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Abstract. We compute Wigner functions for the harmonic oscillator including

corrections from generalized uncertainty principles (GUPs), and study the

corresponding marginal probability densities and other properties. We show that the

GUP corrections to the Wigner functions can be significant, and comment on their

potential measurability in the laboratory.
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1. Introduction

It is currently not possible to access the natural energy scale of quantum gravity, the

Planck energy. It is feasible, however to consider low-energy effects, e.g., the quantum-

gravity induced perturbative corrections to non-relativistic quantum mechanics. One

avenue is the study of corrections to the Schrödinger equation originating from the GUP

proposed in various candidate theories of quantum gravity (such as string theory, loop

quantum gravity, etc.). A modification is postulated of the usual Heisenberg algebra

(and the resulting Heisenberg uncertainty principle), to§

[x̂i, p̂j] = i~ fi,j(p̂) . (1)

For the 1-dimensional case considered in this paper, fi,j becomes a single function, f(p).

In [1], the quadratic form f(p) = 1+βp2 was suggested, while in [2], a linear + quadratic

function,

f(p) = 1 + αp + βp2 , (2)

was proposed. Here α = α0/MPl c = α0ℓPl/~,MPl = Planck mass, ℓPl ≈ 10−35 metre=

Planck length. α0 can be assumed to be order unity, and β = O(α2).

Over the years, various modifications of the canonical commutation relations have

been considered, with many different motivations.‖ We focus on (1, 2) because we are

‡ Corresponding author.
§ Here and throughout, â denotes an operator observable, and a the corresponding c-number.
‖ Motivations include the so-called Wigner problem [3], the related Feynman problem [4], and quantum

groups, for examples.
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ultimately interested in the low-energy effects of quantum gravity, and because, in that

context, modifications (1, 2) are quite general. The form (2) of f(p) has been suggested

by various approaches to quantum gravity, as well as from black hole physics and doubly

special relativity theories [5]. Various perturbative and non-perturbative effects of the

correction terms were studied in a number of papers including those for low energy

systems, the fundamental nature of spacetime, and cosmology (for a related review, see

[6]; see also references therein).

Naturally, one of the first examples studied in this context was the harmonic

oscillator, in which GUP corrections to the eigenvalues and eigenfunctions were

computed [1, 2].P It is anticipated that effects of at least some of these corrections

may be observable in the low energy laboratory, for example in quantum optics.

To explore this further, in this paper we study the GUP corrections to the harmonic

oscillator in phase space, and in particular compute and plot the Wigner functions

corresponding to the unperturbed and perturbed eigenfunctions for various n, and then

study their differences. We note that, depending on the value of α0, these differences

could be significant, and therefore in principle may have observational consequences. In

the following sections, we briefly review Wigner functions, and compute and plot them

for the problem described above. In the concluding section, we comment on potential

applications.

2. Wigner Functions

Rather than using the operator formalism, it is possible to work with a phase-space

formulation of quantum mechanics, developed by Groenewold and Moyal. In it,

observables are represented by (generalized) functions in phase space, that are multiplied

using an associative (Moyal) star product,

⋆ = exp

{

i~

2

(←−
∂x
−→
∂p −

←−
∂p
−→
∂x

)

}

, (3)

and states are described by the well-known Wigner function (see [8], e.g., for recent

reviews, and [9] for pedagogical treatments). The Wigner transform maps an operator

ĝ to the corresponding phase-space function,

W(ĝ) = ~

∫

dy e−ipy 〈x+ ~y/2| ĝ |x− ~y/2〉 , (4)

such that the star product of observables in phase space is homomorphic to the operator

product,

W(â b̂) = W(â) ⋆ W(b̂) . (5)

Up to a multiplicative constant, the Wigner function is nothing but the Wigner

transform of the density matrix ρ̂:

W (x, p) =
W(ρ̂)

2π~
=
W(|ψ〉 〈ψ|)

2π~
=

1

2π

∫

∞

−∞

ψ∗ (x− ~y/2) ψ (x+ ~y/2) e−ipy dy . (6)

P Recently, the methods of supersymmetric quantum mechanics have also been applied to the GUP-

modified harmonic oscillator [7].
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Here ρ̂ is the density matrix, ψ is the wave function in x-space, x is the position, and p

is the momentum. The Wigner function can also be found using the wave function, φ,

in p-space:

W (x, p) =
1

~

∫

∞

−∞

φ∗ (p+ u/2) φ (p− u/2) eixu/~ du . (7)

One other alternative method to find the Wigner function is to solve the

stargenvalue equations

H ⋆W (x, p) = EW (x, p) , (8)

W (x, p) ⋆ H = EW (x, p) . (9)

H is the Hamiltonian of the system, and E is the energy.

Important properties of the Wigner function include: (i) reality, W (x, p) =

W (x, p)∗, (ii) position probability density, P (x) = |ψ(x)|2 =
∫

W (x, p) dp, (iii)

momentum probability density, P (p) = |φ(p)|2 =
∫

W (x, p) dx, and (iv) normalization,
∫

W (x, p) dx dp = 1. Using the Wigner function, the expectation value 〈a〉 of an operator

â is

〈a〉 =

∫

W (x, p) a(x, p) dx dp , (10)

where a(x, p) =W(â) is the Weyl transform of â.

The equivalence of phase space quantum mechanics to the operator formulation

follows from the Wigner transform W , and its inverse, W−1, known as the Weyl map.

The latter’s relation to Weyl operator ordering is made plain by expanding

W−1
(

eζx+ηp
)

= eζx̂+ηp̂ (11)

in powers of ζ and η. This last equation also indicates how general functions in phase

space map to operators: Fourier component by component.

Using [x̂, p̂] = i~ and a simple Baker-Campbell-Hausdorff formula, one easily finds

exp (ζx̂+ ηp̂) exp (ζ ′x̂+ η′p̂) = exp [(ζ + ζ ′)x̂+ (η + η′)p̂] exp [i~(ζη′ − ηζ ′)/2] , (12)

the defining relation of the Heisenberg-Weyl group. Then (5) leads to the form (3) of

the Moyal star product.

If the Heisenberg commutation relations are generalized to [x̂, p̂] = i~(1+αp̂+βp̂2),

then a similar computation yields a modified GUP star product

log ( ⋆̃ ) = log ( ⋆ ) ·

{

F0 +
F1

6

(←−
∂x −

−→
∂x

)

−
F2

12

←−
∂x
−→
∂x + . . .

}

. (13)

Here

Fn :=

[

i~f(p)
d

dp

]n

f(p) , (14)

and the exponent in (13) does not terminate for polynomial f(p), such as (2).

This GUP star product encodes completely the effects of the GUP in phase-space

quantum mechanics. As a simple example, the ⋆̃-commutator realizes the generalized

commutation relation x⋆̃p− p⋆̃x = i~f(p).
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Figure 3. The probability densities of the GUP-corrected n = 2 and n = 3 simple

harmonic oscillator energy eigenstates for α = 0, β 6= 0. The top two plots are the

x-space densities while the bottom plots are in p-space. The transformations x→ −x

and p→ −p leave the densities invariant. We have set m = ω = ~ = 1 and β = 0.1.

B(µ, κ) = 2κ+µ−1
2F1(κ+ µ, κ;κ+ 1;−1). (22)

So far, we have reviewed the results obtained by [1]. As a new contribution, we will

now consider the Wigner functions for the wave functions just described. By numerically

integrating equation (7), using equation (17), we found the Wigner functions associated

with the simple harmonic oscillator corrected by a GUP motivated by quantum gravity

(Figure 2).

Notice the deformation of the circular symmetry about the centre of the

Wigner function. The quasi-probability distributions remain invariant under parity

tranformations in both x- and p-space, however. See also the probability densities

plotted in Figure 3. Unlike for the regular simple harmonic oscillator, which enjoys

symmetry under x↔ −p, the two probability densities do not look the same.

4. Corrections to harmonic oscillator from linear + quadratic GUP

Next, we consider the modified Heisenberg algebra proposed in [2], corresponding to the

quantum gravity phenomenology described by (2) in (1). The GUP is now

∆x∆p ≥
~

2

(

1 + α〈p〉+ β〈p2〉
)

, (23)
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and the time-independent Schrödinger equation is

d2φ(p)

dp2
+

α + 2βp

1 + αp+ βp2
dφ(p)

dp
+

ǫ− η2p2

(1 + αp+ βp2)2
φ(p) = 0 , (24)

with ǫ and η as defined above. Letting

φ(p) =: Φ(z) , z =
2βp+ α +

√

α2 − 4β

2
√

α2 − 4β
, (25)

we can convert equation (24) into the form of the Riemann equation:

d2Φ(z)

dz2
+

(2z − 1)

z (z − 1)

dΦ(z)

dz
+
q − r

(

α +
√

α2 − 4β − 2z
√

α2 − 4β
)2

z2 (z − 1)2
Φ(z) = 0 , (26)

where

q =
ǫ

(α2 − 4β)
, r =

η2

4β2 (α2 − 4β)
. (27)

Solving using the Riemann P -symbol [10],

Φ(z) ∝ P











0 1 ∞

s t u− z

−s −t u+











= zs(1− z)t 2F1 (a, b; c; z) , (28)

where

s = −

√

−q + 2rα2 + 2rα
√

α2 − 4β − 4rβ ,

t = −

√

−q + 2rα2 − 2rα
√

α2 − 4β − 4rβ ,

u± =
1

2

(

1±

√

1 +
4η2

β2

)

,

a = u− + s+ t , b = u+ + s+ t , c = 1 + 2s . (29)

With no restrictions on α and β, we note that there exist non-integrable

singularities. However, if we assume α2 < 4β, we find s = t∗, thus, eliminating this

problem.

To analyze the asymptotics of the wave function, we use zvwv∗ = zx+iywx−iy =

(zw)xeiy ln(
z

w
), valid for arbitrary z, v, w ∈ C, x, y ∈ R. We find

Φ(z) ∝ [z(1− z)]Re(s) ei Im(s) ln z

1−z 2F1 (a, b; c; z) . (30)

Since we want to ensure that the square of the norm of the wave function converges

when integrated, we consider two cases: 1) a = −n and 2) b = −n; here n ∈ Z
+ ∪ {0}

so that the Gauss hypergeometric function reduces to a polynomial of order n. For

a = −n, we find:

b = −n+

√

1 +
4η2

β2
,

c = 1− n− u− + 2i Im(s),

Re(s) = −
n+ u−

2
, (31)
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Figure 4. Energy levels are indicated for the simple harmonic oscillator with the 1-

parameter GUP correction (blue, α = 0, β = 0.1), and with the 2-parameter GUP

correction (red, α = 0.15, β = 0.1). The differences between the corrected and

uncorrected energies are shown. The inset shows the small energy difference between

the 2 cases for n = 0. We have set m = ǫ = η = ~ = 1.

Φ1(z) = [z(1− z)]−
n+u

−

2 ei Im(s) ln z

1−z 2F1

(

−n,−n+

√

1 +
4η2

β2
; 1− n− u− + 2i Im(s); z

)

∼ z−u− , for large |z| . (32)

For b = −n:

a = −n−

√

1 +
4η2

β2
,

c = 1− n− u+ + 2i Im(s) ,

Re(s) = −
n+ u+

2
, (33)

Φ2(z) = [z(1− z)]−
n+u+

2 ei Im(s) ln z

1−z 2F1

(

−n−

√

1 +
4η2

β2
,−n; 1− n− u+ + 2i Im(s); z

)

∼ z−u+ , for large |z| . (34)

We see that, as z →∞, Φ1 diverges, thus φ(p) ∝ Φ2(z),

φ(p) ∝
[

α2 − 4β − (2pβ + α)2
]−

n+u+

2 exp

{

i Im(s) ln

[

2 pβ + α +
√

α2 − 4 β
√

α2 − 4 β − 2 pβ − α

]}

× 2F1

(

−n−

√

1 +
4η2

β2
,−n; 1− n− u+ + 2 Im(s);

2βp+ α +
√

α2 − 4β

2
√

α2 − 4β

)

. (35)
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Figure 6. GUP-corrected probability densities with α = 0.15 and β = 0.1 for n = 2

and n = 3. The top (bottom) 2 plots show x-space (p-space). The symmetry x→ −x

(p→ −p) is intact (broken). We have set m = ǫ = η = ~ = 1.

with 1-parameter GUP correction), and α = 0.15, β = 0.1 (simple harmonic oscillator

with 2-parameter GUP correction). Notice that, even for small n, the difference in

energy levels grows rapidly. Also, while the perturbations raise the energies in both

cases, the effect is smaller when both α, β 6= 0.

4.2. GUP Corrected Wigner Functions

The quantum gravity-modified Wigner functions for a GUP (2) with both α and β

non-vanishing (Figure 5) exhibit a modified deformation from that for α = 0 (Figure

2), with the difference becoming clearer as n becomes larger. While invariance under

x→ −x remains intact, symmetry under p→ −p is broken.

Correspondingly, the probability densities for the 2-parameter GUP correction differ

from those for the 1-parameter case (Figure 6). Note that the disappearance of the

symmetry between the x- and p-space probability densities is more pronounced. Further,

though the x-space probability densities are symmetric about x = 0, there is a greater

probability of finding a particle in the region p > 0. This is consistent with the broken

p-parity.
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5. Conclusion

We first point out our main results. For the GUP specified by [x̂, p̂] = i~(1+αp̂+ βp̂2),

we have derived the wave functions (35) for the simple harmonic oscillator in momentum

space, and energy spectrum (37). These generalize the results (17) and (18) of [1], to

α 6= 0 .

The wave functions, both old and new, allowed us to investigate for the first time,

the corresponding Wigner functions in phase space, by implementing (7) numerically.

We have included several plots of the Wigner functions, that illustrate the effects of

the GUP corrections, both when α is zero, and non-zero. Significant changes to the

uncorrected Wigner functions (see Figure 1) are found, that intensify with increasing

oscillator energy, and break the circular symmetry (dependence on only x2 + p2) in

phase space (see Figures 2 and 5). The probability densities in both coordinate and

momentum space are also illustrated in Figures. 3 and 6. For α = 0, β 6= 0, invariance

under both x→ −x and p→ −p remain. For both α, β 6= 0, only the parity symmetry

x→ −x survives.

Our supposition is that these, or similar corrections to Wigner functions may be

observable. The Wigner functions corresponding to quadratures of electromagnetic fields

can be reconstructed in quantum optical systems, either by homodyne detection in

cavities and then by a Radon inverse transform [11], or directly via photon-number-

resolving detection [12]. It may therefore be possible to measure quantum gravity

corrections to the Wigner function in similar systems. Interestingly, the techniques

that may be useful are also pertinent to the study of the classical limit in quantum

mechanics [11]. We hope to study this in detail and report elsewhere.
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