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Dynamical solutions are always of interest to people in gravity theories. We derive a series of generalized

Vaidya solutions in the n-dimensional de Rham-Gabadadze-Tolley massive gravity with a singular

reference metric. Similar to the case of the Einstein gravity, the generalized Vaidya solution can describe

shining/absorbing stars. Moreover, we also find a more general Vaidya-like solution by introducing a more

generic matter field than the pure radiation in the original Vaidya spacetime. As a result, the above

generalized Vaidya solution is naturally included in this Vaidya-like solution as a special case. We

investigate the thermodynamics for this Vaidya-like spacetime by using the unified first law and present the

generalized Misner-Sharp mass. Our results show that the generalized Minser-Sharp mass does exist in this

spacetime. In addition, the usual Clausius relation δQ ¼ TdS holds on the apparent horizon, which

implicates that the massive gravity is in a thermodynamic equilibrium state. We find that the work density

vanishes for the generalized Vaidya solution, while it appears in the more general Vaidya-like solution.

Furthermore, the covariant generalized Minser-Sharp mass in the n-dimensional de Rham-Gabadadze-

Tolley massive gravity is also derived by taking a general metric ansatz into account.

DOI: 10.1103/PhysRevD.95.084002

I. INTRODUCTION

Massive gravities are significant and fundamental exten-

sions of the Einstein gravity, but, in opposition to our

intuition, to endow a mass to the graviton is not an easy

problem. In 1939, Fierz and Pauli first introduced the linear

massive gravity theory [1]. Note that a massless graviton

has only two polarizations, and a sound massive gravity

theory generally has 5 degrees of freedom. However, the

surplus 3 degrees of freedom have been proven to be

intractable when the mass of graviton vanishes in the linear

massive gravity [2]. To overcome this problem, one tries to

introduce the nonlinear massive gravities, but a more

serious problem, the Boulware-Deser ghost problem,

appears [3]. Recently, the so-called de Rham-Gabadadze-

Tolley (dRGT) massive gravity, which is a nonlinear

massive gravity theory and has been shown to be ghost

free, was proposed [4–6,7,8]. Note that in the dRGT model

the reference metric is full rank, but a singular reference

metric is also important [9], and the ghost problem in it is

investigated in Refs. [10,11]. Moreover, according to the

AdS=CFT correspondence [12–14], many clues have

shown that the massive graviton in the bulk is related to

some interesting effects of the dual field which resides on

the UV boundary of an asymptotical anti-de Sitter (AdS)

spacetime, i.e., the effects like a lattice to deduce the

momentum dissipation [9,15–17]. Much research about the

dRGT massive gravity has been done [9–11,15–31].

Among this research, one interesting issue is to find out

exact solutions in the dRGT massive gravity [18–24].

Usually, we assume some symmetries of the spacetime

when we seek a new solution. The translation invariance

along a timelike Killing vector is one of the most important

symmetries, but in some violent astrophysical processes, or

when the mass of the matters surrounding the central

celestial bodies are not negligible, such an assumption

may no longer be reliable. However, finding an exact

dynamical solution describing these realistic processes has

proven to be an intricate issue.

Vaidya found an important dynamical toy model for a

spherically symmetric spacetime [32],

ds2 ¼ −

�

1 −
2MðvÞ

r

�

dv2 þ 2dvdrþ r2dΩ2

2
; ð1Þ

whereMðvÞ is the mass parameter, dΩ2
2
is the metric of the

2-sphere, and the stress tensor of the matter field is given by

Tab ¼ μlalb. Here, la ¼ ðdvÞa in the above coordinates
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ðv; r; xiÞ, and μ is the energy density. This solution is well

known as the Vaidya solution. Note that the Vaidya solution

describes a spherically symmetric spacetime sourced by

massless particles (not quanta of the Maxwell field which

are called the pure radiation). In addition, since MðvÞ is an
undetermined function in the Vaidya metric, in principle, it

can describe an arbitrary spherically symmetric energy flow

from the central star. When MðvÞ ¼ constant, it comes

back to the Schwarzschild spacetime, and whenMðvÞ ¼ 0,

it degenerates to the Minkowski spacetime. It should be

emphasized that the Vaidya solution is an important

solution since it encodes some essential properties of the

dynamical spherically symmetric spacetimes, while

remaining simple enough to handle. Therefore, in our

paper, the first task is to generalize the above Vaidya

solution to a more general case, i.e., the exact generalized

Vaidya and Vaidya-like solutions in the n-dimensional

spacetime with maximally symmetric (n − 2)-subspace in

the dRGT massive gravity. The metric ansatz reads

ds2 ¼ −fðv; rÞdv2 þ 2dvdrþ r2γijdx
idxj; ð2Þ

where γij is the metric on a (n − 2)-dimensional constant

curvature space N with its sectional curvature k ¼ �1; 0,
and the two-dimensional T spanned by ðv; rÞ has the metric

hab. In addition, during obtaining the generalized dynami-

cal solutions, we first adopt the pure radiation as the matter

field. Then, we extend the matter field to a more general

case [33,34] and then obtain a generalized Vaidya-like

solution, in which the generalized Vaidya solution is

included as a special case. For the generalized Vaidya

solution in dRGT massive gravity, we find that it is

consistent with the result in some previous works in which

the corresponding static solution has been found [18].

As important progress, black hole thermodynamics

(more generally gravithermodynamics) significantly

boosts our understanding of gravity theory. It is even treated

as a critical probe of the quantum gravity theory.

Gravithermodynamics is well established in stationary

spacetime. For dynamical spacetimes, there is still no

generally accepted theory yet. The first difficulty is that

somekey physical concepts, including temperature, entropy,

horizon, etc., become subtle. The seconddifficulty is that it is

hard to define a reversible process in a dynamical spacetime.

However, some research has shown that the unified first law

is a nice approach in gravithermodynamics if the spacetime

has a maximally symmetric subspace, since usually it can be

directly derived from the field equation itself [10,34–38] in

such spacetimes. Thus, one can apply it in a dynamical

spacetime without essential obstructions for these space-

times. In our paper, we apply the unified first law to

investigate the thermodynamics of the above generalized

dynamical solutions in dRGTmassive gravity. Note that the

Misner-Sharp mass is a significant quantity in the unified

first law. In Einstein’s general relativity, the Misner-Sharp

mass always exists [10,34–38]. In addition, since it encodes

rich information of the corresponding gravity field [39],

one can obtain a series of exact solutions through thermo-

dynamic approaches from the Misner-Sharp mass [40].

However, the generalizedMisner-Sharpmassmay be absent

in some modified gravity like fðRÞ gravity [41,42].

In our case, by using the unified first law, we find that the

generalized Misner-Sharp mass does exist for the above

generalized dynamical solutions and obtain the first law of

thermodynamics on the apparent horizon for these gener-

alized dynamical solutions. In addition, the usual Clausius

relation δQ ¼ TdS holds on the apparent horizon, which

implies that the dRGT massive gravity is in a thermody-

namic equilibrium state [10,41,43,44]. It should be empha-

sized that the existence of the Misner-Sharp mass in some

special solutions does not always imply the existence of it

in the corresponding gravity theory. For example, the

Misner-Sharp mass exists in the Friedmann-Robertson-

Walker (FRW) solution and static solution in fðRÞ gravity.
However, it does not always exist in a general spherically

symmetric spacetime in fðRÞ gravity [41,42]. Essentially,

the generalized Misner-Sharp mass is a conserved charge

of the spacetime corresponding to the Kodama vector

(reduced to a Killing one in stationary spacetime), which

depends on the gravity theory in consideration [36,41,42].

The integrability of such a conserved charge, and thus the

existence of the generalized Misner-Sharp mass, is a

nontrivial problem. Therefore, we need further study the

existence of the generalizedMisner-Sharp mass in a general

spacetime with maximally symmetric subspaces. We show

that the generalized Misner-Sharp mass in the n-dimen-

sional dRGT massive gravity indeed exists, and the

covariant form has also been obtained; i.e., the result is

not constrained to any special solution.

This paper is organized as follows. In Sec. II, we first

obtain the generalized Vaidya solution in the dRGTmassive

gravity and then consider a more general matter field to

obtain a generalized Vaidya-like solution. In Sec. III, we use

the unified first law to investigate the thermodynamics of

these generalized dynamical solutions. Our results show that

the generalizedMisner-Sharp mass exists in these solutions.

In Sec. IV, we further derive the covariant generalized

Misner-Sharp mass for the n-dimensional dRGT massive

gravity by considering the more general metric ansatz and

matter fields. Finally, we draw the conclusions and dis-

cussions in Sec. V.

II. GENERALIZED DYNAMICAL SOLUTIONS

IN THE N-DIMENSIONAL MASSIVE GRAVITY

In this section, we explore the generalized dynamical

solutions in the n-dimensional dRGT massive gravity. The

action of the dRGT massive gravity in an n-dimensional

spacetime with a cosmological constant Λ ¼ −
ðn−1Þðn−2Þ

2l2

reads [9,18]
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S ¼ 1

16πG

Z

dnx
ffiffiffiffiffiffi

−g
p �

Rþ ðn − 1Þðn − 2Þ
l
2

þm2
X

4

i

ciU iðg; fÞ
�

; ð3Þ

where f is a constant symmetric tensor, which is usually

called the reference metric; ci and l are constants; and U i

are symmetric polynomials of the eigenvalues of the n × n

matrix K
μ
ν ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi

gμαfαν
p

,

U1 ¼ ½K�;
U2 ¼ ½K�2 − ½K2�;
U3 ¼ ½K�3 − 3½K�½K2� þ 2½K3�;
U4 ¼ ½K�4 − 6½K2�½K�2 þ 8½K3�½K� þ 3½K2�2 − 6½K4�: ð4Þ

The square root in K means ð
ffiffiffiffi

A
p

Þμνð
ffiffiffiffi

A
p

Þνλ ¼ Aμ
λ and

½K� ¼ Kμ
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

gμαfαμ
p

.

From the action and considering the matter fields, the

equations of motion are

Gμν ≡ Rμν −
1

2
Rgμν −

ðn − 1Þðn − 2Þ
2l2

gμν þm2χμν

¼ 8πGTμν; ð5Þ

where

χμν ¼ −
c1

2
ðU1gμν −KμνÞ −

c2

2
ðU2gμν − 2U1Kμν þ 2K2

μνÞ

−
c3

2
ðU3gμν − 3U2Kμν þ 6U1K

2
μν − 6K3

μνÞ

−
c4

2
ðU4gμν − 4U3Kμν þ 12U2K

2
μν

− 24U1K
3
μν þ 24K4

μνÞ: ð6Þ

In this article, we will investigate the generalized

dynamical solutions in the n-dimensional spacetime with

a maximally symmetric inner space in the dRGT massive

gravity, and the metric ansatz is just (2). For this metric

ansatz, we take the reference metric as in Ref. [18],

fμν ¼ diagð0; 0; c2
0
γijÞ; ð7Þ

with c0 is a positive constant. Thus,

½K� ¼ n − 2

r
c0; ½K2� ¼ n − 2

r2
c2
0
;

½K3� ¼ n − 2

r3
c3
0
; ½K4� ¼ n − 2

r4
c4
0
; ð8Þ

where the symmetric polynomials become

U1 ¼
ðn − 2Þc0

r
; ð9Þ

U2 ¼
ðn − 2Þðn − 3Þc2

0

r2
; ð10Þ

U3 ¼
ðn − 2Þðn − 3Þðn − 4Þc3

0

r3
; ð11Þ

U4 ¼
ðn − 2Þðn − 3Þðn − 4Þðn − 5Þc4

0

r4
; ð12Þ

and the corresponding components of Gμν are

Gv
v ¼ Gr

r ¼ Λþ n − 2

2

�ðrn−3fÞ0 − ðn − 3Þrn−4k − c1c0m
2rn−3 − ðn − 3Þc2c20m2rn−4 − ðn − 3Þðn − 4Þc3c30m2rn−5

rn−2

−
ðn − 3Þðn − 4Þðn − 5Þc4c40m2rn−6

rn−2

�

; ð13Þ

Gi
j ¼ δij

�

Λþ ðrn−3fÞ00 − ðn − 3Þðn − 4Þrn−5k − ðn − 3Þc1c0m2rn−4 − ðn − 3Þðn − 4Þc2c20m2rn−5

2rn−3

−
ðn − 3Þðn − 4Þðn − 5Þc3c30m2rn−6 − ðn − 3Þðn − 4Þðn − 5Þðn − 6Þc4c40m2rn−7

2rn−3

�

; ð14Þ

Gr
v ¼

−ðn − 2Þ _f
2r

; ð15Þ
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Gv
r ¼ 0; ð16Þ

where a prime/overdot denotes the derivative with respect

to r=v. In the following, we investigate two cases by

considering different matter fields. In the first case, the

generalized Vaidya solution is derived by the pure radiation

in analogy to the Vaidya solution in the Einstein gravity. In

the second case, we consider a more generic source matter

than the usual pure radiation to obtain a more general

dynamical solution, i.e., a generalized Vaidya-like solution.

A. Special case: Generalized Vaidya solution

For the pure radiation, the stress-energy tensor is given

by Tab ¼ μlalb, where la ¼ ðdvÞa is expressed in the

coordinates ðv; r; xiÞ in (2). The components of the field

equation (5) corresponding to the metric (2) present

Gv
v ¼ Gr

r ¼ Λþ n − 2

2
×

�ðrn−3fÞ0 − ðn − 3Þrn−4k − c1c0m
2rn−3 − ðn − 3Þc2c20m2rn−4 − ðn − 3Þðn − 4Þc3c30m2rn−5

rn−2

−
ðn − 3Þðn − 4Þðn − 5Þc4c40m2rn−6

rn−2

�

¼ 0; ð17Þ

Gi
j ¼ δij ×

�

Λþ ðrn−3fÞ00 − ðn − 3Þðn − 4Þrn−5k − ðn − 3Þc1c0m2rn−4 − ðn − 3Þðn − 4Þc2c20m2rn−5

2rn−3

−
ðn − 3Þðn − 4Þðn − 5Þc3c30m2rn−6 − ðn − 3Þðn − 4Þðn − 5Þðn − 6Þc4c40m2rn−7

2rn−3

�

¼ 0; ð18Þ

Gr
v ¼

−ðn − 2Þ _f
2r

¼ 8πGμ; ð19Þ

Gv
r ¼ 0: ð20Þ

Note that the components Gi
j are not independent,

because they are a linear combination of the terms of Gv
v

and ∂rG
v
v,

Gi
j ¼ δij½Gv

v þ r∂rG
v
v=ðn − 2Þ�

¼ δij

�

1

ðn − 2Þrn−3 ∂rðrn−2Gv
vÞ
�

: ð21Þ

Therefore, Gi
j ¼ 0 do not yield independent equations.

From the above equation in (17), we can easily obtain

the generalized Vaidya solution in the n-dimensional dRGT

massive gravity,

fðv; rÞ ¼ kþ r2

l
2
−
MðvÞ
rn−3

þ c0c1m
2

n − 2
rþ c2

0
c2m

2

þ ðn − 3Þc3
0
c3m

2

r
þ ðn − 3Þðn − 4Þc4

0
c4m

2

r2
;

ð22Þ

with

μ ¼ −
ðn − 2Þ _f
16πGr

¼ ðn − 2Þ _MðvÞ
16πGrn−2

; ð23Þ

which can be obtained by inserting (22) into (19), andMðvÞ
is the mass parameter. Our solution is consistent with the

result in some previous works like Ref. [18]. Since ifMðvÞ
is independent of v, i.e., a constant, and hence fðv; rÞ can
be written as fðrÞ, then after the transformation in the

metric ansatz (2)

dv ¼ dtþ 1

fðrÞ dr; ð24Þ

the above solution (22) comes back to the static solution in

n-dimensional spacetime found in Ref. [18].

B. General case: Generalized Vaidya-like solution

Now, we further generalize the above generalized Vaidya

solution in the dRGT massive gravity to a more general

case. For a general discussion of the stress-energy form

constrained by the energy conditions in the Vaidya-type

solutions, see Ref. [45]. Note that for the metric (2) and the

reference metric (7) we have Gr
r ¼ Gv

v, so the energy-

momentum tensor of the matter field should satisfy

Tr
r ¼ Tv

v. Certainly, the pure radiation matter discussed

above satisfies the constraint. In fact, it is Tr
r ¼ Tv

v ¼ 0.

Therefore, if we relax this condition to Ti
i ¼ σTr

r ¼ σTv
v

(where σ is a constant, and the equation does not sum over

i), then from the equation ∇μT
μ
ν ¼ 0 or the explicit

expressions of G
μ
ν in Eqs. (13) to (15), we can derive

∂vT
v
v þ ∂rT

r
v þ

n − 2

r
Tr
v ¼ 0 ð25Þ

YA-PENG HU, XIN-MENG WU, and HONGSHENG ZHANG PHYSICAL REVIEW D 95, 084002 (2017)

084002-4



and

∂rT
v
v þ

ðn − 2Þð1 − σÞ
r

Tv
v ¼ 0: ð26Þ

So, for the pure radiation matter with Tr
r ¼ Tv

v ¼ 0, one

finds that Tr
v has to be proportional to 1=rn−2, which is

consistent with the above generalized Vaidya case

in Eq. (23).

Therefore, for the more general case Tr
r ¼ Tv

v ≠ 0 for the

matter field, and hence from Eq. (26), Tr
r and Tv

v should

satisfy

Tr
r ¼ Tv

v ¼ CðvÞr−ðn−2Þð1−σÞ; ð27Þ

where CðvÞ is a function of v. In addition, the off-diagonal

part of the energy-momentum tensor T
μ
ν, i.e., the compo-

nent Tr
v, has to satisfy Eq. (25). Now, Eq. (17) is modified

as

Gv
v ¼ 8πGCðvÞr−ðn−2Þð1−σÞ: ð28Þ

Integrating this equation, we obtain the expression of

fðv; rÞ,

fðv; rÞ ¼ kþ r2

l
2
þ c0c1m

2

n − 2
rþ c2

0
c2m

2 þ ðn − 3Þc3
0
c3m

2

r

þ ðn − 3Þðn − 4Þc4
0
c4m

2

r2

−
MðvÞ
rn−3

þ 16πG

ðn − 2Þrn−3 CðvÞΘðrÞ; ð29Þ

where MðvÞ is an arbitrary function of v, and

ΘðrÞ ¼
R

drrðn−2Þσ. In detail, when σ ¼ −1=ðn − 2Þ,

ΘðrÞ ¼ lnðrÞ; ð30Þ

and in other cases,

ΘðrÞ ¼ rðn−2Þσþ1

ðn − 2Þσ þ 1
: ð31Þ

Note that the parameter σ and functions mðvÞ and CðvÞ
should satisfy some consistency relations if one imposes

some energy condition for the energy-momentum tensor. In

addition, from Eq. (15), we have

Tr
v ¼ ~μ ¼ ðn − 2Þ _MðvÞ

16πGrn−2
−

_CðvÞΘðrÞ
rn−2

; ð32Þ

which is also consistent with Eq. (25). Therefore, we have

also obtained the stress tensor of the matter field in this

more general case. More precisely, we can further write the

stress tensor of the matter field in this more general case as

Tab ¼ ~μlalb − Pðlanb þ nalbÞ þ σPqab; ð33Þ

where na is a null vector which satisfies lan
a ¼ −1.

In coordinates ðv; r; xiÞ, la ¼ ðdvÞa and na ¼ f=2ðdvÞa−
ðdrÞa, while the tensor qab is a projection operator given by
qab ¼ gab þ lanb þ lbna, and the quantity P is the radial

pressure with the form P ¼ CðvÞr−ðn−2Þð1−σÞ. In addition,

the metric (2) can be put into the form gab ¼ hab þ qab,
where

hab ¼ −lanb − lbna ð34Þ

is the metric of two-dimensional spacetime T spanned by

the coordinates ðv; rÞ. Certainly, in the coordinates

ðv; r; xiÞ, the line element of hab can be expressed as

−fðv; rÞdv2 þ 2dvdr. Therefore, Eq. (29) together with

Eq. (33) is a more general case with the new dynamical

solution, which we call the generalized Vaidya-like sol-

ution. Obviously, the above generalized Vaidya solution is a

special case of this generalized Vaidya-like solution

with CðvÞ ¼ 0.

III. THERMODYNAMICS OF THE GENERALIZED

DYNAMICAL SOLUTIONS

In this section, we will investigate thermodynamics

of the above generalized dynamical solutions in the

dRGT massive gravity by using the unified first law,

and we concentrate on the generalized Vaidya-like solution

obtained in the more general case, since it naturally

includes the generalized Vaidya solution as a special case.

According to the unified first law, similar to the case of the

Einstein gravity [35], one can formally cast Eq. (5) of the

gravitational field into the form

dMeff ¼ AΨadx
a þWdV; ð35Þ

where A ¼ Vkr
n−2 and V ¼ Vkr

n−1=ðn − 1Þ are the area

and volume of the (n − 2)-dimensional constant curvature

space N with radius r, W is called work density defined

as W ¼ −habTab=2, and Ψa is the energy supply vector

with the definition Ψa ¼ Tb
a∂brþW∂ar. Here, Tab is the

projection of the stress tensor Tμν of matter into hab.

After substituting the explicit forms of generalized

dynamical solutions in the dRGT massive gravity (29)

and (33), we can explicitly obtain the following quantities:

W ¼ −P; Ψa ¼ ~μla; ð36Þ

AΨadx
a þWdV ¼ Vkr

n−2 ~μdv − PVkr
n−2dr

≡ Xðv; rÞdvþ Yðv; rÞdr: ð37Þ

It is easy to check,
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∂Xðv; rÞ
∂r

¼ ∂Yðv; rÞ
∂v

; ð38Þ

which ensures that dMeff is a closed form and thus qualified

as the generalized Misner-Sharp mass for the above

generalized dynamical solutions in the dRGT massive

gravity. Moreover, the generalized Misner-Sharp mass

can be easily obtained in this case,

Meff ¼ Vk

�ðn − 2ÞMðvÞ
16πG

− CðvÞΘðrÞ
�

: ð39Þ

Next, we will use the unified first law and generalized

Misner-Sharp mass (39) to investigate the thermodynamics

of the above generalized dynamical solutions on the

apparent horizon rA, where rA is defined as the trapped

surface hab∂ar∂br ¼ 0. In our case, we can easily obtain

that the location of the apparent horizon rA is fðv; rÞ ¼ 0 in

Eq. (29). On the apparent horizon, the energy flow across

the apparent horizon is [10,34,37,38]

δQ ¼ dMeff jrA ¼ AΨadx
ajr¼rA

¼ AΨvdv ¼ −
ðn − 2ÞVkr

n−3
A

16πG
_fðrAÞdv: ð40Þ

On the other hand, the temperature of generalized

dynamical solution is T ¼ κ
2π
, where the surface gravity

κ defined on the apparent horizon is κ ¼ DaD
ar ¼

1

2
ffiffiffiffiffi

−h
p ∂

∂xμ
ð

ffiffiffiffiffiffi

−h
p

hμν∂vrÞ ¼ f0ðrAÞ=2 [10,34–38]. Here, Da

is the covariant derivative associated with metric hab. In

addition, the entropy of the apparent horizon is S ¼ A
4G

¼
Vkr

n−2
A

4G
[18]. Therefore,

TdS ¼ κ

2π
dS ¼ ðn − 2ÞVkr

n−3
A

16πG
f0ðrAÞ_rAdv: ð41Þ

After using the simple relation f0ðrAÞ_rA ¼ − _fðrAÞ derived
from fðrA; vÞ ¼ 0, we can easily obtain that the usual

Clausius relation δQ ¼ TdS does hold on the apparent

horizon of the generalized dynamical solution, which

indicates that the dRGT massive gravity is an equilibrium

state [44]. Note that this result is consistent with the

investigation in Ref. [10] by taking the FRW universe into

account. In addition, it should be emphasized that the usual

Clausius relation δQ ¼ TdS does not always hold on the

apparent horizon. For example, the usual Clausius relation

does not hold for the fðRÞ gravity, which can be treated as

the effects of the nonequilibrium of the spacetime

[41,43,44]. Therefore, after taking Eq. (41) and the

Clausius relation into account, the unified first law in

Eq. (35) on the apparent horizon can be rewritten as

dMeff ¼ TdSþWdV; ð42Þ

which is just the first law of thermodynamics for the

generalized Vaidya-like solution. Note that the work

density W in Eq. (42) is nonzero for the generalized

Vaidya-like solution, which makes another difference from

the generalized Vaidya solution, of which W ¼ 0.

IV. GENERALIZED MISNER-SHARP MASS FOR

THE N-DIMENSIONAL MASSIVE GRAVITY

Note that the Misner-Sharp mass is a quantity depending

on not only the symmetry in the solution, i.e., usually just

defined in a spacetime with a maximally symmetric sub-

space, but also the underlying gravity theory. Hence, the

existence of the Minser-Sharp mass in a special solution

with a maximally symmetric subspace does not always

guarantee its existence in the gravity for the general

solutions with the same maximally symmetric subspace,

for example, the fðRÞ gravity [41,42]. Therefore, we

should further investigate the existence of the Misner-

Sharp mass in a general spacetime with a maximally

symmetric subspace. Moreover, in order to investigate

the generalized Misner-Sharp mass for the n-dimensional

dRGT massive gravity, we usually write down the more

general metric ansatz in a double-null coordinate as

follows:

ds2 ¼ −2e−φðu;vÞdudvþ r2ðu; vÞγijdxidxj: ð43Þ

Here, γij is the metric on the maximally symmetric sub-

space same as in Eq. (2). In the coordinates (43), the rhs of

Eq. (35) reads

AΨadx
a þWdV ¼ Aðu; vÞduþ Bðu; vÞdv; ð44Þ

where

Aðu; vÞ ¼ Vkr
n−2eφðr;u Tuv − r;v TuuÞ; ð45Þ

Bðu; vÞ ¼ Vkr
n−2eφðr;v Tuv − r;u TvvÞ: ð46Þ

Here, a comma denotes a partial derivative. Substituting

Eq. (35) into Eq. (44), we reach

F≡ dMeff ¼ Aðu; vÞduþ Bðu; vÞdv: ð47Þ

The components of the field equation (5) in the coordinates

(43) read
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8πGTuu ¼ −ðn − 2Þφ;u r;u þr;uu

r
;

8πGTvv ¼ −ðn − 2Þφ;v r;v þr;vv
r

;

8πGTuv ¼
−Λ

eφ
þ n − 2

2eφr
ð2r;uv eφ þ c1c0m

2Þ þ ðn − 2Þðn − 3Þðkþ 2eφr;u r;v þc2c
2

0
m2Þ

2eφr2

þ ðn − 2Þðn − 3Þðn − 4Þc3c30m2

2eφr3
þ ðn − 2Þðn − 3Þðn − 4Þðn − 5Þc4c40m2

2eφr4
: ð48Þ

Obviously, a well-defined Meff in Eq. (47) requires F is a closed form dF ¼ 0, which means

A;v dv∧duþ B;u du∧dv ¼ 0: ð49Þ

Then, we obtain the constraint for a well-defined Meff ,

A;v ¼ B;u: ð50Þ

Substituting Eq. (48) into Eqs. (45) and (46), we obtain

Aðu; vÞ ¼ Vk

8πG

�

−Λr;u r
n−2 þ ðn − 2Þrn−3eφr;u r;vu þ

k

2
ðn − 2Þðn − 3Þrn−4r;u þðn − 2Þðn − 3Þeφr;v r;2u rn−4

þ eφrn−3ðn − 2Þðr;u r;v þr;v r;uv Þ þ
ðn − 2Þrn−3r;u c1c0m2

2
þ ðn − 2Þðn − 3Þrn−4r;u c2c20m2

2

þ ðn − 2Þðn − 3Þðn − 4Þrn−5r;u c3c30m2

2
þ ðn − 2Þðn − 3Þðn − 4Þðn − 5Þrn−6r;u c4c40m2

2

�

;

Bðu; vÞ ¼ Vk

8πG

�

−Λr;v r
n−2 þ ðn − 2Þrn−3eφr;v r;vu þ

k

2
ðn − 2Þðn − 3Þrn−4r;v þðn − 2Þðn − 3Þeφr;u r;2v rn−4

þ eφrn−3ðn − 2Þðr;v r;u þr;u r;uv Þ þ
ðn − 2Þrn−3r;v c1c0m2

2
þ ðn − 2Þðn − 3Þrn−4r;v c2c20m2

2

þ ðn − 2Þðn − 3Þðn − 4Þrn−5r;v c3c30m2

2
þ ðn − 2Þðn − 3Þðn − 4Þðn − 5Þrn−6r;v c4c40m2

2

�

: ð51Þ

Using the above explicit forms of Aðu; vÞ and Bðu; vÞ, we find that the above constraint is automatically satisfied for the

n-dimensional dRGT massive gravity, which guarantees that Meff is well defined. Thus, directly integrating (35) presents

the generalized Misner-Sharp mass in the n-dimensional dRGT massive gravity,

Meff ¼
Z

Aðu; vÞduþ
Z

�

Bðu; vÞ − ∂

∂v

Z

Aðu; vÞdu
�

dv

¼ Vkðn − 2Þ
16πG

rn−3
�

r2

l2
þ kþ 2eφr;u r;v þ

c0c1m
2

n − 2
rþ c2

0
c2m

2 þ ðn − 3Þc3
0
c3m

2

r
þ ðn − 3Þðn − 4Þc4

0
c4m

2

r2

�

: ð52Þ

Note that, here, the second term in the first line of Eq. (52) in fact vanishes, and we have fixed an integration constant so that

Meff reduces to the Misner-Sharp mass in the Einstein gravity when the graviton mass parameter m goes to zero.

Furthermore, the above generalized Misner-Sharp mass can be rewritten in a covariant form as

Meff ¼
Vkðn − 2Þ
16πG

rn−3
�

ðk − hab∂ar∂brÞ þ
r2

l2
þ c0c1m

2

n − 2
rþ c2

0
c2m

2 þ ðn − 3Þc3
0
c3m

2

r
þ ðn − 3Þðn − 4Þc4

0
c4m

2

r2

�

: ð53Þ

For the special case in the above generalized dynamical solution (29), one can check that the result in Eq. (39) is consistent

with the generalized Misner-Sharp mass in Eq. (53). And Eq. (53) is the general definition of the generalized Misner-Sharp

mass in the n-dimensional spacetime with maximally symmetric subspace in the dRGT massive gravity.
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V. CONCLUSION AND DISCUSSION

In this paper, through considering the pure radiation and

a more general case as the matter fields, we obtain the

generalized dynamical solutions in the n-dimensional

dRGT massive gravity, which naturally includes the gen-

eralized Vaidya solution. By using the unified first law and

the Misner-Sharp mass, we investigate thermodynamics for

these solutions. Besides obtaining the first law of thermo-

dynamics for these generalized dynamical solutions on the

apparent horizon, we also check that the generalized

Misner-Sharp mass exists for them. Generally, a solution

has a much higher symmetry than the theory itself. The

existence of the Misner-Sharp mass in a special solution

does not imply the existence of it in the general case. For

example, the Misner-Sharp mass exists in the FRW

solutions and static solutions in fðRÞ gravity. However,

it does not always exist in a general spherically symmetric

spacetime in fðRÞ gravity. In view of this situation, we

further investigate the generalized Misner-Sharp by taking

the general metric ansatz and matter field into account and

find that the generalized Misner-Sharp mass really exists in

a covariant form.

Note that in the massive gravity theory a reference metric

is required. However, the theory itself does not determine

the concrete form of the reference metric. This uncertainty

makes the theory become arbitrary in some degree, while it

delivers extra conveniences in some cases. For example,

there is no Schwarzschild solution in the unitary gauge

(Minkowskian reference metric), and thus to match the tests

in the Solar System, a chameleon mechanism is necessary.

Recently, Li et al. found that the Schwarzschild solution

can be obtained if one gives up the unitary gauge [46].

Other solutions have also been found by choosing a

different reference metric, for example, the rotating black

hole solution in the dRGT massive gravity [47]. Therefore,

it is an interesting issue to find other solutions in the dRGT

massive gravity by considering different reference metrics.

In addition, it was found recently that the dynamics of

black holes and black branes are greatly simplified in the

limit of a large number of spacetime dimensions N [48].

Therefore, more properties for the black holes and black

branes in the large-N limit will also be an interesting issue

to further investigate. Furthermore, according to the

AdS=CFT correspondence, the Vaidya dynamical black

branes in Eq. (22) can be related to the thermalization

processes of the strongly coupled fields [49,50], i.e.,

thermalization processes of the quark-gluon plasma pro-

duced in ultrarelativistic heavy-ion collisions at the

Relativistic Heavy Ion Collider and the (LHC).

Therefore, the underlying dual physics of our Vaidya-like

dynamical black brane in Eq. (29) is also an interesting

issue to be explored further.
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