8. T. Skolem, "Ein Verfahren zur Behandlung gewisser exponentialler Gleichungen und diophantischer Gleichungen," 8de Skand. Mat. Kongress Stockholm (1934), pp. 163-188.
9. J. V. Uspensky \& M. A. Heas1et, Elementary Number Theory (New York: McGrawHill Book Company, 1939).

GENERALIZED TWO-PILE FIBONACCI NIM

JIM FLANIGAN
University of California at Los Angeles, Los Angeles, CA 90024

1. INTRODUCTION

Consider a take-away game with one pile of chips. Two players alternately remove a positive number of chips from the pile. A player may remove from 1 to $f(t)$ chips on his move, t being the number removed by his opponent on the previous move. The last player able to move wins.

In 1963, Whinihan [3] revealed winning strategies for the case when $f(t)=$ $2 t$, the so-called Fibonacei Nim. In 1970, Schwenk [2] solved all games for f nondecreasing and $f(t) \geq t \forall t$. In 1977, Epp \& Ferguson [1] extended the solution to the class where f is nondecreasing and $f(1) \geq 1$.

Recently, Ferguson solved a two-pile analogue of Fibonacci Nim. This motivated the author to investigate take-away games with more than one pile of chips. In this paper, winning strategies are presented for a class of twopile take-away games which generalize two-pile Fibonacci Nim.

2. THE TWO-PILE GAME

Play begins with two piles containing m and m^{\prime} chips and a positive integer w. Player I selects a pile and removes from 1 to w chips. Suppose t chips are taken. Player II responds by taking from 1 to $f(t)$ chips from one of the piles. We assume f is nondecreasing and $f(t) \geq t \forall t$. The two players alternate moves in this fashion. The player who leaves both piles empty is the winner. If $m=m^{\prime}$, Player II is assured a win.

Set $d=m^{\prime}-m$. For $d \geq 1$, define $L(m, d)$ to be the least value of w for which Player I can win. Set $L(m, 0)=\infty \forall m \geq 0$. One can systematically generate a tableau of values for $L(m, d)$. Given the position (m, d, w), the player about to move can win iff he can:
(1) take t chips, $1 \leq t \leq w$, from the large pile, leaving the next player in position ($m, d-t, f(t)$) with $f(t)<L(m, d-t)$; or
(2) take t chips, $1 \leq t \leq w$, from the small pile, leaving the next player in position $(m-t, \bar{d}+t, f(t))$ with $f(t)<L(m-t, d+t)$.
(See Fig. 2.1.) Consequently, the tableau is governed by the functional equation

$$
L(m, d)=\min \{t>0 \mid f(t)<L(m, d-t) \text { or } f(t)<L(m-t, d+t)\}
$$

subject to $L(m, 0)=+\infty \forall m \geq 0$. Note that $L(m, d) \leq d \forall d \geq 1$. Dr. Ferguson has written a computer program which can quickly furnish the players with a 60×40 tableau. As an illustration, Figure 2.2 gives a tableau for the twopile game with $f(t)=2 t$, two-pile Fibonacci Nim.

Fig. 2.1 The Tableau
Given f, one can construct a strictly-increasing infinite sequence $\left\langle H_{k}\right\rangle_{1}^{\infty}$ as follows: $H_{1}=1$ and for $k \geq 1, H_{k+1}=H_{k}+H_{j}$ where j is the least integer such that $f\left(H_{j}\right) \geq H_{k}$. For example, $\left\langle H_{k}\right\rangle_{1}^{\infty}$ is the Fibonacci sequence when $f(t)=2 t$, and $H_{k}=2^{k-1}, k \geq 1$ when $f(t)=t$. Schwenk [2] showed that each positive integer d can be represented as a unique sum of the H_{k} 's

$$
\begin{equation*}
d=\sum_{i=1}^{s} H_{n_{i}} \text { such that } f\left(H_{n_{i}}\right)<H_{n_{i}+1} \text { for } i=1,2, \ldots, s-1 \tag{2.1}
\end{equation*}
$$

Moreover, for the take-away game with a single pile of $d\left(=m^{\prime}-0\right)$ chips, Player I can win iff he can remove $H_{n_{1}}$ chips from the pile (i.e., iff $H_{n_{1}} \leq$ $w)$. So for the two-pile game with one pile exhausted,
(2.2) $L(0, d)=H_{n_{1}}$.

For the one-pile game with $d=H_{n_{1}}+\cdots+H_{n_{g}}, s \geq 1$, chips, $H_{n_{1}}$ is the key term. It turns out that for the two-pile game where $d=m^{\prime}-m=H_{n_{1}}+$ $H_{n_{2}}+\cdots+H_{n_{s}}, s \geq 1, H_{n_{2}}$ (when it exists) as well as $H_{n_{1}}$ plays a decisive role. Denote $n_{1}=n$ and n_{2} (when it exists) $=n+r$. Thus, we shall write

$$
d=H_{n}+H_{n+\infty}+\cdots+H_{n_{e}}, s \geq 1
$$

For each positive integer k, define $\ell(k)$ to be the greatest integer such that
(2.3) $f\left(H_{k-\ell(k)}\right) \geq H_{k}$.

Note that $\ell(1)=0, \ell(k) \geq 0$, and $H_{k+1}=H_{k}+H_{k-\ell(k)} \forall k \geq 1$.
In the sequel, we present winning strategies for the class of two-pile games for which $\ell(k) \varepsilon\{0,1\} \forall k$. We refer to such games as generalized twopile Fibonacci Nim.

It would be nice if one could find some NASC on f such that $\ell(k) \varepsilon\{0,1\}$ $\forall k$. The following partial results have been obtained:
(1) If $f(t)<(5 / 2) t \forall t$, then $\ell(k) \varepsilon\{0,1\} \forall k$.

In particular, for $f(t)=c t$,
(a) if $1 \leq c<2$, then $\ell(k)=0 \forall k \geq 1$;
(b) if $2 \leq c<5 / 2$, then $\ell(k)=1 \forall k \geq 2$;
(c) if $c \geq 5 / 2$, then $\ell(3)=2$ or $\ell(4)=2$.
(2) If $\ell(k) \varepsilon\{0,1\} \forall k$, then $f(t)<6 t \forall t$.
(3) A NASC such that $\ell(k)=0 \forall k$ is $f\left(2^{k}\right)<2^{k+1} \forall k \geq 0$.
(4) A NASC such that $\ell(k)=1 \forall k \geq 2$ is $F_{k} \leq f\left(F_{k-1}\right)<F_{k+1} \forall k \geq 2$, where $\left\langle F_{k}\right\rangle_{1}^{\infty}$ is the Fibonacci sequence $1,2,3,5,8,13, \ldots$.


```
\infty\infty\infty
```



```
mmNNNMmmmmNNNNNNNNMmmmmmmmmmmmmNNNNNNNNNNNN
```


[^0]
3. SOME GOOD AND BAD MOVES

Lemma: For the position $(m, d), d=H_{n}+\cdots+H_{n_{s}}, s \geq 1$, it is never a winning move to take
(1) t chips from the large pile if $0<t<H_{n}$.
(2) t chips from the small pile if $0<t<H_{n}, t \neq H_{n-\ell(n)}$.

It is always a winning move to take
(3) H_{n} chips from the large pile with the possible exception of the special case: $d=H_{n}+H_{n+2}+\cdots+H_{n}, s \geq 2, \ell(n+1)=\ell(n+2)=1, m \geq H_{n+1}$.
(4) $H_{n-\ell(n)}$ chips from the small pile when $d=H_{n}+H_{n+2}+\cdots+H_{n_{e}}, s \geq 2$, $\ell(n+1)=\ell(n+2)=1, m \geq H_{n-\ell(n)}$. (This contains the special case.)

Proof: The statements (1)-(4) imply that $L(m, d) \varepsilon\left\{H_{n}, H_{n-\ell(n)}\right\} \forall m \geq 0$. We shall use this observation and double induction in our argument.

Schwenk [2] proved the assertions for the positions ($0, d$), $\forall d \geq 1$ (see equation 2.2). Suppose they hold for the positions (m, d) $\forall m \leq M-1, \forall d \geq 1$ for some $M \geq 1$. We must show that (1)-(4) hold for the positions (M, d) $\forall d \geq 1$.

The claim is trivial for position ($M, 1$). Suppose it is true for (M, d) $\forall d \leq D-1$ for some $D \geq 2$. Consider the two types of moves which can be made from position (M, D), $D=H_{n}+H_{n+r}+\cdots+H_{n_{e}}, s \geq 1$.
A. Taking from the big pile:

Take t chips, $0<t<H_{n}$, from the big pile. Then $D-t=H_{k}+\cdots+H_{n_{\mathrm{e}}}$ where $k<n$. $t \geq H_{k-1}$ if $\ell(k)=1$, and $t \geq H_{k}$ if $\ell(k)=0$. By the inductive assumption $L(M, D-t) \leq H_{k}$. Hence,

$$
f(t) \geq f\left(H_{k-1}\right) \geq H_{k} \geq L(M, D-t) \text { if } \quad \ell(k)=1
$$

and

$$
f(t) \geq f\left(H_{k}\right) \geq H_{k} \geq L(M, D-t) \quad \text { if } \quad \ell(k)=0
$$

Statement (1) follows.
Suppose you take $t=H_{n}$ chips from the big pile. Consider the following cases.
(1) $D=H_{n}$. Taking H_{n} chips from the large pile is obviously a winning move.
(2) $D>H_{n}$. Write $D-H_{n}=H_{n+r}+\cdots+H_{s}$.
(a) $r=1$. Necessarily, $\ell(n+1)=0$. By the inductive assumption, $L\left(M, D-H_{n}\right)=H_{n+1}$. Thus, $f\left(H_{n}\right)<L\left(M, D-H_{n}\right)$ and it is a good move to take H_{n} chips from the large pile.
(b) $r \geq 3$. By the inductive assumption, $L\left(M, D-H_{n}\right) \geq H_{n+2}$. Thus, $f\left(H_{n}\right)<H_{n+2} \leq L\left(M, D-H_{n}\right)$ and it is a good move to take H_{n} chips from the large pile.
(c) $r=2$.
(i) $\ell(n+1)=0 . f\left(H_{n}\right)<H_{n+1}$ and, by the inductive assumption, $L\left(M, D-H_{n}\right) \geq H_{n+1}$. A good move is to take H_{n} chips from the big pile.
(ii) $\ell(n+1)=1$ and $\ell(n+2)=0$. By the second equation and the inductive assumption, $L\left(M, D-H_{n}\right)=H_{n+2}$. Thus, $f\left(H_{n}\right)<$ $H_{n+2} \leq L\left(M, D-H_{n}\right)$, so taking H_{n} chips from the large pile wins.
(iii) $\ell(n+1)=1$ and $\ell(n+2)=1$. Here $f\left(H_{n}\right) \geq H_{n+1}$. By the inductive assumption, it is possible that $L\left(M, D-H_{n}\right)=H_{n+1}$. If $L\left(M, D-H_{n}\right)=H_{n+1}$, then $M \geq H_{n+1}$ follows from (1) of the Lemma. The possibility of $f\left(H_{n}\right) \geq L\left(M, D-H_{n}\right)$ signifies that taking H_{n} chips from the large pile might be a bad move. Thus, (3) holds.

B. Taking from the small pile:

If t chips, $0<t<H_{n}, t \neq H_{n-\ell(n)}$, are removed from the small pile, the resulting position is ($M-t, D+t$), $D+t=H_{n-k}+\cdots+H_{n_{g}}$ for some $k \geq 1$ and $t \geq H_{n-k}$. But $L(M-t, D+t) \leq H_{n-k}$ by assumption. Since

$$
f(t) \geq t \geq H_{n-k} \geq L(M-t, D+t),
$$

this is a bad move. Thus, (2) holds.
C. Case A2.c.(iii) revisited:

Here $D=H_{n}+H_{n+2}+\cdots+H_{n_{g}}, \quad \ell(n+1)=\ell(n+2)=1$. Suppose taking H_{n} chips from the large pile is not a good move. Then, $L\left(M, D-H_{n}\right)=H_{n+1}$.

For position $(M, D), M \geq H_{n-\ell(n)}$, take $H_{n-\ell(n)}$ chips from the small pile to get $\left(M-H_{n-\ell(n)}, D+H_{n-\ell(n)}\right) . D+H_{n-\ell(n)}=H_{n-\ell(n)}+H_{n}+H_{n+2}+\cdots+$ $H_{n_{s}}=H_{n+1}+H_{n+2}+\cdots+H_{n_{s}^{\prime}}=H_{n+k}+\cdots+H_{n_{s}}$, for some $k \geq 3$ and $n_{s^{\prime}} \geq n_{s}$, since $\ell(n+2)=1$. By the inductive assumption, $L\left(M-H_{n-\ell(n)}, D+H_{n-\ell(n)}\right)$ $\geq H_{n+2}$. But $f\left(H_{n-\ell(n)}\right) \leq f\left(H_{n}\right)<H_{n+2}$. Thus,

$$
f\left(H_{n-\ell(n)}\right)<L\left(M-H_{n-\ell(n)}, D+H_{n-\ell(n)}\right) .
$$

Taking $H_{n-\ell(n)}$ chips from the small pile is a good move, so (4) holds.
In A, B, and C we established that (1)-(4) hold for the position (M, D), which completes the induction on d. Hence, they hold for $(M, d) \forall d \geq 1$. This in turn completes the induction on m. Thus, (1)-(4) hold for (m, d) $\forall m \geq 0$, $\forall d \geq 1$ Q.E.D.

```
Corollary 1: \(L(m, d) \varepsilon\left\{H_{n}, H_{n-\ell(n)}\right\} \quad \forall m \geq 0\).
```

Observe that if $\ell(n)=0$, then $L(m, d)=H_{n} \forall m \geq 0$. But when $\ell(n)$ $=1$, there are two possible values $L(m, d)$ might assume. However, if $m<H_{n-1}$, then $L(m, d)=H_{n}$.

Corollary 2-How to win (if you can) when you know $L(m, d)$:
(1) If $L(m, d)=H_{n-1}$, take H_{n-1} chips from the small pile to win.
(2) If $L(m, d)=H_{n}$, a winning move is to take H_{n} chips from the large pile, except possibly for the special case cited in the Lemma. In the special case, take H_{n} chips from the small pile to win.

4. HOW TO WIN IF YOU CAN

Knowing $L(m, d)$ at the beginning of play reveals whether Player I has a winning strategy. Compare $L(m, d)$ and w. If Player I knows the value of $L(m$, d) and $w \geq L(m, d)$, he can use Corollary 2 to determine a winning move.

Which of the two possible values $L(m, d)$ assumes is not obvious under certain circumstances. The position (m, d, w) defies immediate classification when $L(m, d)$ is unknown and $H_{n-1} \leq w<H_{n}$.

Fortunately, not knowing whether one can win at the beginning of play does not prevent one from describing a winning strategy, provided such a strategy exists. A strategy of play, constructed from the Corollaries, is presented in Table 4.1. This table tells how to move optimally in all situations in which there exists a possibility of winning. An $N(P)$ represents a position for which there exists a winning move for Player I (II).

The only case in which the status of a position is now known at the start of play arises in 2(b) of the table. There, the player about to move is an optimist and pretends $L(m, d)=H_{n-1}$. This dictates taking H_{n-1} chips from the small pile. The outcome of the game will reveal the value of $L(m, d)$ depending on who wins.

Table 4.1. How To Win (If You Can) Without Knowing $L(m, d)$
(1) If $\ell(n)=0$ [so necessarily $L(m, d)=H_{n}$] and
(a) $d=H_{n}+H_{n+2}+\cdots+H_{n_{s}}, s \geq 2, \ell(n+2)=\ell(n+1)=1$
$m \geq H_{n}$
$m<H_{n}$
$w \geq H_{n}$
$w<H_{n}$

N, Take H_{n} from s.p.	N, Take H_{n} from 1.p.
P	P

(b) not as in (a)

	$m \geq H_{n}$	$m<H_{n}$
$w \geq H_{n}$	N, Take H_{n} from 1.p.	N, Take H_{n} from l.p.
$w<H_{n}$	P	P

(2) If $\ell(n)=1$ and
(a) $d=H_{n}+H_{n+2}+\cdots+H_{n_{s}}, s \geq 2, \ell(n+2)=\ell(n+1)=1$

$$
\begin{array}{ll|c|}
& & \\
& m \geq H_{n-1}\left(L(m, d)=H_{n-1}\right) & m<H_{n-1}\left(L(m, d)=H_{n}\right) \\
\cline { 2 - 3 } & & N, \text { Take } H_{n-1} \text { from s.p. } \\
H_{n}> & N, \text { Take } H_{n} \text { from 1.p. } \\
& w \geq H_{n-1} \\
& w<H_{n-1} & N, \text { Take } H_{n-1} \text { from s.p. } \\
\cline { 2 - 3 } & P & P \\
\cline { 2 - 3 } & & P \\
\hline
\end{array}
$$

(b) not as in (a)

$\begin{aligned} w & \geq H_{n} \\ H_{n}>w & \geq H_{n-} \end{aligned}$	$m \geq H_{n-1}(L(m, d)=? ?)$	$m<H_{n-1}\left(L(m, d)=H_{n}\right)$
	N, Take H_{n} from 1.p.	N, Take H_{n} from 1.p.
	??, Take H_{n-1} from s.p.	P
$\omega<H_{n-1}$	P	P

(Note: s.p. = small pile; 1.p. = large pile.)
As an illustration, consider two-pile Fibonacci Nim. It was first solved by Ferguson in the form of Table 4.1. For $f(t)=2 t$, the sequence $\left\langle H_{k}\right\rangle_{1}^{\infty}$ is the Fibonacci sequence. The first few values are

k	1	2	3	4	5	6	7	8	9	10
H_{k}	1	2	3	5	8	13	21	34	55	89

$\ell(1)=0$ and $\ell(k)=1 \forall k \geq 2$, since $H_{k+1}=H_{k}+H_{k-1} \forall k \geq 2$. What is the status of position $m=20, d=42, w=6 ? d=34+8=H_{8}+H_{5}$. Player I is an optimist and assumes that $L(20,42)=5$, not $8.2(b)$ in the table tells him to take 5 chips from the small pile.

Player II is left in position $m=20-5=15, d=42+5=47, w=f(5)$ $=10 . d=34+13=H_{8}+H_{6}, \ell(6)=1, r=2, \ell(8)=\ell(7)=1 . \quad H_{5}=8 \leq w$ $<H_{6}=13$. By $2(\mathrm{a})$ of the above table, this is a winning position ($L(15,47$) = 8). Player II takes 8 chips from the small pile to win. We conclude that Player I has no winning strategy for the position (20, 42, 6). Consequently, $L(20,42)=8$, not 5 .

Only after playing the gome for a while were we able to determine who could win.

5. ELIMINATING SUSPENSE

It turns out that the suspense which can arise when $L(m, d)$ is unknown can be eliminated. The Theorem of this section presents a simple method for computing $L(m, d)$. If $d=H_{n}+\cdots+H_{n_{s}}$, then the entries in the dth column of the tableau can assume only the values H_{n} and H_{n-1}. We say that the d th column of the tableau makes k flips, $0 \leq k \leq \infty$, if it has the form in Figure 5.1. If $k<\infty$, the k th flip is followed by an infinite string of

$$
\begin{cases}H_{n}^{\prime} \text { s } & \text { if } k \text { is even } \\ H_{n-1} \text { 's } & \text { if } k \text { is odd }\end{cases}
$$

Fig. 5.1 The d th Column Makes k "flips"

Theorem: For $n \geq 1$, set $A_{n}=\{z \mid z \geq 0$, $\ell(n+z)=0\}$. Then:
A. Simple Case: $d=H_{n}$. The d th column makes k flips, where $k=\min A_{n}$. (Convention: $\min \emptyset=\infty$.)
B. Compound Case: $d=H_{n}+H_{n+r}+\cdots+H_{n_{s}}, s \geq 2$. The d th column makes k flips, where

$$
k= \begin{cases}r-1 & \text { if } \quad \min A_{n}>r \\ \min A_{n} & \text { if } \\ \min A_{n} \leq r\end{cases}
$$

Proof:

A. Simple Case:
(1) $A_{n} \neq \emptyset$. We proceed by induction on $k=\min A_{n}$. For $k=0, L\left(m, H_{n}\right)$ $=H_{n} \vee m \geq 0$, since $\ell(n)=0$. There are zero flips.

Suppose the result holds $\forall k \leq K-1$ for some $K \geq 1$. (That is, if $d=H_{m}$ and $\min A_{m} \leq K-1$, then the column for $d=H_{m}$ makes min A_{m} flips.)

By the Lemma, each entry of the column $d=H_{n}$ is H_{n}, unless a good move can be made by taking H_{n-1} from the small pile. Removing H_{n-1} chips from the small pile is a winning move for position $\left(M, H_{n}\right), M \geq H_{n-1}$ iff $f\left(H_{n-1}\right)<$ $L\left(M-H_{n-1}, H_{n}+H_{n-1}\right)$. Since $\ell(n)=1, H_{n}+H_{n-1}=H_{n+1}$ and $L\left(M-H_{n-1}, H_{n+1}\right)$ $=H_{n+1}$ or H_{n}. Moreover, $H_{n+1}>f\left(H_{n-1}\right) \geq H_{n}$. This can be a good move iff $L\left(M-H_{n-1}, H_{n+1}\right)=H_{n+1}$. The column $d=H_{n+1}$ makes $K-1$ flips. Thus, the column $d=H_{n}$ makes K flips. (See Fig. 5.2). This completes the induction on k.
(2) $A_{n}=\emptyset, \ell(n+k)=1$ and $A_{n+k}=\emptyset \forall k \geq 0$. We show that each column $d=H_{n+k}, k \geq 0$, makes infinitely many flips. Let us proceed by induction on m.

Fig. 5.2 Case $A(1)$
By the remark to Corollary 1, $L\left(m, H_{n+k}\right)=H_{n+k} \forall m<H_{n-1}, \forall k \geq 0$. The tableau has the desired values for the first H_{n-1} entries in columns $d=H_{n+k}$, $k \geq 0$.

Suppose that the tableau assumes the desired values in the entries $m=0$, $1, \ldots, M-1$ in the columns $d=H_{n+k}, k \geq 0$, for some $M \geq H_{n-1}$. One can find $k_{0} \geq 0$ such that
$H_{n-1}+H_{n}+\cdots+H_{n+k_{0}}-1 \geq M>H_{n-1}+H_{n}+\cdots+H_{n+k_{0}-1}-1$.
Equivalently, $H_{n}+\cdots+H_{n+k_{0}}-1 \geq M-H_{n-1}> \begin{cases}-1 & \text { if } k_{0}=0, \\ H_{n}+\cdots+H_{n+k_{0}-1}-1 & \text { if } k_{0} \geq 1 .\end{cases}$

By the inductive assumption,

$$
L\left(M-H_{n-1}, H_{n+1}\right)= \begin{cases}H_{n+1} & \text { if } k_{0} \text { is even } \\ H_{n} & \text { if } k_{0} \text { is odd }\end{cases}
$$

(See Fig. 5.3.) Thus, for the position (M, H_{n}),
(a) if k_{0} is even, taking H_{n-1} chips from the small pise is a good move since $f\left(H_{n-1}\right)<H_{n+1}=L\left(M-H_{n-1}, H_{n+1}\right)$;
(b) if k_{0} is odd, taking H_{n-1} chips from the small pile is a bad move since $f\left(H_{n-1}\right) \geq H_{n}=L\left(M-H_{n-1}, H_{n+1}\right)$.
As desired, we conclude

$$
L\left(M, H_{n}\right)= \begin{cases}H_{n} & \text { if } k_{0} \text { is odd } \\ H_{n-1} & \text { if } k_{0} \text { is even }\end{cases}
$$

An identical argument reveals that the entries $L\left(M, H_{n+k}\right), k>0$, have the desired values. Thus, the row $m=M$ assumes the desired values in the entries corresponding to columns $d=H_{n+k}, k \geq 0$. This completes the induction on m.

Fig. 5.3 Case A(2)
B. Compound Case:

Suppose $\ell(n)=0$. Then $L(m, d)=H_{n} \forall m \geq 0$. There are no flips in the d th column. Note that $\min A_{n}=0$.

If $\ell(n)=1$, we consider two cases:
(1) $k=\min A_{n} \leq r$. By Corollary 1, $L\left(m, d-H_{n}+H_{n+k}\right) \geq H_{n+k} \forall m \geq 0$. The tableau from column $d-H_{n}+1$ to column $d-H_{n}+H_{n+k}-1$, inclusive, is a copy of the tableau from column 1 to column $H_{n+k}-1$, inclusive. The d th column is identical to the H_{n} th column. By Part A, the latter column makes k flips, $k=\min A_{n}$.
(2) $\min A_{n}>r$. Here $\ell(n)=\ell(n+1)=\cdots=\ell(n+r)=1$. Necessarily, $r>1$. Let $d^{\prime}=d-H_{n}+H_{n+r-1}$. Since $\ell(n+r)=1$, d^{\prime} has the form $d^{\prime}=$ $H_{n+r+u}+\cdots+H_{n_{s}}$, for some $u \geq 1$ and $n_{s}, \geq n_{s}$. By Corollary $1, L\left(m, d^{\prime}\right) \geq$ $H_{n+r+u-1}$. Consider the position $\left(m, d^{\prime \prime}\right), m \geq H_{n+r-3}$, where $d^{\prime \prime}=d-H_{n}+$ H_{n+r-2}. Note that $d^{\prime \prime}+H_{n+r-3}=d^{\prime}$. It is a good move to take H_{n+r-3} chips from the small pile, since $f\left(H_{n+r-3}\right)<H_{n+r-1}<L\left(m, d^{\prime}\right)$. Thus, $L\left(m, d^{\prime \prime}\right)=$ $H_{n+r-3} \forall m \geq H_{n+r-3}$. The column $d^{\prime \prime}=d-H_{n}+H_{n+r-2}$ makes one flip. Since the column $d^{\prime \prime}$ makes one flip, argue as in Part $A(1)$ of the proof that column $d^{\prime \prime \prime}=d-H_{n}+H_{n+r-3}$ makes two flips. Similarly, column $d^{i v}=d-H_{n}+H_{n+r-4}$ makes three flips. Continue and argue that column $d=d-H_{n}+H_{n}$ makes $r-$ 1 flips. (See Fig. 5.4). Q.E.D.

Fig. 5.4 Case B(2)
Notation: $\quad t=d-H_{n}$.

$$
\longrightarrow==\text { a good move }
$$

6. TWO-PILE FIBONACCI NIM REVISITED

Ferguson's solution for two-pile Fibonacci Nim was in the form of Table 4.1. His solution does not necessarily reveal which player can win at the beginning of play, because $L(m, d)$ might not be known then. The Theorem tells us the value of $L(m, d)$ be revealing the behavior of the columns of the tableau. Knowing $L(m, d)$ at the start of play leaves no uncertainty as to who can win. As an illustration of the Theorem, we compute $L(m, d)$ for two-pile Fibonacci Nim.

Suppose $d=H_{n}$ for some n. If $d=H_{1}$, then $L(m, d)=H_{1}=1 \forall m \geq 0$, since $\ell(1)=0$. If $n \geq 2$, the d th column makes infinitely many flips, since $A_{n}=\emptyset$. For a particular value of m, find the least integer $k_{0} \geq-1$ such that $H_{n-1}+$ $H_{n}+\cdots+H_{n+k_{0}}-1 \geq m$. Then,

$$
L(m, d)= \begin{cases}H_{n} & \text { if } k_{0} \text { is odd } \\ H_{n-1} & \text { if } k_{0} \text { is even }\end{cases}
$$

Suppose d has compound form $d=H_{n}+H_{n+r}+\cdots+H_{n_{0}}, s \geq 2$. Note that $r>1$. If $n=1$, the d th column of the tableau has each entry equal to 1 . If $n \geq 2$, the d th column makes $r-1$ flips. If k_{0} is the least integer such that $k_{0} \geq-1$ and $H_{n-1}+H_{n}+\cdots+H_{n+k_{0}}-1 \geq m$, then

$$
L(m, d)=\left\{\begin{array}{rr}
H_{n} & \begin{array}{r}
\text { if } k_{0} \text { is odd and } k_{0} \leq r-2, ~ \text { or } \\
r
\end{array} \text { is odd and } k_{0}>r-2 . \\
H_{n-1} & \text { if } k_{0} \text { is even and } k_{0} \leq r-2, ~ o r ~ \\
r \text { is even and } k_{0}>r-2 .
\end{array}\right.
$$

The function $\ell(k)$ was defined by (2.3). In Table 4.1, a winning strategy (provided one exists) is given for the class of two-pile take-away games in which $\ell(k) \varepsilon\{0,1\} \forall k \geq 1$. By revealing $L(m, d)$, the Theorem enables us to determine at the beginning of play whether such a strategy exists for the player about to move.

The author has considered several particular two-pile take-away games in which $\ell(k)$ assumes values other than 0 and 1 . For example, when $f(t)=3 t$, then $\ell(k)=3 \forall k \geq 5$. I have found no general solution for any such game. Can we find solutions for the general class of games which impose no restrictions on $\ell(k)$? Can we extend to games beginning with arbitrarily many piles of chips? Let me know if you can.

REFERENCES

1. R. J. Epp \& T. S. Ferguson, "A Note on Take-Away Games," paper contributed to Special Session on Combinatorial Games, AMS 83rd Annual Meeting, Jan. 1977.
2. A. J. Schwenk, "Take-Away Games," The Fibonacei Quarterly, Vo1. 8, No. 3 (1970), pp. 225-234.
3. M. J. Whinihan, "Fibonacci Nim," The Fibonacci Quarterly, Vol. 1, No. 4 (1963), pp. 9-13.

[^0]: * Computer program supplied by T. S. Ferguson.

