering of rung current

and SF–D-Mott transition

In this subsection, we study the SF state in the ladder
system using the strong-coupling expansion. Our starting
point is the pair-hopping Hamiltonian Hpair ~2.10!. The
eigenstates of Hpair are given by u1& j , u2& j , (u3& j

1u4& j)/A2, and (u3& j2u4& j)/A2, satisfying

Hpairu1& j5Hpairu2& j50, ~3.42!

Hpair

u3& j2u4& j

A2
52tpair

u3& j2u4& j

A2
, ~3.43!

Hpair

u3& j1u4& j

A2
51tpair

u3& j1u4& j

A2
. ~3.44!

We thus find that the pair hopping term favors the on-site

singlet state (u3& j2u4& j)/A2. Anticipating competition be-
tween the on-site singlet state and the rung-singlet state

(u1& j2u2& j)/A2 that has an energy gain of 23J'/4 from the
exchange term HJ

'
, we will consider in this subsection the

situation where tpair.3J'/4 and J' is the largest energy
scale in the problem. Introducing dtpair5tpair23J'/4

(udtpairu!J'), we define H̃0 and H̃8 by

H̃05HJ
'

1Hpair
(0) , ~3.45!

H̃85HU1HV
'

1H t i
1H t

'
1Hpair8 , ~3.46!

where Hpair
(0) and Hpair8 are obtained from Hpair by replacing

tpair with 3J'/4 and dtpair , respectively. The unperturbed

Hamiltonian H̃0 has eigenstates,

H̃0

u1& j2u2& j

A2
52

3

4
J'

u1& j2u2& j

A2
, ~3.47!

H̃0

u3& j2u4& j

A2
52

3

4
J'

u3& j2u4& j

A2
, ~3.48!

H̃0

u1& j1u2& j

A2
51

1

4
J'

u1& j1u2& j

A2
, ~3.49!

H̃0

u3& j1u4& j

A2
51

3

4
J'

u3& j1u4& j

A2
. ~3.50!

We will focus on the degenerate low-energy states (u1& j

2u2& j)/A2 and (u3& j2u4& j)/A2 and work with the follow-
ing states that break time reversal symmetry,

u↑& j[
1

2
@~ u1& j2u2& j)1i~ u3& j2u4& j)], ~3.51!

u↓& j[
1

2
@~ u1& j2u2& j)2i~ u3& j2u4& j)]. ~3.52!

We regard them as states with finite current running on the
j th rung ~Fig. 3!, as they are eigenstates of the ‘‘rung-current
operator’’ defined by

Ĵ j[i(
s

~c j ,1,s
† c j ,2,s2c j ,2,s

† c j ,1,s! ~3.53!

with eigenvalues 62,

Ĵ ju↑& j512u↑& j , Ĵ ju↓& j522u↓& j. ~3.54!

We note that Ĵ is not a true current operator for H̃0 due to the
pair hopping term.

The SF state has a long-range alternating order of u↑& and
u↓& or, equivalently, of currents circulating around each
plaquette ~Fig. 4!.38 To verify the existence of the SF phase,
we derive a low-energy effective theory, in perturbation ex-
pansion in H8, for the low-energy states u↑& j and u↓& j ,
which we regard as up and down states of a pseudospin. In
this picture, the antiferromagnetic ordering of the pseudo-
spins corresponds to the staggered flux phase. The lowest-

order contribution in H̃8 comes from the nonvanishing ma-
trix elements in the subspace of u↑& j and u↓& j ,

^↑uH̃8u↑& j5^↓uH̃8u↓& j5

1

2
~U1V'2dtpair!, ~3.55!

^↑uH̃8u↓& j5^↓uH̃8u↑& j52

1

2
~U2V'2dtpair!,

~3.56!

from which we obtain the first-order effective Hamiltonian

FIG. 3. Schematic illustration of the states u↑& and u↓&. The

arrow denotes a state with a finite current running in the arrow’s

direction.

FIG. 4. Staggered flux state described as a Néel ordered state of

the pseudospin states, u↑& and u↓&.
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HSF
(1)

52

1

2
~U2V'2dtpair!(

j
s̃ j

x
1const, ~3.57!

where s̃ j
a are the Pauli matrices (a5x ,y ,z). The lowest-

order contributions in t i and t' come from the second-order
processes,

HSF
(2a)

5H t i

1

Ẽ02H̃0

H t i
, ~3.58!

HSF
(2b)

5H t
'

1

Ẽ02H̃0

H t
'

, ~3.59!

where Ẽ0523J'N/4 with N being the number of rungs in

the system. The nonzero matrix elements of HSF
(2a) are given

by

^↑ ,↓uHSF
(2a)u↑ ,↓& j5^↓ ,↑uHSF

(2a)u↓ ,↑& j52

8t i
2

3J'

,

~3.60!

where um ,n& j[um& jun& j11 (m ,n5↑ ,↓). We can thus write

HSF
(2a) as

HSF
(2a)

5

4t i
2

3J'

(
j

~ s̃ j
zs̃ j11

z
21 !. ~3.61!

On the other hand, the nonzero matrix elements of HSF
(2b) are

^↑uHSF
(2b)u↑& j5^↓uHSF

(2b)u↓& j5^↑uHSF
(2b)u↓& j

5^↓uHSF
(2b)u↑& j52

4t
'

2

3J'

, ~3.62!

from which we obtain

HSF
(2b)

52

4t
'

2

3J'

(
j

s̃ j
x
1const. ~3.63!

From Eqs. ~3.57!, ~3.61!, and ~3.63!, we find that the total
effective Hamiltonian is the Ising chain in a transverse field,

HSF
eff

5(
j

~K̃s̃ j
zs̃ j11

z
2 h̃s̃ j

x!, ~3.64!

where the antiferromagnetic exchange coupling K̃ and the

magnitude of the transverse field h̃ are given by

K̃5

4t i
2

3J'

, h̃5

1

2
S U2V'2dtpair1

8t
'

2

3J'

D . ~3.65!

This model exhibits an Ising criticality at K̃5uh̃u: the Néel

ordered phase (K̃.uh̃u) corresponds to the SF phase, while

for K̃,uh̃u the system is disordered. The disordered ground

state for h̃.K̃.0 is continuously connected with the ground

state at h̃→` , i.e., the eigenstate of s̃x with eigenvalue 11.
This state corresponds to the D-Mott state in the original
Hubbard ladder, since

us̃x
511& j5

1

A2
~ u↑& j1u↓& j)

5

1

A2
~ u1& j2u2& j)→uD-Mott& . ~3.66!

Hence we conclude that the Ising disordered phase corre-
sponds to the D-Mott phase.

It is interesting to rewrite the transverse magnetic field h̃

as

h̃5

1

2
S U2V'1

3

4
J'2tpair1

8t
'

2

3J'

D . ~3.67!

The SF phase is realized when the inequality

2

16t2

3J'

,U2V'1

3

4
J'2tpair,0 ~3.68!

is satisfied ~assuming t i5t'5t), where we have to keep in
mind the assumption that tpair'

3
4 J' .

IV. WEAK-COUPLING APPROACH

In this section, we study the phase diagram of the gener-
alized Hubbard ladder, treating the two-particle interactions
as weak perturbations. To diagonalize the single-particle
hopping Hamiltonian, we define the Fourier transform,

c j ,s(k'50)5(c j ,1,s1c j ,2,s)/A2, c j ,s(k'5p)5(c j ,1,s

2c j ,2,s)/A2, and cs(k)5( je
2ik jc j ,s(k')/AN , where k

5(k ,k') and the lattice spacing a is set equal to 1. The
kinetic-energy term then becomes

H0[H t i
1H t

'
5(

k,s
«~k!cs

† ~k!cs~k!, ~4.1!

where «(k)522t icos k2t'cos k' . For t',2t i , both the
bonding (k'50) and antibonding (k'5p) energy bands are
partially filled, and their Fermi points are located at k5

6kF ,k
'

with kF ,05p/21d and kF ,p5p/22d , where d

[sin21(t'/2t i). At these Fermi points the Fermi velocity
takes the common value vF52t i@12(t'/2t i)

2#1/2. In the fol-
lowing analysis we restrict ourselves to the isotropic hopping
case t i5t'([t).

A. Order parameters

Let us first define order parameters characterizing insulat-
ing phases studied in this section. We consider the CDW, SF,
PDW, and FDW states as possible density-wave ordered
states. Their order parameters are written as

OA5

1

2N (
k,s

f A~k!cs
† ~k!cs~k1Q![

1

N (
j

~21 ! jOA~ j !,

~4.2!

where Q5(p ,p) and A5CDW, SF, PDW, FDW. The form
factor f A(k) are given by f CDW51, f SF5cos k2cos k' ,
f PDW5sin k, and f FDW5sin k cos k' . Order parameters for
the spin density waves are not considered, since their corre-
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lations decay exponentially in the bulk of the phase diagram
of our model. It is clear that the CDW order parameter,

OCDW5

1

2
~n j ,12n j ,2!, ~4.3!

has nonvanishing average in the CDW states ~3.11a! and
~3.11b!. The order parameter of the SF state is

OSF5

1

4i
ĴP , j , ~4.4!

where the operator ĴP , j denotes a current circulating around
a plaquette,

ĴP , j[i(
s

~c j ,1,s
† c j ,2,s1c j ,2,s

† c j11,2,s1c j11,2,s
† c j11,1,s

1c j11,1,s
† c j ,1,s2H.c.!. ~4.5!

The PDW phase is a Peierls dimerized state along the leg
direction with interleg phase difference p , characterized by
the order parameter,

OPDW5

i

4 (
s

~c j11,1,s
† c j ,1,s2c j11,2,s

† c j ,2,s1H.c.!.

~4.6!

The FDW state is a different kind of staggered current states.
Its order parameter is

OFDW5

1

4
~ Ĵ1 , j2 Ĵ2 , j!, ~4.7!

where the operators Ĵ6 , j represent currents flowing along the
diagonal directions of plaquettes,

Ĵ1 , j5i(
s

~c j11,2,s
† c j ,1,s2c j ,1,s

† c j11,2,s!, ~4.8!

Ĵ2 , j5i(
s

~c j11,1,s
† c j ,2,s2c j ,2,s

† c j11,1,s!. ~4.9!

The long-range order of staggered currents flowing along
diagonals of the plaquettes has been examined in a spinless
ladder system.33

We also introduce order parameters of the s-wave and
d-wave superconductivity,

OA5

1

2N (
k

f A~k!c↑~k!c↓~2k!, ~4.10!

where A5SCs and SCd , and f SCs51 and f SCd5cos k

2cos k' .

B. Bosonization

We bosonize the Hubbard ladder Hamiltonian in this sub-
section. Following the standard bosonization scheme, we lin-
earize the energy bands around the Fermi points. The linear-
ized kinetic energy is given by

H05 (
k,p ,s

vF~pk2kF ,k
'

!cp ,s
† ~k!cp ,s~k!, ~4.11!

where the index p51/2 denotes the right/left-moving elec-
tron. We introduce field operators of the right- and left-going
electrons defined by

cp ,s ,1~x !5

1

AL
(

k
e ikxcp ,s~k ,0!, ~4.12a!

cp ,s ,2~x !5

1

AL
(

k
e ikxcp ,s~k ,p !, ~4.12b!

where L is the length of the system: L5Na . The linearized
kinetic energy now reads

H05vFE dx (
p ,s ,z

cp ,s ,z
† S 2ip

d

dx
2kF ,k

'
Dcp ,s ,z ,

~4.13!

where k'50 (p) for z51 (2).
The interactions among low-energy excitations near the

Fermi points, H I5H int1HV i
1HV8

1Hpair , are written as

H I5*dxHI , where

HI5

1

4 (
p ,s

( 8
z i56

@g1i
eēcp ,s ,z1

† c
2p ,s ,z2

† cp ,s ,z4
c2p ,s ,z3

1g1'

eē cp ,s ,z1

† c
2p ,2s ,z2

† cp ,2s ,z4
c2p ,s ,z3

1g2i
eēcp ,s ,z1

† c
2p ,s ,z2

† c2p ,s ,z4
cp ,s ,z3

1g2'

eē cp ,s ,z1

† c
2p ,2s ,z2

† c2p ,2s ,z4
cp ,s ,z3

1g3i
eēcp ,s ,z1

† cp ,s ,z2

† c2p ,s ,z4
c2p ,s ,z3

1g3'

eē cp ,s ,z1

† cp ,2s ,z2

† c2p ,2s ,z4
c2p ,s ,z3

# . ~4.14!

Here e5z1z3 and ē5z1z2. The primed summation over
z i (i51, . . . ,4) is taken under the condition z1z2z3z45

11, which comes from the momentum conservation condi-

tion in the transverse direction. The coupling constants g ii
eē

and g i'
eē are related to the original coupling constants in the

Hamiltonian ~2.1!,

g ii
eē

a
5leV'1

le

4
J'1m i ,eV i1lem i ,eV8, ~4.15!

g i'
eē

a
5U1leV'1

le , ē

4
J'1l ētpair1m i ,eV i1lem i ,eV8

~4.16!

with the numerical factors defined by l6561, l6 ,1573,
l6 ,2561. m1,15m3,1521, m1,25m3,2522, m2,1

512, m2,2511. We have neglected the so-called g4 terms
describing the forward scattering processes within the same
branch ~left-/right-mover!, since including these terms would
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only cause nonuniversal quantitative differences to the
ground-state phase diagram. In Eqs. ~4.15! and ~4.16!, we
have estimated the coupling constants in lowest order in the
interaction of the Hubbard model. The higher-order contri-
butions can play a crucial role of changing the topology of a
phase diagram, if different kinds of quantum criticalities ac-
cidentally occur simultaneously when lowest-order coupling
constants are used, as is the case in the 1D extended Hubbard
model at half filling.51 This is not the case in the ladder
model of our interest, and we will use the lowest-order form,
Eqs. ~4.15! and ~4.16!.

We apply the Abelian bosonization method52–54 and re-
write the kinetic energy in terms of bosonic fields: H0

5*dxH0, where

H05

vF

2p (
n5r ,s

(
r56

F ~pPnr!
2
1S dfnr

dx
D 2G . ~4.17!

Here the suffices r and s refer to the charge and spin sectors
and r56 refer to the even and odd sectors. The operator
Pnr(x) is a canonically conjugate variable to fnr(x) and
satisfies @fnr(x),Pn8r8

(x8)#5id(x2x8)dn ,n8
dr ,r8

. We then
introduce chiral bosonic fields

fnr
6 ~x ![

1

2 Ffnr~x !7pE
2`

x

dx8Pnr~x8!G , ~4.18!

which satisfy the commutation relations

@fnr
6 (x),fn8r8

6
(x8)#56i(p/4)sgn(x2x8)dn ,n8

dr ,r8
and

@fnr
1 (x),fn8r8

2
(x8)#5i(p/4)dn ,n8

dr ,r8
. The right-moving

and left-moving chiral fields f1(x ,t) and f2(x ,t) are func-
tions of t2i(x/vF) and t1i(x/vF), respectively, where t is
imaginary time. The kinetic-energy density can also be writ-
ten as

H05

vF

p (
p56

(
n5r ,s

(
r56

S dfnr
p

dx
D 2

. ~4.19!

We also introduce the field unr defined by unr5fnr
1

2fnr
2 .

The u field satisfies the commutation relation

@fnr(x),un8r8
(x8)#52ipQ(2x1x8)dr ,r8

, where Q(x) is
the Heaviside step function.

To express the electron fields in terms of the bosons, we
define a new set of chiral bosonic fields

wp ,s ,z5fr1

p
1zfr2

p
1sfs1

p
1szfs2

p , ~4.20!

where p56 , s56 , and z56 . The chiral bosons obey the
commutation relations @wp ,s ,z(x),wp ,s8,z8

(x8)# 5ippsgn(x

2x8)ds ,s8
dz ,z8

and @w1 ,s ,z ,w2 ,s8,z8
#5ipds ,s8

dz ,z8
.

The field operators of the right- and left-moving electrons
are then written as

cp ,s ,z5

hs ,z

A2pa
exp~ ipkF ,k

'
x1ipwp ,s ,z!, ~4.21!

where s51 for s5↑ and s52 for s5↓ . The Klein factors
hs ,z , which satisfy $hs ,z ,hs8,z8%52ds ,s8

dz ,z8
, are intro-

duced in order to retain the correct anticommutation relation
of the field operators between different spin and the band
index. From Eq. ~4.21! the density operator is given by

rp ,s ,z~x !5:cp ,s ,z
† cp ,s ,z :5

1

2p

d

dx
wp ,s ,z~x !. ~4.22!

The Hamiltonian and the order parameters contain only
products of the Klein factors such as17,38 G

[h↑ ,1h↓ ,1h↑ ,2h↓ ,2 , hs[hs ,1hs ,2 , and hz8[h↑ ,zh↓ ,z ,

which satisfy G52h↑h↓51h
1
8 h

2
8 . Since G2

511, h2

5(h8)2
521, the eigenvalues are G561, h56i , and h8

56i . We will adopt the following convention: G511, hs

5i , hz85iz .

In the bosonized Hamiltonian the phase field fr2 appears
in the form cos(2fr214dx) with d5sin21(t'/2t i). Since
t' (5t i) is not small, we can safely assume that the d is
relevant and the electrons are not confined in the legs.22,26,55

In this case the cos(2fr214dx) terms become irrelevant. We
thus discard them as well as other terms with higher-order
scaling dimensions. The interaction term Eq. ~4.14! reduces
to

HI5 (
n5r ,s

(
r56

gnr

2p2
~]xfnr

1 !~]xfnr
2 !1

1

2p2a2
@gc1 ,c2cos 2fr1cos 2ur21gc1 ,s1cos 2fr1cos 2fs1

1gc1 ,s2cos 2fr1cos 2fs21gc1 ,s2cos 2fr1cos 2us21gc2 ,s1cos 2ur2cos 2fs11gc2 ,s2cos 2ur2cos 2fs2

1gc2 ,s2cos 2ur2cos 2us21gs1 ,s2cos 2fs1cos 2fs21gs1 ,s2cos 2fs1cos 2us2# , ~4.23!

where the coupling constants for the bilinear terms of the
density operators are given by

gr15 (
e56

~g2i
1e

1g2'

1e
2g1i

ee!, ~4.24a!

gr25 (
e56

e~g2i
1e

1g2'

1e
2g1i

ee!, ~4.24b!

gs15 (
e56

~g2i
1e

2g2'

1e
2g1i

ee!, ~4.24c!
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gs25 (
e56

e~g2i
1e

2g2'

1e
2g1i

ee!, ~4.24d!

and the coupling constants for the nonlinear terms are given
by

gc1 ,c252g3'

21 , ~4.25a!

gc1 ,s152g3i
12

1g3i
22 , ~4.25b!

gc1 ,s252g3'

12 , ~4.25c!

gc1 ,s251g3'

22 , ~4.25d!

gc2 ,s152g1'

21 , ~4.25e!

gc2 ,s252g2'

21 , ~4.25f!

gc2 ,s251g2i
21

2g1i
21 , ~4.25g!

gs1 ,s251g1'

11 , ~4.25h!

gs1 ,s251g1'

22 . ~4.25i!

We note that the umklapp scattering ~the g3 terms! generates
cosine potentials that lock the fr1 field.

The coupling constants in Eq. ~4.23! are not independent
parameters. Imposing the global spin-rotation SU~2! symme-
try on the interaction terms Eq. ~4.14!, we find that the rela-
tions

g2i
11

2g2'

11
2g1i

11
1g1'

11
50, ~4.26a!

g2i
12

2g2'

12
2g1i

22
1g1'

22
50, ~4.26b!

g2i
22

2g2'

22
2g1i

12
1g1'

12
50, ~4.26c!

g2i
21

2g2'

21
2g1i

21
1g1'

21
50, ~4.26d!

g3i
12

2g3i
22

2g3'

12
1g3'

22
50, ~4.26e!

must hold. In terms of the coupling constants in Eq. ~4.23!,
these relations read

gs11gs212gs1 ,s250, ~4.27a!

gs12gs212gs1 ,s250, ~4.27b!

gc2 ,s12gc2 ,s22gc2 ,s250, ~4.27c!

gc1 ,s12gc1 ,s22gc1 ,s250. ~4.27d!

We have ignored Eq. ~4.26c! which is the constraint on the
irrelevant cosine term }cos(2fr214dx). Since the SU~2!
symmetry of the original Hubbard Hamiltonian ~2.1! cannot
be broken, the coupling constants in Eq. ~4.23! must satisfy
Eqs. ~4.27a!–~4.27d! in the course of renormalization.

Finally, the order parameters are written in terms of the
phase fields,

OCDW}cosfr1sin ur2cos fs1cos us2

2sin fr1cos ur2sin fs1sin us2 , ~4.28a!

OSF}cos fr1cos ur2cos fs1cos us2

1sin fr1sin ur2sin fs1sin us2 , ~4.28b!

OPDW}cos fr1cos ur2sin fs1sin us2

1sin fr1sin ur2cos fs1cos us2 , ~4.28c!

OFDW}cos fr1sin ur2sin fs1sin us2

2sin fr1cos ur2cos fs1cos us2 . ~4.28d!

OSCd}e iur1cos ur2cos fs1cos fs2

2ie iur1sin ur2sin fs1sin fs2 , ~4.28e!

OSCs}e iur1cos ur2sin fs1sin fs2

2ie iur1sin ur2cos fs1cos fs2 . ~4.28f!

C. Critical properties in the charge and spin modes

In this subsection, we study the ground-state phase dia-
gram through qualitative analysis of the bosonized Hamil-
tonian ~4.23!. First we classify the phases that can appear at
half filling, and then discuss ~a! the Gaussian criticality in the
charge sector and ~b! the Ising and SU(2)2 criticalities in the
spin sector.

1. Classification of phases

In general, all the modes become massive in the extended
Hubbard ladder at half filling. This means that in the
bosonized Hamiltonian ~4.23! cosine terms are relevant at
low energies and that the bosonic phase fields are locked at
some fixed values ~integer multiples of p/2) where the rel-
evant cosine potentials are minimized.25 The locked phase
fields can be treated as classical variables, and the average
value of an order parameter is found by substituting the
locked phases into Eq. ~4.28!. A nonvanishing order param-
eter signals which phase is realized. We can reverse the logic
and find the configuration of the locked phase fields for each
insulating phase by imposing its order parameter to have its
maximum modulus. This is what we do in the following
analysis.

In the SF, CDW, PDW, and FDW phases the ground state
breaks a Z2 symmetry. Therefore the order parameter of
these phases can have a nonvanishing value at zero tempera-
ture even in one dimension. In each phase the bosonic fields
fr1 , ur2 , fs1 , and us2 are pinned at a point where the
modulus of the corresponding order parameter is maximized.
From Eq. ~4.28! we can easily find at which values the
bosonic fields are locked for the four phases. The result is
summarized in Table I.

Once the configuration of locked phase fields is under-
stood for the SF and the CDW phases, we can also find that
for the D-Mott and the S-Mott phases using the following
arguments. On the one hand, we know from the strong-
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coupling analysis that these two insulating phases are Ising
disordered phases of the SF and the CDW phases, respec-
tively, where the us2 field is locked. On the other hand, the
Hamiltonian ~4.23! has some cosine potentials that can lock
the fs2 field. Since the fs2 field is a conjugate field to
us2 , these two fields cannot be locked at the same time. In
fact, it is known17 that an Ising phase transition must be
associated with switching of phase locking from one bosonic
field to its conjugate field. We can thus obtain the D-Mott
and the S-Mott phases from the SF and the CDW phases by
exchanging the role of the fs2 field and the us2 field, ar-
riving at the phase locking pattern shown in Table I. A brief
comment on the connection to the superconducting states is
in order here. If we ignore the r1 mode for the moment, the
order parameter of the d-wave (s-wave! superconductivity
takes nonzero amplitude when the locked phases (^ur2&,

^fs1&, and ^fs2&) of the D-Mott (S-Mott! phase are sub-
stituted into OSCd(s) . This is consistent with the previous
results1,11–18,20,22 that, upon doping, the D-Mott state turns
into the d-wave superconducting state in the t-J or Hubbard
ladder. The effect of carrier doping is to make the umklapp
term irrelevant and to leave the fr1 field unlocked. The
operator e iur1 representing the superconducting correlation
then becomes quasi-long-range ordered.

It is possible to construct a disorder parameter that char-
acterizes the Ising transitions and that has a nonvanishing
expectation value in the D-Mott and the S-Mott phases. A
candidate operator for the disorder parameter is

m j5expS i
p

2 (
i51

j

X iD ,

X i5c i ,1,↑
† c i ,2,↑1c i ,2,↑

† c i ,1,↑2c i ,1,↓
† c i ,2,↓2c i ,2,↓

† c i ,1,↓ .
~4.29!

In the weak-coupling limit we take the continuum limit and
express the operator ~4.29! in terms of the bosonic fields. We
then obtain

m j5exp@ ifs2~ j !# . ~4.30!

Indeed, the disorder parameter m j takes a nonzero value in
the D-Mott and the S-Mott phases where the fs2 field is
locked. In the strong-coupling limit studied in Sec. III, we

may impose the condition that n i ,11n i ,252 and S i ,1
z

1S i ,2
z

50 on every rung. Under this condition we find that

exp@i(p/2)X i#512
1
2 X i

2 and m j reduces to

m j5)
i51

j

@~c i ,1,↑
† c i ,1,↓

† c i ,2,↓c i ,2,↑1H.c.!2~S i ,1
1 S i ,2

2
1S i ,1

2 S i ,2
1 !# ,

~4.31!

which acts on the pseudospin states defined in Secs. III A and
III C as m ju1& i5u2& i and m ju↑& i5u↓& i for i< j . This means

that we can write m j5) i
jt i

x and m j5) i
js̃ i

x near the CDW–

S-Mott and the SF–D-Mott transitions, respectively. They
are indeed the disorder parameter of the quantum Ising
model54 that describes the CDW–S-Mott and the SF–
D-Mott Ising transitions.

Since the PDW and the FDW phases break Z2 symmetry,
we can naturally expect that these two phases should also
have their own Ising disordered phases. We shall call them
S8-Mott and D8-Mott phases for the reason that will become
clear below. The configuration of phase locking in the
S8-Mott and D8-Mott phases can be obtained from that of
the PDW and FDW phases by exchanging ^fs2& and

^us2&; see Table I. We see immediately that the phase-
locking pattern of the S8-Mott (D8-Mott! state differs from
that of the S-Mott (D-Mott! only in the locking of the fr1

field shifted by p/2. This implies that the phase transition
between S8-Mott (D8-Mott! state and the S-Mott (D-Mott!
state is a Gaussian transition in the fr1 mode, and that the
S8-Mott (D8-Mott! state should evolve into the s-wave
(d-wave! superconducting state upon carrier doping as in the
S-Mott (D-Mott! state.

The nature of the S8-Mott state can be deduced through
its similarity to the S-Mott state ~3.10!. We first note that, as
mentioned above, the S8-Mott state is related to the S-Mott
state by a p/2 shift of the fr1 mode, which is equivalent to
translation by half unit cell, in such a way that the PDW state

TABLE I. Pattern of phase locking. The * symbol indicates that a bosonic field is not locked. I is are

integers.

Phase ^fr1& ^ur2& ^fs1& ^fs2& ^us2&

CDW p

2
I01pI1

p

2
(I011)1pI2

p

2
I01pI3

* p

2
I01pI4

SF p

2
I01pI1

p

2
I01pI2

p

2
I01pI3

* p

2
I01pI4

PDW p

2
(I011)1pI1

p

2
(I011)1pI2

p

2
I01pI3

* p

2
I01pI4

FDW p

2
(I011)1pI1

p

2
I01pI2

p

2
I01pI3

* p

2
I01pI4

S-Mott p

2
I01pI1

p

2
(I011)1pI2

p

2
I01pI3

p

2
I01pI4

*

D-Mott p

2
I01pI1

p

2
I01pI2

p

2
I01pI3

p

2
I01pI4

*

S8-Mott p

2
(I011)1pI1

p

2
(I011)1pI2

p

2
I01pI3

p

2
I01pI4

*

D8-Mott p

2
(I011)1pI1

p

2
I01pI2

p

2
I01pI3

p

2
I01pI4

*
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is related to the CDW state. This suggests that the center of
mass of a singlet in the S8-Mott state should be located at a
center of a plaquette. Noting that cos k cos k' is positive
(s-wave like! at all the Fermi points, k5„6(p/21d),0… and
„6(p/2 2d),p…, of the ladder model, we speculate that the
singlet-pair wave function ~or the symmetry of a Cooper pair
in the s-wave superconducting state realized upon doping! is

of the form cos k cos k'c↑
†(k)c↓

†(2k) in momentum space. In

real space this corresponds to a linear combination of two
singlets formed between diagonal sites of a plaquette. From
these considerations we come to propose the following wave
function as a representative of the S8-Mott state:

uS8-Mott&5)
j

1

2
~c j ,1,↑

† c j11,2,↓
†

2c j ,1,↓
† c j11,2,↑

†
1c j ,2,↑

† c j11,1,↓
†

2c j ,2,↓
† c j11,1,↑

† !u0&. ~4.32!

This state mostly consists of singlets along the diagonal di-
rection of plaquettes but also contains resonating singlets
that are formed by two spins on different legs that can be
separated far away.

The D8-Mott state consists of singlets that would turn into
d-wave Cooper pairs upon doping. Since the singlet-pair
wave function in the D-Mott state is cos k' in momentum
space, we expect that the singlet pairs in the D8-Mott state
should be of the form cos k. In real space this corresponds to
a linear combination of singlets formed in the leg direction.
This leads to the following wave function:

uD8-Mott&5)
j

F (
l51,2

c j ,l ,↑
† c j11,l ,↓

†
2c j ,l ,↓

† c j11,l ,↑
†

2 G u0&

~4.33!

as a representative of the D8-Mott state. It is easy to see by
expanding the product that this state is a resonating valence
bond state in which some singlets can be formed out of two
spins that are separated arbitrary far away along a leg. How-
ever, amplitude of the states having such a long-distance sin-
glet is exponentially suppressed with the distance between
the two spins.

It is interesting to note that the wave function ~4.32! can
be constructed from the S-Mott wave function ~3.10! by re-

placing c j ,l ,s
† with c

j11, l̄ ,s

†
, where l̄ 52 ~1! for l51 ~2! such

that c j ,l ,↑
† c j ,l ,↓

† →(c
j11, l̄ ,↑

†
c j ,l ,↓

†
1c j ,l ,↑

† c
j11, l̄ ,↓

†
)/A2. This rule

can also be used to construct the wave function of the
D8-Mott state ~4.33! from that of the D-Mott state ~3.9!.

Since the fs2 field is locked in the S8-Mott and D8-Mott
phases, the operator ~4.30! also serves as the disorder param-
eter in the PDW–S8-Mott and the FDW–D8-Mott transitions
of the Ising universality class. In fact, the disorder parameter
~4.30! takes a nonzero value in any of the Mott phases and
vanishes otherwise.

The various insulating phases and phase transitions
among them are schematically shown in Fig. 5. In this figure
phase transitions between a phase in the left column and
another in the right column, such as transitions between the
Mott phases, are the c51 Gaussian criticality. It would be

interesting to find an order parameter that can distinguish
different Mott phases. The transitions in the vertical direction
within a column are, if continuous, either the c51/2 Ising
criticality or the c53/2 SU(2)2 criticality. The latter may be
replaced by a first-order transition. We will discuss these
transitions in more detail in the following subsubsections.

A brief comment on the related earlier works is in order
here. The top four phases ~SF, CDW, S-Mott, and D-Mott! in
Fig. 5 and the Gaussian and Ising transitions between these
phases have been found in the weak-coupling RG analysis of
the SO~5! symmetric ladder model by Lin, Balents, and
Fisher.25 The misidentification of the SF phase with the PDW
phase made in this work has been corrected later by
Fjærestad and Marston.38 We have pointed out the existence
of four more phases in the generalized Hubbard ladder model
and determined the universality class of the phase transitions
between all the eight phases.

2. Gaussian criticality in the charge degrees of freedom

First we discuss the Gaussian criticality when all the
modes except the relative charge mode (r2) become mas-
sive at some higher energy scale. This situation is relevant
for the horizontal transitions in Fig. 5: SF–CDW, D-Mott–
S-Mott, PDW–FDW, and S8-Mott–D8-Mott transitions. We
take the D-Mott–S-Mott phase transition as an example.
Without loss of generality we may assume that the phase
variables are locked at ^fr1&5^fs1&5^fs2&50 mod p .
Below the energy scale at which the three fields are locked,
we can replace the cosine terms in the Hamiltonian Eq.

FIG. 5. Schematic illustration of the phase diagram under the

global SU~2! symmetry. The phase transitions indicated by the solid

~dashed! arrows are the c51 (c51/2) criticality. The phase transi-

tions indicated by the double arrows are either the c53/2 SU(2)2

criticality or first order; see discussion in Sec. IV C 3 and Fig. 10.

The diagonal solid arrows denote the Gaussian transitions in the

fr1 mode.
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~4.23! by their average: cos 2fr1→cr1[^cos 2fr1&,
cos 2fs1→cs1[^cos 2fs1&, and cos 2fs2→cs2

[^cos 2fs2&, where cr1 , cs1 , and cs2 are nonuniversal
positive constants that depend on bare interactions. We then
have the effective theory

Hr25

vF

p
@~]xfr2

1 !2
1~]xfr2

2 !2#1

gr2

2p2
~]xfr2

1 !~]xfr2

2 !

1

gc2

2p2a2
cos 2ur2 , ~4.34!

where the coupling constant gc2 is given by

gc25cr1gc1 ,c21cs1gc2 ,s11cs2gc2 ,s2 . ~4.35!

Since the canonical dimension of cos 2ur2 is 1, the gc2 term
is a relevant perturbation and hence the system always be-
comes massive except when gc250. If gc2.0, then the
phase field is locked as ^ur2&5p/2 mod p , which corre-
sponds to the S-Mott phase. When gc2,0, the phase field is
locked as ^ur2&50 mod p , and the ground state in this case
turns out to be the D-Mott state. The Gaussian criticality
with the central charge c51 is realized at gc250. In terms
of the original Hubbard interactions the coupling constant
gc2 is given by

gc2

a
52CS U2V'1

3

4
J'1tpairD1C8~V i2V8!,

~4.36!

where C[cr11cs11cs2 and C8[2cr112cs12cs2 are
nonuniversal positive constants. Thus, the D-Mott (S-Mott!
state appears when U2V'13J'/41tpair2C8(V i2V8)/C
.0 (,0), and the Gaussian criticality shows up at

U2V'1

3

4
J'1tpair2

C8

C
~V i2V8!50, ~4.37!

which is the same as the phase boundary obtained from the
strong-coupling analysis, Eq. ~3.41!, for V i5V850.

The SF–CDW phase transition can be analyzed in a simi-
lar way. We consider a situation where the phase variable
us2 , instead of fs2 , is locked at ^us2&50 mod p . In this
case we can replace the cosine factor in the Hamiltonian as
cos 2us2→cs2[^cos 2us2&.0. The effective theory is given
by Eq. ~4.34! with the coupling constant gc25cr1gc1 ,c2

1cs1gc2 ,s11cs2gc2 ,s2 . The SF ~CDW! state is realized
for gc2,0 (.0), where the phase ur2 is locked at 0 (p/2)
mod p . In terms of the original Hubbard interactions, the
coupling constant gc2 is given by Eq. ~4.36! with C5cr1

1cs1.0 and C852cr112cs113cs2 . We thus conclude
that the SF ~CDW! state appears for U2V'1

3
4 J'1tpair

2C8(V i2V8)/C.0 (,0), and the condition for the Gauss-
ian criticality is given by Eq. ~4.37!.

The other transitions of the c51 Gaussian criticality can
also be analyzed in the same manner. We note that in addi-
tion to the Gaussian criticality in the r2 mode discussed
above, there is another Gaussian criticality in the r1 mode

that governs the SF–FDW, CDW–PDW, D-Mott–D8-Mott,
and S-Mott–S8-Mott transitions.

3. Z2ÃO„3… symmetry in the spin degrees of freedom

and the Ising and SU„2…2 criticality

Here we focus on the case where the masses of the two
charge modes (r6) are larger than those of the spin modes
(s6). Below the mass scale of the charge modes we may
regard that the fr1 and ur2 fields are locked by cosine
potentials. The effective low-energy theory is obtained from
Eq. ~4.23! by replacing cos 2fr

1
and cos 2ur2 by their aver-

age values cr1[^cos 2fr1& and cr2[^cos 2ur2&,

Hs5

vF

p
@~]fs1

1 !2
1~]fs1

2 !2
1~]fs2

1 !2
1~]fs2

2 !2#

1

gs1

2p2
~]fs1

1 !~]fs1

2 !1

gs1

2p2a2
cos 2fs1

1

gs2

2p2
~]fs2

1 !~]fs2

2 !1

gs2

2p2a2
cos 2fs2

1

gs2

2p2a2
cos 2us21

gs1 ,s2

2p2a2
cos 2fs1cos 2fs2

1

gs1 ,s2

2p2a2
cos 2fs1cos 2us2 , ~4.38!

where the coupling constants gs1 , gs2 , and gs2 are given
by

gs1[cr1gc1 ,s11cr2gc2 ,s1 , ~4.39a!

gs2[cr1gc1 ,s21cr2gc2 ,s2 , ~4.39b!

gs2[cr1gc1 ,s21cr2gc2 ,s2 . ~4.39c!

The coupling constants in Eq. ~4.38! are not completely free
parameters, since the system has the spin-rotational SU~2!
symmetry. From Eqs. ~4.27! and ~4.39!, the constraints on
the coupling constants read

gs12gs22gs250, ~4.40a!

gs1 ,s252

1

2
~gs11gs2!, ~4.40b!

gs1 ,s252

1

2
~gs12gs2!. ~4.40c!

To appreciate the SU~2! symmetry in the effective theory
~4.38!, we fermionize it by introducing spinless fermion
fields cp ,r (p56 and r56),

c6 ,r~x !5

hr

A2pa
exp@6i2fsr

6 ~x !# , ~4.41!

where the index r51(2) refers to the total ~relative! de-
grees of freedom of spin mode, and $hr ,hr8%52dr ,r8

. The
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density operators are given by :cp ,6
† cp ,6 :5]xfs6

p /p . We

then introduce the Majorana fermions jn (n51;4) by

cp ,15

1

A2
~jp

1
1ijp

2!, cp ,25

1

A2
~jp

4
1ijp

3!. ~4.42!

These fields satisfy the anticommutation relations

$jp
n(x),j

p8

n8(x8)%5d(x2x8)dp ,p8
dn ,n8

. With the help of the

SU~2! constraints ~4.40!, we rewrite the effective Hamil-
tonian in terms of the Majorana fermions,

Hs52i
vF

2
~j1•]xj12j2•]xj2!2im tj1•j2

2i
vF

2
~j

1

4 ]xj1

4
2j

2

4 ]xj2

4 !2imsj1

4 j
2

4

1

gs1

4
~j1•j2!2

1

gs2

2
~j1•j2!j

1

4 j
2

4 , ~4.43!

where we have introduced jp5(jp
1 ,jp

2 ,jp
3) and

m t[2

gs1

2pa
, ms[2

gs22gs2

2pa
. ~4.44!

Thus the effective theory for the spin sector becomes O(3)
3Z2 symmetric, i.e., the four Majorana fermions are
grouped into a singlet j4 with mass ms and a triplet j with
mass m t . We note that the O(3)3Z2 symmetry also appears
in the low-energy effective theory of the isotropic Heisen-
berg ladder.24,56 It is known that, when ms ,m tÞ0, the quar-

tic marginal terms lead to mass renormalization, ms→m̃s and

m t→m̃ t , where24,54

m̃ t5m t1

gs1

2pvF

m tln
L

um tu
1

gs2

4pvF

msln
L

umsu
, ~4.45!

m̃s5ms1

3gs2

4pvF

m tln
L

um tu
. ~4.46!

Here L is a high-energy cutoff. The effective theory then
reduces to

Hs52i
vF

2
~j1•]xj12j2•]xj2!2im̃ tj1•j2

2i
vF

2
~j

1

4 ]xj1

4
2j

2

4 ]xj2

4 !2im̃sj1

4 j
2

4 . ~4.47!

It immediately follows from Eq. ~4.47! that the Ising critical-

ity with c51/2 emerges as m̃s→0. On the other hand, the

critical properties for the O~3! invariant sector (m̃ t→0) are
known to be described by the SU(2)2 Wess-Zumino-
Novikov-Witten model with the central charge c53/2.54,57

Let us examine the critical behavior in more detail using
the scaling equations for the coupling constants appearing in
the effective Hamiltonian ~4.43!,

dG t

dl
5G t1G tGs11

1

2
GsGs2 , ~4.48a!

dGs

dl
5Gs1

3

2
G tGs2 , ~4.48b!

dGs1

dl
5

1

2
Gs1

2
1

1

2
Gs2

2
12G t

2 , ~4.48c!

dGs2

dl
5Gs1Gs212G tGs , ~4.48d!

where dl5da/a , G t52gs1/2pvF , Gs52(gs2

2gs2)/2pvF , and Gs65gs6/2pvF . The couplings Gs and
G t are relevant, while Gs6 are marginal. Within the one-
loop RG we find four stable fixed points,

(G t
* ,Gs

* ,Gs1
* ,Gs2

* )5(6` ,6` ,` ,`) and (6` ,7` ,` ,

2`), which correspond to the eight phases listed in Fig. 5
and Table II. The Ising criticality is governed by the unstable

fixed point (G t
* ,Gs

* ,Gs1
* ,Gs2

* )5(6` ,0,` ,0), where the

Majorana fermion j4 is massless. The unstable fixed point

(G t
* ,Gs

* ,Gs1
* ,Gs2

* )5(0,6` ,0,0) corresponds to the

SU(2)2 criticality since the triplet j becomes massless. Fi-
nally, we find another kind of unstable fixed points

(G t
* ,Gs

* ,Gs1
* ,Gs2

* )5(0,6` ,` ,0), where all the modes

are massive. To understand the nature of these unstable fixed
points, let us assume (gs1 ,gs22gs2 ,gs1 ,gs2)
5(0,2l1,2l2,0), where l1,2 are constants (l1Þ0, l2.0).
This, together with the SU~2! constraint ~4.40!, leads to
gs252gs25l1 and gs1 ,s25gs1 ,s252l2,0. In this
case the cosine terms in Hs ~4.38! become

2

l1

2p2a2
~cos 2fs22cos 2us2!

2

l2

2p2a2
cos 2fs1~cos 2fs21cos 2us2!. ~4.49!

Suppose that l1.0 and ^fr1&5^ur2&50. We then find
that the potential ~4.49! has degenerate minima at, e.g.,
(^fs1&,^fs2&,^us2&)5(0,0,*) and (p/2,*,p/2), where *
means that the phase field is not locked. Since these minima
correspond to the D-Mott and PDW phases, respectively, the

TABLE II. Signs of the fixed-point coupling constants and the

masses (mg , m̃s , m̃ t) in various phases.

Phase (g
c2
* ,gs1

* ,gs2
* ,g

s2
* ,gs1

* ,gs2
* ) mg m̃s m̃ t

CDW (1 ,2 ,0,2 ,1 ,2) 1 2 1

SF (2 ,2 ,0,2 ,1 ,2) 2 2 1

PDW (2 ,1 ,0,1 ,1 ,2) 2 1 2

FDW (1 ,1 ,0,1 ,1 ,2) 1 1 2

S-Mott (1 ,2 ,2 ,0,1 ,1) 1 1 1

D-Mott (2 ,2 ,2 ,0,1 ,1) 2 1 1

S8-Mott (2 ,1 ,1 ,0,1 ,1) 2 2 2

D8-Mott (1 ,1 ,1 ,0,1 ,1) 1 2 2
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unstable fixed point describes a first-order transition between
the D-Mott and PDW phases. Hence we conclude that the

unstable fixed points (G t
* ,Gs

* ,Gs1
* ,Gs2

* )5(0,6` ,` ,0)

correspond to a first-order phase transition. The phase tran-

sition at which the renormalized triplet mass G t
* vanishes

can be either SU(2)2 criticality or first-order transition, de-
pending on the sign of Gs1 .58 The condition for the SU(2)2

criticality is G t50 and Gs1,0 below the energy scale
where Gs becomes of order 1. On the other hand, the first-
order transition is realized if G t50 and Gs1.0.

The phase fields are locked at some multiples of p/2 de-
pending on signs of the relevant coupling constants at a fixed

point, (gc2
* ,gs1

* ,gs2
* ,gs2

* ), of the cosine potentials in Eqs.

~4.34! and ~4.38!. Comparing the configuration of the locked
phases and those listed in Table I, we can find out to which
phase the ground state belongs for a given combination of

the renormalized coupling constants, (gc2
* ,gs1

* ,gs2
* ,gs2

* ).

Table II summarizes for each phase the signs of these renor-

malized coupling constants including gs6
* , which is positive

~negative! when fs6 (us6) is locked. When writing Table

II, we have used the fact ~a! that either one of gs2
* and gs2

*

must vanish except at the Ising criticality because fs2 and
us2 are conjugate fields, and ~b! that Eq. ~4.40a! constraints
possible combinations of signs of gs1 , gs2 , and gs2 .

The coupling constants listed in Table II also determine

the signs of masses mg(5gc2/2pa), m̃s , and m̃ t through
Eqs. ~4.44!, ~4.45!, and ~4.46!. The Gaussian (c51), Ising
(c51/2), and SU(2)2 (c53/2) criticalities are realized

when mg50, m̃s50, and m̃ t50, respectively. From Table II
we can therefore figure out which criticality can occur at
each phase transition where the relevant mass changes sign.
The universality class of the phase transitions is also sum-
marized in Fig. 5. We find from Table II that the CDW–
S-Mott and SF–D-Mott phase transitions are indeed in the
Ising universality class and the D-Mott–S-Mott phase tran-
sition is in the Gaussian universality class, in agreement with
the strong-coupling approach in Sec. III.

Let us discuss implications of the above general qualita-
tive analysis to the phase diagram of the extended Hubbard
ladder. From Eqs. ~4.39! and ~4.44! we write the bare masses
in terms of the coupling constants in the model,

ms5

1

2p F2cr1~U2tpair1V8!

1cr2S U2V'1

3

4
J'1tpair24V8D G , ~4.50!

m t5

1

2p F2cr1S V'1

1

4
J'2

3

2
V8D

1cr2S U2V'1

3

4
J'1tpair12V8D G . ~4.51!

To simplify the discussion, we assume here that V i5V8

5tpair50 and that fr1 is locked at ^fr1&50 ~mod p), i.e.,
cr1.0. If U2V'13J'/4.0 (,0), the phase ur2 is
locked at 0 (p/2) @see Eq. ~4.36!# and cr25^cos 2ur2&

.0 (,0). Thus, the product cr2(U2V'13J'/4) is positive
for both positive and negative U2V'13J'/4, and hence the
bare masses ms and m t are also positive. We argue, however,
that the Ising criticality is possible due to the mass renormal-

ization effect. The renormalized mass m̃s can become nega-
tive since the coupling constant gs2 of the correction term in
Eq. ~4.46! is given by gs252a(2V'1J'/4). We expect
that sufficiently large V' can drive the system toward the
Ising criticality in the j4 mode, even when tpair50.

In addition to the Ising criticality at large V' , the Gauss-
ian criticality in the ur2 mode should appear at V'5U

13J'/4. Let us find out which phase is realized near the
Gaussian critical line. When U2V'13J'/450, the cou-
pling gs2 equals 22U2J' and the renormalized Ising mass
becomes

m̃s

cr1U
512A

U

L S 11

3J'

U
1

2J
'

2

U2 D lnS L

U1J'

D ,

~4.52!

where A is a positive constant of order 1. For small J' /U
this renormalized Ising mass should be positive, and we con-
clude that the D-Mott and the S-Mott phases are separated by

the Gaussian critical line ~Note that m̃ t.0). As we increase
J' /U ~or V' /U) along the Gaussian critical line, the nega-
tive correction (}gs2) in the mass renormalization increases

and eventually m̃s can change sign. Across this Ising transi-
tion the D-Mott and S-Mott phases turn into the SF and
CDW phases, respectively. This implies that a pair of phases
surrounding the Gaussian critical line changes from
(D-Mott,S-Mott! to ~SF,CDW! at a tetracritical point as
J' /U increases. This qualitative analysis will be supported
in the following subsection by a more quantitative
renormalization-group analysis.

Now we briefly discuss the effect of the pair hopping term
tpair and next-nearest-neighbor repulsion V8. When V850,
the Gaussian transition takes place at U2V'13J'/41tpair

50 @see Eq. ~4.37!#. Thus for large tpair , we can have a
situation where ms,0 and m t.0 with U2V'13J'/4
1tpair.0 @see Eqs. ~4.50! and ~4.51!#, i.e., tpair can stabilize
the SF state near the Gaussian critical line. In the case tpair

50, on the other hand, we expect that sufficiently large V8

can lead to a phase with ms.0 and m t,0, i.e., the PDW
state, if cr1@cr2.0.

Finally, we discuss the implications of our schematic
phase diagram ~Fig. 5! to the phase diagram of isotropic
spin- 1

2 ladder systems, which have been studied intensively
in connection with the so-called Haldane’s conjecture59

about the existence of a finite energy gap in the integer-spin
Heisenberg chain. By using the Abelian bosonization
method, it has been shown that four kinds of gapped phases
can appear in spin ladder systems with various types of ex-
change interactions.54,60 The possible gapped phases are ~1!
the rung-singlet state, which is known to be realized in the
isotropic Heisenberg ladder with nearest-neighbor antiferro-
magnetic exchange couplings, ~2! the Affleck-Kennedy-
Lieb-Tasaki ~AKLT!-like spin-liquid state, in which short-
range valence bonds couple spins on neighboring rungs,61 ~3!
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the dimerized state along the chain with p relative phase,

and ~4! the dimerized state along the chain with zero relative

phase. Both the rung-singlet state and the AKLT-like state are

Haldane-type spin liquids with unique ground state and no

broken local symmetries. In the dimerized states which are

known to be realized when a sufficiently strong four-spin

interaction is included,54,56 there is spontaneous breaking of

the translation (Z2) symmetry and the ground state is two-

fold degenerate. In the limit of large U the extended Hubbard

ladder we analyze in this paper should reduce to a system

with only the spin degrees of freedom. This situation corre-

sponds to gc2,0 @see Eq. ~4.36!#, i.e., mg,0, with umgu

@um̃su,um̃ tu. Under this condition, we still have four phases:

the SF, D-Mott, PDW, and S8-Mott phases. From Table II

~see also Refs. 56 54, and 60!, we can find correspondence

between the phases in spin ladders and the phases that we

have obtained in the extended Hubbard ladders: The rung-

singlet and AKLT-like Haldane states correspond to the

D-Mott and S8-Mott states, respectively, and the PDW ~SF!
state corresponds to the dimerized state along the chain with

p ~0! relative phase. We note that the physical pictures of the

phases in the extended Hubbard ladder are consistent with

those in the spin ladder; for example, the D-Mott state is

nothing but the rung-singlet state, as seen in the strong-

coupling approach ~see Sec. III!. The AKLT-like Haldane

state, which is known to be realized either with plaquette

diagonal exchange coupling or with ferromagnetic rung

exchange,60 would be smoothly connected to the S8-Mott

state, in which the ground-state wave function consists of

singlets formed between diagonal sites of plaquettes @see Eq.

~4.32!# and, moreover, has the same topological numbers as

the AKLT-like Haldane state.60 The PDW state is nothing but

the dimerized state with interchain phase p as seen in Fig. 5,

which is not a Haldane-type spin liquid since the PDW state

spontaneously breaks the translation symmetry and is two-

fold degenerate. In order to discuss phase transitions in spin

ladder systems, two kinds of string order parameters have

been introduced which characterize hidden orders with dif-

ferent topological numbers, i.e., the parity of the number of

dimers crossing a line perpendicular to the two chains.60,62

These string order parameters are different from m j @Eq.
~4.29!#, since m j is associated with exp(ifs2) in the
bosonized form while the string order parameters introduced
in Refs. 60 and 62 are associated with the fs1 field in our
notation. Since the phase transition associated with the fs1

field is related to m̃ t→0, we expect that the string order
parameters introduced in Refs. 60 and 62 characterize the
SU(2)2 criticality or the first-order phase transition ~double
arrows in Fig. 5!. In our schematic phase diagram ~5! the
phase transition from the rung-singlet state to the AKLT
Haldane state can take place ~which is actually the case in
the spin- 1

2 ladder systems60,63!, if the SU(2)2 and the Ising
criticalities appear simultaneously. This implies that the cen-
tral charge for the continuous transition between the rung
singlet and the AKLT states is given by 3

2 1
1
2 52. This tran-

sition becomes first order when the marginal interaction in
the triplet Majorana fermion sector is marginally relevant.

D. Renormalization-group analysis

In this subsection, we study the ground-state phase dia-
gram of the extended Hubbard ladder model using perturba-
tive RG analysis of the 13 coupling constants appearing in
Eq. ~4.23!. These coupling constants are, however, not inde-
pendent because of the four constraints coming from the
SU~2! symmetry, Eq. ~4.27!. Accordingly, we have nine in-
dependent RG equations that describe how the coupling con-
stants scale when we change the lattice constant a→aedl.
The nine independent variables we choose to work with are:
Gr1[gr1/2pvF , Gr2[gr2/2pvF , Gs1[gs1/2pvF ,
Gs2[gs2/2pvF , Ga[(gc1 ,s22gc1 ,s2)/2pvF , Gb

[(gc2 ,s22gc2 ,s2)/2pvF , GA[gc1 ,c2/2pvF , GB

[gc1 ,s1/2pvF , and GC[gc2 ,s1/2pvF . After some alge-
bra we obtain the RG equations

d

dl
Gr151GA

2
1

3

2
GB

2
1

1

2
Ga

2 , ~4.53!

d

dl
Gr252GA

2
2

3

2
GC

2
2

1

2
Gb

2 , ~4.54!

d

dl
Gs151

1

2
Gs1

2
1

1

2
Gs2

2
1GB

2
1GC

2 , ~4.55!

d

dl
Gs251Gs1Gs21GBGa1GCGb , ~4.56!

d

dl
GA51

1

2
Gr1GA2

1

2
Gr2GA2

3

2
GBGC2

1

2
GaGb ,

~4.57!

d

dl
GB51

1

2
Gr1GB1Gs1GB2GAGC1

1

2
Gs2Ga,

~4.58!

d

dl
GC52

1

2
Gr2GC1Gs1GC2GAGB1

1

2
Gs2Gb ,

~4.59!

d

dl
Ga51

1

2
Gr1Ga1

3

2
GBGs22GAGb , ~4.60!

d

dl
Gb52

1

2
Gr2Gb1

3

2
GCGs22GAGa . ~4.61!

These equations are equivalent to the ones reported in Ref.
25, in which another set of nine independent variables is

used: b11
r

5(gr11gr2)/8, b11
s

52(gs11gs2)/2, b12
r

5gb/4, b12
s

5gC , f 12
r

5(gr12gr2)/8, f 12
s

52(gs12gs2),

u11
r

52gA/8, u12
r

5ga/8, and u12
s

5gB/2, where gn

52pvFGn .
Integrating the RG equations ~4.53!–~4.61! numerically

with the initial condition set by the bare coupling constants
in the extended Hubbard ladder model, we find that Gr1(l)
grows most rapidly and becomes of order unity first. At the
length scale l5lr1 where Gr1(lr1)52, we stop the nu-
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merical integration. Below this energy scale the r1 mode
becomes massive. We can assume without losing generality
that the phase fr1 is locked at ^fr1&50 mod p . The ef-
fective theory at lower energy scale (l.lr1) is obtained
from Eq. ~4.23! through the substitution cos 2fr1→1,
gc1 ,c2→gc2 , gc1 ,s1→gs1 , gc1 ,s2→gs2 , and gc1 ,s2

→gs2 . We then derive and solve the RG equations for the
coupling constants in the effective theory to understand the
low-energy properties of the remaining modes. The pattern
of phase locking can be found from asymptotic low-energy
behavior of the gc2 , gs1 , gs2 , and gs2 in the numerical
solution of the RG equations. The phase field F (5fs6 or
ur(s)2) is locked at ^F&5p/2 or 0, if the coupling constant
g (gP$gc2 ,gs1 ,gs2 ,gs2%) behaves as g→1C or 2C in
the low-energy limit, respectively, where C is a positive con-
stant of order unity. Once the configuration of the locked
phase fields is determined, the resulting ground state is found
from Table I. The phase diagram of the extended Hubbard
ladder obtained in this way is shown in Figs. 6–10. We note
that this approach reproduces the phase diagram of the SO~5!
symmetric ladder obtained in earlier studies.25,38 Since the
exotic phases such as the SF state and the S-Mott state ap-
pear only for a negative U in this model, we will not further
discuss it as we concentrate on the case with positive U and
V in this paper.

Let us first consider the simple case where U and V' are
the only electron-electron interactions. The phase diagram on
the plane of U/t and V' /t is shown in Fig. 6. In this and
other phase diagrams shown below, all the modes are gapped
everywhere except on the phase boundaries. With the stan-
dard notation CnSm of representing a state having n mass-
less charge modes and m massless spin modes,18 the three
phases in Fig. 6 are characterized as the ‘‘C0S0’’ phase.18,25

The phase boundary between the D-Mott state and the
S-Mott state is the U~1! Gaussian critical line of the r2

mode ~C1S0!, which is given by V'5U; see Eq. ~4.37! with
J'50. The phase boundary between the S-Mott state and the

CDW state is the Ising critical line of the spin s2 mode,

which is C0S 1
2 . This weak-coupling phase diagram is similar

to Fig. 1 obtained from the strong-coupling approach.
Next, we include the AF exchange coupling J' . The

phase diagram on the plane of J' /U and V' /U at U/t51 is
shown in Fig. 7. A different choice of U/t does not lead to
qualitative changes in the J' /U vs V' /U phase diagram. An
interesting new feature is that the SF phase shows up be-
tween the D-Mott phase and the CDW phase. This is in
agreement with the qualitative analysis of the preceding sub-
section, where it is found that the exchange interaction J'

suppresses the S-Mott phase and helps the SF phase appear.
The Gaussian criticality of the r –mode ~C1S0! emerges on

FIG. 6. Weak-coupling phase diagram of H t i
1H t

'
1H int at t'

5t i5t and J'50 obtained from the one-loop RG equations. There

is a massless mode ~C1S0! on the boundary between the D-Mott

and the S-Mott states while the boundary between the S-Mott and

the CDW state is C0S
1
2 .

FIG. 7. Weak-coupling phase diagram of H t i
1H t

'
1H int at t'

5t i and U/t51. This corresponds to Fig. 2. Inset shows weak-

coupling phase diagram of H t i
1H t

'
1H int1Hpair at t'5t i5t ,

U/t51, and tpair /t50.5. On the boundaries between the D-Mott

and the S-Mott states and between the SF and the CDW states exists

a massless mode C1S0. A massless mode C0S
1
2 appears on the

boundaries between the D-Mott and the SF states and between the

S-Mott and the CDW states. The different choice of U/t does not

yield qualitative changes to this phase diagram.

FIG. 8. Weak-coupling phase diagram of H for U/t51, V i

5V'5V , and tpair5V850. The tetracritical point with C1S
1
2 is at

(J' /t ,V' /t).(0.40, 0.43).
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the almost straight phase boundary between the D-Mott
phase and the S-Mott phase and between the SF phase and
the CDW phase. This critical line is given by V' /U51
13J'/4U , in accordance with Eq. ~4.37!. The phase bound-
ary between the D-Mott phase and the SF phase and between
the S-Mott phase and the CDW phase is the Ising criticality

C0S 1
2 . A tetracritical point of C1S 1

2 appears at the point

where the two kinds of phase boundaries cross. The inset of
Fig. 7 shows the phase diagram at tpair50.5t . We see clearly
that the pair-hopping favors the SF phase over the S-Mott
phase. In the strong-coupling perturbation theory, we have
introduced the pair-hopping term Hpair to stabilize the SF

state. This is not necessary, however, in the weak-coupling

approach, where the pair-hopping process is effectively gen-

erated from the second-order process in the rung hopping t' .

In fact, we can show that positive pair-hopping terms are

generated in the renormalization-group procedure in the SF

phase.22

Next we turn on the nearest-neighbor Coulomb repulsion

in the leg direction, V i . The phase diagram for V i5V'

([V) is shown in Fig. 8. Even though the additional V i

interaction strongly favors the CDW state, a small region of

the S-Mott phase still remains in between the D-Mott phase

and the CDW phase. Besides this quantitative modification

the phase diagram is not changed qualitatively, and, in par-

ticular, the critical properties at the phase boundaries are the

same as in Figs. 6 and 7. Using the density-matrix

renormalization-group method, Vojta et al.46 determined the

phase boundary between the CDW state and a state with

homogeneous charge density for the model we used for Fig.

8. At U51.5t they observed a transition to the CDW state

around U/V'2.9, which is not very different from the phase

boundary at J'50 in Fig. 8. The transition is, however,

found to be first order for U>4t in their numerical results,

which is different from the continuous transition we found in

the weak-coupling analysis. A possible source of this dis-

crepancy might be the neglect of irrelevant operators with

canonical dimension 4 that could become important for

strong couplings as in the single-chain case.51

Finally, we include next-nearest-neighbor Coulomb repul-

sion V8, Eq. ~2.9!. Figures 9 and 10 show the V8-U and V-

V8 phase diagrams. In agreement with the discussion in the

preceding subsection, the PDW phase appears as V8 is in-

creased. At even larger V8 the S8-Mott phase and the

D8-Mott phase appear in Figs. 9 and 10. On the phase
boundary between the D-Mott state and the PDW state ap-
pears the SU(2)2 criticality; we have confirmed in our nu-
merical calculation that the coupling gs1 in Eq. ~4.43! is
negative, i.e., marginally irrelevant. We have thus established
that the two-particle interaction V8 can drive the system to
the SU(2)2 criticality.

Figure 10 shows a rich phase diagram containing the four
Mott phases and the two density-wave phases. We note that
in Fig. 10 the six phase boundaries meet at V5V85U ,
which corresponds to C2S2. This happened because, within
our approximation, all the coupling constants in Eq. ~4.23!
except gr1 vanish when U5V5V8, t'5t i , and J'5tpair

50. If t'Þt i , or if higher-order contributions to the g’s are
included,51 this special situation might not occur. In Fig. 10
the phase boundaries between the Mott phases are C1S0
~Gaussian criticality!, while the CDW–S-Mott and PDW–

S8-Mott phase boundaries are C0S 1
2 ~Ising criticality!. The

phase boundary between the PDW phase and the D-Mott

phase is C0S 3
2 @SU(2)2 criticality# as in Fig. 9. Finally, the

phase transition between the CDW phase and the D8-Mott
phase is found to be first order; we have confirmed that the
coupling gs1 in Eq. ~4.43! is positive and marginally rel-
evant. Even though Fig. 10 is obtained from the weak-
coupling RG equations, we think that the phase diagram is

FIG. 9. Weak-coupling phase diagram of H on the plane of U/t

and V8/t for V i5V'50, and J'5tpair50. The boundary between

the D-Mott state and the PDW state is C0S
3
2 , and the boundary

between the PDW state and the S8-Mott state is C0S
1
2 .

FIG. 10. Weak-coupling phase diagram of H on the plane of

V8/U and V/U for U/t50.5, V i5V'5V , and J'5tpair50. The

phase transition between the CDW and S-Mott phases and between

the PDW and S8-Mott phases is in the Ising universality class

(C0S
1
2 ). The phase transition between Mott phases is a Gaussian

transition ~C1S0!. The boundary between the D-Mott phase and the

PDW phase is C0S
3
2 @SU(2)2 criticality#. The transition between

the CDW phase and the D8-Mott phase shown by the thick solid

line is a first-order transition.
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reliable since we have confirmed that the (V/U)-(V8/U)
phase diagram is not changed much when U/t is varied.

V. CONCLUSIONS

In this paper we have studied the half-filled generalized
Hubbard ladder with the intersite Coulomb repulsion and the
exchange interaction by using the strong-coupling perturba-
tion theory and the weak-coupling bosonization method. In
the strong-coupling approach the SF state is described as an
AF ordered state of the Ising model where pseudospins rep-
resent the currents flowing along the rungs. We have shown
that the SF state can appear next to the CDW state and the
D-Mott state in the phase diagram and that the quantum
phase transition between the SF state and the D-Mott state is
in the Ising universality class. We have also established the
Ising transition between the S-Mott and the CDW phases and
the Gaussian transition between the D-Mott and the S-Mott
phases. In the weak-coupling approach we have shown that,
in general, the model can accommodate a total of eight insu-
lating phases at half filling, four density-wave phases, and
four Mott phases ~Fig. 5!. The universality class of the phase
transitions among these phases is determined. In particular,

we have shown that the SU(2)2 criticality with the central
charge c53/2 is induced by the next-nearest-neighbor Cou-
lomb repulsion V8, which drives the system from the D-Mott
phase to the PDW phase ~Figs. 9 and 10!. When V8 is further
increased, the S8-Mott phase and the D8-Mott phase, which
correspond to the quantum disordered states of the PDW
phase and the FDW phase, show up ~Fig. 9!.

When this manuscript was almost completed, we became
aware of the work by Wu et al.,64 where the eight insulating
phases in Sec. IV are obtained independently.
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