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Abstract: We study systems of conservation laws arising in two models of adhesion
particle dynamics. The first is the system of free particles which stick under colli-
sion. The second is a system of gravitationally interacting particles which also stick
under collision. In both cases, mass and momentum are conserved at the collisions,
so the dynamics is described by 2 x 2 systems of conservations laws. We show
that for these systems, global weak solutions can be constructed explicitly using the
initial data by a procedure analogous to the Lax—Oleinik variational principle for
scalar conservation laws. However, this weak solution is not unique among weak
solutions satisfying the standard entropy condition. We also study a modified grav-
itational model in which, instead of momentum, some other weighted velocity is
conserved at collisions. For this model, we prove both existence and uniqueness
of global weak solutions. We then study the qualitative behavior of the solutions
with random initial data. We show that for continuous but nowhere differentiable
random initial velocities, all masses immediately concentrate on points even though
they were continuously distributed initially, and the set of shock locations is dense.

1. Introduction

This paper has two main goals; The first is to give an explicit construction of weak
solutions for the initial value problem of the systems of conservation laws:

pi+(pu)y =0
{(pu)t+(pu2)x =0 -1
and
pr+(pu) =0
(pu) + (p1?)x = —pgs (12)
Ixx =P -

The second is to study the qualitative behavior of such weak solutions when initial
data are random. We prove that for a wide class of probability distributions for the
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initial data, almost every weak solution has the following structure: At any positive
time ¢ > 0, p(+,t) becomes a purely singular measure even though it may be
continuous at ¢ = 0. Moreover, this singular measure is supported on a dense set
which can also be considered as the shock set of u. We will also study a variant
of (1.2) in which a weighted velocity instead of momentum is conserved at the
collisions [GMS, VFDN]:

pe+ (pu)e =0
U+ () = —x (13)
gxx =P -

Our construction of weak solutions for (1.1) is based on a connection between
(1.1) and the “sticky particle model” of Zeldovich (see [Z] and also [CPY]). There is
a similar connection between (1.2) and the gravitationally interacting sticky particles.
Consider a system of particles on R' with initial velocities {09}, locations {x}} and

masses {m?}, j € Z. The particles move with constant velocities unless they collide.
At collisions the colliding particles stick and form a new massive particle. The mass
and velocity of this new particle are given by the laws of conservation of mass and
momentum. This model was proposed by Zeldovich [SZ], and developed further
by Kofman, Shandarin, et al. (see [GMS,KPS], and the survey paper [VDFN]) to
explain the formation of large scale structures in the universe. In this context it
is also referred to as the model of “adhesion dynamics.” One main result of this
paper is that the adhesion dynamics of free particles is in a sense integrable, and
this gives rise to weak solutions of (1.1).

A similar connection exists between (1.2) and the gravitationally interacting
sticky particles. The Hamiltonian governing the dynamics between collisions is
given by 5
H(p,x)zZ%——(—Zmimﬂxi—xA. (1.4)

i Ay i
We will assume that ), m; < co. When particles collide, again they form a new
particle with mass and velocity given by the conservation of mass and momentum.
The gravitational force acting on a particle is proportional to the difference between
the total masses from the right and from the left of the particle. This system is also
integrable in the same sense and leads to weak solutions of (1.2).
For smooth solutions, (1.1) is equivalent to the Burgers equation

2
u + <—) =0 (1.5)
2 X
together with a scalar transport equation
pe+ (pu)=0. (1.6)

Given the initial data {po,up}, the solution of (1.5)—(1.6) can be easily found via
the method of characteristics. Define the forward flow map ¢, : R' — R! by

x=@dy) =y +uu(y). (1.7)
For small ¢, this map is usually invertible, and we have
_ _ ox |
w(x, ) = uo(@; (X)), p(x.1) = pole; (%)) ’@' ) (1.8)

where y = ¢, !(x) defines the backward flow map.
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It is well-known [L] that this construction ceases to be valid after some criti-
cal time 7" at which the solution of (1.5) develops shocks. In general (1.1) and
(1.5)—(1.6) also cease to be equivalent after 7.

In analogy with fluid mechanics, we call p the Lagrangian coordinate and ¢,(y)
the Eulerian coordinate at time ¢. After 7* the mapping y — ¢,(y) is no longer
one-to-one, and no longer defined by (1.7): a whole interval can be mapped to a
single point which is the location of a shock.

However, in all cases ¢, defines a partition & of R' where elements of the
partition are given by

%) = {97 '(x), x€R'}. (19)

We should stress that the solutions are assumed to be continuous from the right.

The elements of & can be either single points, or segments. More importantly,

knowing &;, we can reconstruct ¢, and u( -,¢) from the two conservation laws:

fCt(y) (17 + luO(’?))PO(’?)dW
fC;(y) pO(”’)d"I

S wo(mpo(ndn
M= Ja,) Po(m)dn

., (1.10)

oY) =

where C,(y) denotes the element of the partition £, containing y, and Z(x) =
@, 1(x). In the more general case when the initial distribution of mass is given by
a nonnegative Borel measure Py, (1.10) takes the form

(n + tuo(n))dPo(1) uo(n)dPo(1)

iy = Lo T RCDMRD) ) Jamom)ePy (L11)
Jeyy @Po(m) J 2, 4Po()

Both (1.10) and (1.11) state that ¢,(y) is now the position of the center of mass

of Ci(y).

We are left with the key step of defining { &}~ . Let us first consider the simpler
case of a finite number of particles with initial data {x),0%,md}, 1 <j < N. A
crucial observation is that the necessary and sufficient condition for N particles to
collide and form a single particle before, or at time ¢, is that

J 0 0y, 0 N 0 0v.,,0

25 O +topmy 3 (5 + wm)
J 0 = N 0
21 2 jmre1 ™

holds for all J, 1 < J < N — 1. Indeed assume that (1.12) holds, yet there are more
than one cluster of particles at time 7. Without loss of generality, let us assume that
there are two such clusters, {1,2,...,J'} and {J' +1,...,N} located at X;(¢) and
Xo(t) with X1(¢) < X3(¢). Then we have

(1.12)

J' 0 0,0
1 (x; + ;) )m;
Xl(t) Z]—l( j j) '

N 0 0Y,,,0
J! 0 N 0
2™ D jmrt 1 M

since the conservation of mass and momentum dictates that the cluster has to be
located at the center of mass. Equation (1.13) contradicts the assumption that (1.12)
holds for all j. On the other hand, assume that (1.12) is violated for some J =.J’,
then the group of particles {1,...,J’} will never catch up with the group {J’ +
1,...,N} before time ¢. For details, see Sect. 3.

Before going into the continuous case, let us state the conditions we will impose
on the initial data.

, (1.13)
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Let Py, Iy € M: the space of Radon measures on R!, Py > 0.

(A1) Py(4) < oo for any compact A C R! and Py is either discrete or absolutely
continuous with respect to the Lebesgue measure. In the latter case, we assume
that density po(x) > 0, for x € Supp(Po). If Supp(Py) is unbounded, we assume
additionally

X
J sdPy(s) — +oo  as |x| — 400
0

(A2) The initial distribution of momentum /; is absolutely continuous with
respect to Py. The Radon—Nikodym derivative u(-,0) = % is the initial veloc-
ity. In the case when Py is absolutely continuous, we assume that u(-,0) is also

continuous.
(A3) For any z > 0

sup |uo(x)| < by(z) and lim lbo(z) =0.

Ix|<z |z]|—o0 Z

The first essential result of this paper is the following principle for the construc-
tion of &, using the initial data.

Generalized Variational Principle (GVP): y € R! is the left endpoint of an ele-
ment of & iff for any y~, y* € R!, such that y~ < y < y*, the following holds:

S+ 1 00)dPo(n) [ i) (1 + tu(n; 0))dPo(n)
<
f[y~7y) dPO(’?) f[y’y+] dPO(’?)

We can also formulate GVP for right endpoints of elements of &, but we will
omit this since we do not need it.

Having {&}:50, we define ¢, via (1.11) and the density and momentum distri-
butions at time ¢, P, and [, by

P(A) = Po(p; ' (4)),  I(4) = Io(g; ' (4)) (1.15)

for 4 C R'. In the case of continuous u(x;0) the mapping ¢, is also continuous.
It is clear that /; is absolutely continuous with respect to P, and we can introduce
the Radon—Nikodym derivative

(1.14)

dl,
u(x,t) = d—}l’,(x) (1.16)

which is the velocity at (x,¢).
We will use the following definition of weak solutions.

Definition 1. Let (P, 1) be a family of Borel measures, weakly continuous
with respect to t, such that I, is absolutely continuous with respect to P, for
each fixed t. Define u via (1.16). (P, I,u)z¢ is a weak solution of (1.1)
if, for any f, g € CLRY), the space of C'-functions on R' with compact support,
and 0 < t; < b,

(D1) [ fmapr,(ny — [ f()dPy, (n) = fzdfff’(ﬂ)dlz(ﬂ),

(D2) [ gy~ [ gl (n) = | dt [ ¢ (uCr,0)dI(n) .
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Theorem 1. Under the assumptions (Al1-3), the family (P, I;,u),»o constructed
using GVP gives a weak solution of (1.1) with initial data (Py, 1) in the sense that

IimPt :P(), llml, :1()

weakly as t — 0%

Next we turn to (1.2). First of all, we remark that the third equation in (1.2)
can be interpreted as

+o0 X
—gx = <f p(&n)dé — [ P(i,t)dé), (1.17)

X

i.e. the acceleration at a point is proportional to the difference between the total
masses from the right and from the left of that point. For the initial data, in addition
to (A1-A3) we will also assume

(A4) Py(R") < +o0.

The characteristics of (1.2) are now given by quadratic functions of t:

x(ty=y+u(y)t+ %ao(y)t2 . (1.18)

This has the effect of changing (1.11) to

fc ) (7] + t”o(ﬂ))dpo(’?) 12
t = ! Ct PO
?:(y) T o AP +a(Cy)) 3
S 20y #0(1)dPo(n)
u(x,t) = f@t(x) aPo(n) + a(D(x))t, (1.19)
where
a(C(y)) = PoI*) — Po(I7). (1.20)

I and I~ are respectively the right and left connected component of R'\C/(y).

As before, the key issue is to construct the family of partitions of R, {&},0.
In this case we formulate an analogous Generalized Variational Principle (GVP):
y € R! is the left end point of an element of ¢ iff for any y*,y~,y~ < y < y*,
the following holds:

~ o (n+tue(n))dPo(n) 2
f[y ,Y} d(;%(n) 0 + %(Po(y,+oo) — Po(—00,y7))
[y=.»

Sty 1+ ta(m)dPo)) 2
) Sy, y+y @Pol) + 5 (Po(y™,00) — Po(—00,y)) . (1.21)

Having {&}»0, we can construct ¢,, u using (1.19), P, as before, and [, from u
and P, by a simple integration.

Definition. Let (P,,1;) be a family of Borel measures, weakly continuous with
respect to t, such that I, is absolutely continuous with respect to P, for each
Jfixed t. Define u via (1.16). (P, I, u);»0 is a weak solution of (1.2) iff for any
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fr g€ C{RY), and 0 < 1 < 1y,
(D1) [ FAP) — [ FdP,(n) = [ de [ £/l
(D)

T gmdLy () — [ gl (n) = [ dx [ o nyutn, L)

+ fzdffg(n)(Pf(n,—OO) — Po(—00,1))dP.(1) .

Theorem 2. Under the assumptions (Al-4), the family (P, I, u);»0 constructed
using GVP gives a weak solution of (1.2) with initial data (Py,ly) in the sense that

hmPt = P(), llm[t = 10

weakly as t — 0%,

Before continuing, let us put these results in the perspective of general hyper-
bolic conservation laws. For obvious reasons, (1.1) is sometimes referred to as the
pressureless gas dynamics equations. However, compared with the isentropic gas

dynamics equation
{ pe+(pu)e =0

() +(pu® + p(p))e = 0

there are two important differences. First at a technical level, the natural space for
(1.1) is M, the space of Radon measures, instead of BV or L°°. Secondly, the
standard entropy condition, which in the present case, takes the form

(pS(P)): + (upS(p): £ 0, (1.23)

where S is convex, is not enough as a uniqueness criterion. Indeed in the context
of particle systems, there is a whole family of inelastic collision rules that satisfy
(1.1) and (1.23). The adhesion dynamics considered here is an extreme case of
these collision rules. It is easy to see that the weak solutions of (1.1) constructed
in this paper has the additional property:

(1.22)

Uy < ;-

It is suggested by Jonathan Goodman that this might be sufficient as a uniqueness
criterion. Moreover, it is natural to expect that the adhesion dynamics corresponds
to a form of viscosity limit. But this also remains to be proven. Notice that (1.1)
is an extreme case of a non-strictly hyperbolic system: the two characteristic fields
coincide.

We will also consider a model closely related to (1.2) which is also discussed
in the astrophysics literature [GMS, VDFN]:

pr+(pu)y =0

2
U + (uj)x = —0x (1.24)
gxx = P -
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The relation between (1.2) and (1.24) is analogous to the relation between (1.1)
and (1.5-6). Let & = g,, we can rewrite (1.24) as

ht + uhx = 0
(1.25)

2
w+(5) = —h.

If Py is absolutely continuous, we can reduce (1.25) to a scalar conservation law
of the form

u2
Uy + <7> = —ho(G(x — ut, 1)), (1.26)

which is amenable to standard methods. Using this, we are able to establish both
existence and uniqueness of global weak solutions for (1.24). This is explained in
Sect. 6.

In the second part of this paper we study the qualitative behavior of these models
with continuous, but non-differentiable initial data, extending some results from [S].
We show that the solutions of these models share the common feature that almost
surely, at any ¢ > 0, all masses concentrate on points (i.e. the absolute continuous
part vanishes), and the set of shock locations is dense. This behavior was to some
extent anticipated by Zeldovich [Z] in his work on cosmology. In that context, these
point masses are interpreted as the galaxies in a one-dimensional universe.

Before ending this introduction, let us mention that.(1.1) and (1.2) also have
an origin in kinetic equations. Consider

fitvfi=0. (1.27)

If we look for solutions of the form

fx,v,t) = p(x,1)0(v — u(x, 1)), (1.28)

we obtain (1.1) for (p,u). Similarly consider the Vlasov—Poisson-Jeans equation
[VDFN]

t x_xv:()
{ Jit ofe = acf, (1.29)

Gxx = ff(X,U,t)dU.

If we look for solutions of the form (1.28), we obtain (1.2) for (p,u).

The paper has eight sections and one appendix. In Sect.2, we compare our
GVP with the Lax~Oleinik variational principle for scalar quasi-linear equations.
In Sect. 3, we consider the discrete version of (1.1) and prove GVP for this case.
In Sect. 4, we extend these results to the continuous case and complete the proof
of Theorem 1. In Sect. 5, we explain the additional steps needed for the proof of
Theorem 2. In Sect. 6, we consider the modified gravitational system (1.3).

Part II consists of two sections. In Sect. 7, we consider (1.1) and (1.2) with
random initial data. In Sect. 8, we extend these results to (1.3).

After this paper was submitted for publication, we received a preprint [BG]
by Brenier and Grenier in which existence of weak solutions of (1.1) was proved
without resorting to GVP at the continuous level. [BG] also contains some very
interesting ideas for the multi-dimensional version of (1.1). We thank Brenier and
Grenier for timely communication of their results.
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Part 1. Generalized Variational Principles
and Global Weak Solutions

2. Preliminaries and Comparison with the Lax—Oleinik Variational Principle

In the following we will concentrate on (1.1). The necessary changes for (1.2) will
be summarized in Sect. 5.

Intuition from adhesion dynamics suggests that the masses cluster more and
more, and the accumulated masses will never split apart again. We formulate this as:

Lemma 1. The family of partitions {&,}50 determined with the help of GVP is
decreasing. In other words, for 0 < t' < t, each element of &, is contained in an
element of &y

Proof. Assume to the contrary that there exists y € 0, but y€9E,, where 0&,
denotes the collection of points belonging to the boundary of some element of &,.
Without loss of generality, we can assume that y is the left end point of an element
in &. Then for some y~ < y < y", we should have

Sy (1 Lo l)APAn) vy On -+ Cua(n))dPoCn)

= 2.1)
f[yiy) dP()(?’]) f[y’er] dP()(r])
Consider two linear functions [/1(s), [5(s) of s defined by
li(s) = f[y_’y) ndPo(n) + Sf[y‘,y) to(1)dPo(n)
Ji- 5y @Po(m) Jim .y @Po()
I(s) = ) Sf[yayﬂ uo()d Po(n) 22)
Sy @Po) ",y dPol)

For sufficiently small s, we have [1(s) < l(s) while [;(¢') = I(¢'). Since [; and
[, are linear, we conclude that /() > [5(¢). This contradicts the fact that y € 0&;:
i.e. y satisfies GVP at time ¢.

Now we will compare GVP with the classical Lax—Oleinik variational principle
see [L,0]. We assume that Py has a density pg, and 0 < const < py(x) < oo.
Introduce

y ¥
o1(y) = [ (1 + mo(nNpo(mdn,  ¢2(y) = [ po(n)dn (23)

and
TN $1(y") — ¢1(y")
W)= M = dal) @4



Conservation Laws in Adhesion Particle Dynamics 357

¢ defines a C'-diffeomorphism of R'. Let y = ¢, '(z), and define
p 2

¢10¢;' (@) —drod; @)

.z = " (2.5)
In these notations, (1.14) becomes
lnf c(ny") z sup oy, ) (2.6)
y* yo<y
or, for z = ¢2(y),
inf &(z,zt) = sup &(z,z). 27N
zt >z — <z

Let ¢(z) = ¢p10¢; !(2). Geometrically (2.7) means that (z, ¢(z)) is a point of
contact of the graph of ¢ and its convex hull constructed in the coordinate z.

In comparison, the Lax—Oleinik variational principle for the Burgers equation
(1.5) can be formulated as

2 z
u(x, 1) = —1 nf {(X zz) +fu0(n)dn} (2.8)
It is easy to sce that finding the minimum in (2.8) is the same as constructing
the convex hull of the function F(y) = [ Y (1 + tug(n))dn and finding the points of
contact between the graphs of F' and its convex hull. In fact the set of points where
the minimum in (2.8) is attained is exactly the same as the set of contact points
between the graphs of F and its convex hull. Notice that F is a special case of ¢
when py = 1. We see that the construction of GVP is the same as constructing the
convex hull, but in a special coordinate z. It is in this sense that (1.14) and (1.21)
generalize the variational principle of Lax and Oleinik.

3. The Discrete Case

It is instructive to consider first the case of a finite collection of particles {(x?,v?, m?),
i=1,2,...,N}, where x?, 10 and m{ are respectively the location, velocity, and mass
of the i particle. The particles undergo adhesion dynamics, defined in Sect. 1. The
effect of the partitions {&,},¢ is to divide the particles into ordered groups or clus-
ters G1(1), Ga(2),..., Gi(t), so that each group of particles are glued to a single one
before or at time ¢, and different groups are at different locations at time ¢. If G is
one such group, say G = {i,i + 1,...,j}, we denote by Cg(¢) its location at time
t. From the conservation of mass and momentum, we know that Cs(¢) has to be
the center of mass of G:

T mGY 4+ 1) 3.1)

ml '

Colt) =

More generally, we will denote the expression on the right-hand side of (3.1) by
C; ;(¢). It is a linear function of ¢.

Lemma 2. Let G, and G, be two neighboring groups of particles such that
Cg,(t) < Cgy(t) for t < t*, and Cg,(t*) = Cq,(t*). Then for t > t*,

CG]UGz(t) < CG] (t) .
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Proof. Since both Cg,(¢) and Cg,(t) are linear functions of ¢, we have for 1 > ¢*,
CG] (t) > CGz(t) ‘

Since Cg,uc,(t) = aCs, (1) + (1 — 2)Cg,(¢) for some constant o € (0,1), we have
for t > t*,

CG]UGz(t) < CG] (t) .
This proves the lemma.

Lemma 3. Let Ge€ &, and G={x0, j <i £j"}. Then for any i,j’ £i <
J"— 1, we have
Cyi(t) 2 Cipy, (1) . (3.2)

Proof. Assume to the contrary that there exists an i, such that (3.2) does not hold.
Since Cpr ju(t) = aCy i(¢) + (1 — )Cyyy, ju(¢) for some 0 < « < 1, we have:

Cj/,i(l) < Cj/’j//(l‘) . 3.3)

Consider the evolution of the set of particles (0) = {x}), Jj' £ j £ i}. Each time
the set is hit from the right by a particle or a cluster of particles, we add them to
our set. In this way we obtain a growing family of sets I(s) = {x?, J£j i)}
From Lemma 2, when new particles are added to I(s), its center of mass is moved
further to the left, i.e.

Cir is)(8) < Cyr i(s) . 34)

From the assumption of the lemma we have i(¢) = j”. Hence we have
Cj’,j”(t) < Cj/’i(f) , (35)

contradicting (3.3).
Theorem 1’. x}’ is the left endpoint of an element of the partition &, iff

max Cy ;_(¢) < min C; ;u(t). 3.6)
J<ij i"zj

Proof. Assume that (3.6) holds, and x}) is not the left endpoint of an element of ¢&,.
Let G € & be the element of & containing x%, G = {x?, iy <i < jo} and ip < ;.
From Lemma 3, we have

Cip.j—1(1) 2 Cj j,(8) . (3.7
This clearly contradicts (3.6).

Assume now that xJQ is the left end point of an element of &. For any
77" 7 < j < j”, we want to show that Cy ;_{(¢) < C; j(¢). Let I, I,...,1; be
the consecutive elements of & to the left of x?, and x;)/ eh={ i £i<i)
Let J1,J5,...,J, be the consecutive elements of &, to the right of x}’ (including the
one containing x})), and x;’,, €J,={x% j1 £i £ j»}. From Lemma 3, we have

Ciip(t) = Cp(t), Cj (1) 2 Cpr(t). (3.3)

We also have
Cp(t) < -

A

Ci(t) < Cy(t) < -+ < Cr(t) . (3.9)
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Hence, we must have
Cy () < C; (). (3.10)

We now show that the adhesion dynamics gives rise to weak solutions of (1.1)
with initial data Py = S | m?3(x — x0), Iy = S0, m0u08(x — x0).

Let {x;(t + 4t), vt + At), m;(t + 4t), j=1,...,N(¢)} be the locations, veloc-
ities, and masses of the particles at time ¢+ Az. Assume that the ;™ particle is
formed by gluing together some particles whose locations, velocities, and masses at
time ¢ were respectively x;;(¢),v;(¢) and m(t), i € I;—a set of indices depending
on j. We have

Zielj (i (2) + Atwy(2))my(t)

x(t+ A1) = mit + A1) ’
Y ier, Vi(H)my(2)
vt + At) = —;W :
mit + Aty = 3 my(t) . 3.11)

i€l;

We also have |x;(¢) — x;(t + At)| < Const « At since all velocities are bounded.
Let f,g € Cj(R'). We first show that [f(7)dP.(n) is a differentiable function of
t, and

d
27 SdP(n) = [ f'(n)dli(n) (3.12)
This implies (D1). Indeed, we have

JFAP () = 3 £ Gey(t))myy(2)
LJ
=22 20 Sl + At) + x35(t) — x;(¢ + At))my(t)

J i€l

=2 SOt + dt))my(t + A¢)
J

+ 30 S0+ At))z; (2 (1) — x;(t + At))my(2) + o(At) .
J

ie 5
Since

E; (xij(2) — x;(¢t + At))myi(t) = > x;;()myi(t) — x;(¢t + At)ym(t + At)
i€l; i

= —Atz U,-j(t)m,-j(t) = —AtUj(t + At)mj(t + At) N

we obtain
[ F(mari(n)
= [SAPrai(n) — At 32 f'(xj(t + At + At)my(t + At) + o(42) .
J

This implies (3.12).
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In contrast [g(n)dl(n) is not C' in ¢ because of the inelastic nature of
the collisions. To see this, consider just two particles colliding at # = 7. Be-
fore collision they are denoted by (x1(¢),v1(2),m1(t)), (x2(t), v2(8), ma(2)),t < 1,
respectively. After collision they form a single particle (x(2),v(¢),m(¢)),t = 1.
We have m(t) = m(t) + my(1), m(t)v(t) = m(7)v1(7) + ma(t)v2(7), m(t)x(r) =
my(t)xi(1) + ma(7)x(7). For t < 1, we have

Jamal(n) = gx1()vi(£)mi(2) + glxa()yoa(t)ma(t)
= g(x(D))(wi()mi(t) + va(t)ma(2))
+ (1 — 1)g GOm0 + v3(Oma(0)) + O((f — 7))
= [a(mdl(n) + (t — 1)g'(x())(0} (T)m1(7) + v3(V)ma(7))
+0((t —1)%).
For ¢t > 1, we have
Tam)dli(n) = g(x(2))o(t)m(t)
= [adL(n) + (t — 1)g' ()W (T)m(r) + O((t — 7)) .
In general, energy decreases at collisions
v}(D)mi(7) + v3(0)ma(z) * v (T)m(z) .

Hence [g(n)dL(n) is not C' in ¢. Nevertheless, we can prove that (D2) is still
valid. We only have to prove this for the case when there is no collision in (#1,,)
and at f = 1, a group of particles, say with indices i1,7; + 1,...,#, are colliding to
form a single particle at x(#,;). We then have

t 1] N
[ de ¢ (un.0dLn) = [ A2 (i m

II 1

—fdr = miv g g(x,(r>>+zmv, T g(e) + 5 i ge()

=i i=ip+1

i1—1

Z mlvlg(xl(tz)) + g(x(tZ))Z m;v; + Z mlvlg(xl(tz)) - Z m; Ulg(xl(tl))

i=iy i=ir+1

= [g(n)ydlL,(n) — [g(m,(n) .

4. Proof of Theorem 1

We will first give the proof for the case when Py is absolutely continuous, and then
for the case when P, is discrete.

For initial data satisfying (A1-A3), we construct a decreasing family of par-
titions {&};50 of R' according to GVP (1.14). Having {},~0, we can define
@1, P1, 1y, and u(x,t). Obviously ¢, is a non-decreasing function of y for any fixed ¢.
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Furthermore, as a consequence of the assumption that u(x;0) is continuous, ¢, is
also continuous, and we have

JfmdP(n) = [ f(@(n)dPo(n),
Samadl(n) = [g(e(n))dlo(n) . (4.1)

We will prove Theorem 1 via discrete approximations. Take a sequence of mea-
sures P{" concentrated on finite sets {x"”,i = 1,...,} such that P" — P, weakly.
Define I(") to be a signed measure concentrated on the set {x,i=1,...,} such
that Ié")({xl(")}) = up(x" PSP ({x}). Then 1" — Iy weakly. Using GVP, we con-

struct the corresponding families of partitions é;") and mappings (pE"). Moreover we
already showed (Theorem 1') that for f,g € Co(R'),

[fmdP” = [ f(oPm)dpS"”,
[gmydl™ = [g(o(n)dI" . (4.2)

Here P, 1™ arc constructed in Sect. 1. We also have for 0 < 1; < 1,

[fydPY ~ [ f)dP = f def f'(ndl™ = f def £ ()i’

Jamdr’ — [g(md1” = f dz [ g' (o ()™ (n, I . (4.3)

We can extend the definition of ¢! to the whole line by putting ¢{(y) = ™ (x{")
if 57 <y <5 0" =00 if y <a”, 0" = ¢l"(y) if v 2
2. Here ™ = min{x™}, x4 = max{x"}.
We will use superscript “n” to denote objects corresponding to P(()"),Ié"). If 4
is an interval in R', we denote

L4+ tu(n; 0))dPo(n) L, u(n; 0)dPo(n)
JydPo(p) J dPo(m)

The following lemma is a continuous version of Lemma 3. It can be proven in
the same way as Lemma 3.

Lemma 3. Let G =[a,b] be an element of &, a < b. Then for any c € (a,b),
we have

Ca(t) =

up(4) = 44)

C[a,c)(l) = C[c,b](l) . 4.5)
Lemma 4. ¢\ — ¢ uniformly on compact subsets of R' x [0, c0).

Proof. We first prove that for any fixed ¢+ = 0, the inverse images of (p(") of
a bounded interval L = (c, d) are uniformly bounded. To that end, let 4" =

&7, oM™y e LY, and X)) = min{x™, x” € 4™}, Obviously x™) has to be

min
the left end point of an element G™ in the partition 55"). From Lemma 3, we have

7 g

mm min )

=clhze. (4.6)
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Using (A3), we can write (4.6) as

X1 +o(l) Zc. (4.7)
Hence {xmm} is uniformly bounded from below. Similarly we can prove an upper
bound.

Assume to the contrary that {qoﬁ'”} do not converge uniformly on some bounded
set, say [c,d] x [0,T]. Then there exists ¢ > 0, and sequences {yy,, %} € [c,d] X
[0, T'] such that

1007 (n) = ()] > €. (438)
We can choose {y,},{#,} such that lim y, = y*, lim¢, = ¢, lim (pg")(y,,) = x* exist.

Since
1027 (7) — @ (ya)| < |t — ¢ max u(x; 0)] < Const |z, — 1| (4.9)

where the maximum is taken over a bounded set, for sufficiently large » we get
from (4.8)

£
01" (a) = @iyl > 5 - (4.10)

Therefore we have .
K=oyl 2 5 (4.11)
Without loss of generality, let us assume x* < @,(y*). Let 4, —((p(")) !
{o"™ ()} = {x(") < xf-:')} which is an element of £™. By extracting subse-

quences, we can assume that 4, converges to an interval 4, with A= [a,b], in the

sense that
limx" =a,  limx{’ =5. (4.12)

Consequently, we also have x™ = Cy(¢). 4 itself may be open closed, or half-open.
Since y, € A4,, we must have y* €4. Let ¢; ' {@.(y*)} = [c,d]. By the continuity
of ¢,, this has to be a closed interval which might consist of a single point. We
will discuss the case when a@ < b. The reader can easily see that the case when
a = b also follows.

First we prove that c¢,d€(a,b). Assume to the contrary that ¢ € (a,b). We can

choose a sequence {x{"}, x < x{” <+, such that lim (" — c. Since (" is

not the end point of any element in &™), there exist Jhs Ji, such that
cj‘.},’:}lnil(t) > c n(t) (4.13)

By extracting subsequences, we can further assume that {x;f') } and {xj(f,) } converge

to ¢* and d*, respectively.
Taking the limit of (4.13), we obtain

Jeen+ tuo@)aPo(n) _ [2 (1 + tuo(n))dPo(n)
e dPo() N T& aPo(n) ’

contradicting (1.14). Therefore ¢ € (a,b). Similarly d € (a, b).

(4.14)
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We are left with three different cases.

Case 1. a < b=y* =c < d. From

c

(D Z C (1)
a limiting argument similar to the one presented above gives

X2y tug(y”) .
On the other hand, from Lemma 3’, we have

Yt tup(yY) = @ly).

Hence we have x* = @ »*) contradicting to the assumption that x* < ¢,(3*).
Case 2. ¢ < a < b < d. Choosing {xﬁs)} monotonically decreasing to ¢, and using
cm

Ins in

L < #"™(y,) we obtain
C[c,a](t) = X"

From Lemma 3’ we get
(Pt(y*) é C[c,a](t) .
Again we get x* = ¢, (y*).
Case 3. ¢ < d = y* =a < b. The proof of Case 2 applies to this case also.

Proof of Theorem 1. To complete the proof of Theorem 1, we have to establish
(D1) and (D2).
For any ¢ > 0, we write

J AP = L7 (@in)) — £(@" AP + [ £ (o) dPo(n)
—dPg(m) + [ (o (m))dPg ()
= S R )+ 8 + 53

where 55,1,,) ,55,2,,) — 0 as n — oo. Similarly we also have

:]fzdtff’(n)dlt(n) = tjfdtff'(fpr(ﬂ))dlo(ﬂ)
- :fdzf[f’(q)t(n)) = (@IS () + f dt [ f'(@(m)Ndlo(n)
—dI{"(m)] + f at [ f'(@"(n)) d1g"(n)
- :fzdtff’(cpﬁ”)(n)) daI"(n) + B + B

where ﬁg,l,,), 52,,) — 0 as n — oo. Together with the results of Sect.3, we obtain

(D1).
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To get (D2), let

fc,(y) ug(n) dPo(n)
o(y,t) = fc,(y)dPo(n) = up(C(¥)) ,
w, o U5 (n) AP ()
o™ (y,t) = Teprunto L () (4.17)

(n)

The difficulty lies in the fact that w)(y,¢) may not converge to w(y,?). Roughly

speaking, at the point of shock interactions, C,(y) may differ from Ct(")( y) by a
set of finite measure. The main remaining task, therefore, is to show that such
interactions occur rather rarely and give a small contribution to the integrals
in (D2).

Let 6 > 0. By continuity of u( - ,0), we can choose ¢ = &(6) > 0, such that if
1CK y)AC,(")( ¥)| < & (where A denotes symmetric difference), then

lo(y,1) — 0™(3,8)] < 6. (4.18)

Let (y,7) be such that
lo(y,7) — (3, 7)| > 6, (4.19)

and let C.(y)=[4,B], Ci")(y) = [C,D]. Without loss of generality, we assume
A< C < B < D. Then either, D~B > ¢, 0or C — A4 > &.

Let us assume that D — B > ¢, and denote t =147, ¢, [(¢.(»)) =[4,B'].
Assume B < D, we want to estimate 7, i.e. the time needed for the atom at ¢ ()
to absorb half of the masses in (B,D). We have

Ciwr.py(1) = Ciarpy(¥) + 7uo([B', D]) = Ciy) 1, (v) + yuo([B', D) + o(1)

< o"(y) + yuo([B', D) + o(1) .

Here o(1) denotes quantities that converge to 0 as n goes to infinity, with all the
other parameters such as &, held fixed. Since the center of mass is a linear function
of ¢, and

Cia,8(7) 2 Cre,p(7) s

we also have
Cua,p1(t) Z Cep(t) = 65?3, (v) + 7uo([C, B') + o(1)
P(y*) + yuo([C, B + o(1) .
From the definition of B/, we have
Cra, (1) £ G pn(t) < Cr () -

Therefore, we get

Huo([C, B']) — uo([B', DD} < o(1) . (4.20)
On the other hand, since C[C)B,](T) > C[(B, D](r), we have

Cie.31(t) 2 Cgr py(r) +o(1) .
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Hence, we get

[ ndPo(n) fc ndPo()

t{uo([C, B']) — uo([B', D))} = +o(1)

S dPo(1) fc dPy(n)
Z pe)+o(1). 4.21)

Here fB(¢) is some finite quantity depending on ¢. Hence, we have

0(1)

— 422
= ﬁ(s) (422)
Similarly, if C — A4 > ¢, we can show that after time Z(( ;, at least half of the

masses in (4,C) are absorbed by the atom at q)(")( y).

Let § = {r € [#1,12], there exists y € L, L is a sufficiently large interval, such
that (4.19) holds}. Since either Py(4,C) = Const - ¢, or Py(B8,D) = Const - &, and
since Po(L) < Const, we must have

o(1)

IS] < B

Now let g € CH(R!). We choose L to contain the support of g(@-( -)),
T € [t h],

(423)

f dz [g' (il (n)*dP(n) — f dx [ g (n)u(n,1)*dP:(n)

il

f dx [ (@)™, 2 dPO W) — [ de ¢ (@dn))oly, V2dPo(n)

f dt [ (g (9 (n)) — g/ (o)) (n,7Y2dP{" ()

| fdr g (im0 e — w(n, o] dPo(n)

< o(1) + J (mM)lw™(n,7)* - a)(n,r)z]dPo(n)’
+| \ dt fg' (@)™ (1, 2)* — (n,7)*1dPo(n)
[r:1\S
< o(1)+ Const « S|+ Const - 6 < o(1) + E% + Const - 4,

where the constants depend on the support of g. Now we can choose n so large

that /?((;)) +0(1) < 6. Then we get

< Const - §.

[ de ¢ PP ) — [ di g (nyutn, YdP.(n)

Together with the argument which proved (D1), we get (D2).
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Now we discuss in detail the case of discrete Py. We will use the same notations.
We choose a natural approximating sequence P, 1", Namely, we order all points
by their masses and P is concentrated on the set of all points whose masses are
not less than 1. /(" is defined in an analogous way. We use the following lemma
which will be proved later.

Lemma 4'. For any f > 0 take Sp = {x: Po({x}) = B}. Then o) converges
uniformly to @.(y) on bounded subsets of Sg x Rt as n — oo.

The proof of (D1) basically remains the same as in the continuous case. So the
main problem is to prove (D2).
Fix f,e. Assume that (y,7), y € Sp is such that for all large enough »,

luo(Ce(»)) — u§(CP(y))| > e
We have

Jew W0 PG Joam, i 0) dPo(n)
fcgn(y)dP((;")(ﬂ) Jen ) @Po()

(CP(y)) — uo(CP(p))| =

- const - o

:T’

where J, — 0 as n — oo. Choose n so large that C"“S;}iz"s" < £. Then

[10(Ce()) = 1(CPON| > 5 (25)

Without any loss of generality we may assume that C,(y) = 4, U 45, Ci")( y)=
Ay U 4z and 4,(43) lies to the left (right) of 4;. We can write

uo(Ce()) = otug(Ay) + (1 — 2Yuo(42)
uo(CY(»)) = Eup(A3) + (1 — Eug(47) .

We claim that there is a constant K, such that either « > Ke¢ or £ > Ke. Indeed if
it were not true, we would have

uo(C(¥)) — uo(CY(»))] < 4K(max |up|) + & <

>

N ™

provided that X = m. The last inequality contradicts (4.25).

Consider for definiteness the case a > Ke, i.e. Po(A;) > KePy(4, U Ay) = Kpe.

We will need an estimate for the time needed to absorb an essential part of A,
by the atom of (pﬁ") in the dynamics with data (Pg,}).

Let Ay = J; UJ,, where J, is the part which has been absorbed at t =17+,
and Py(J;) > KTﬁS Then

Cr(t) > () + yuo(J1) = @y) + yuo(41),

Cz’)(f) 2 @)+ yuo(41) +o(1) .
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Here o(1) means quantities which tend to zero as n — oo and f,¢& remain fixed.
We also have

CHu (1) = () +710(C()) < 9(3) + 1o C(»)) +o(1) .

By assumption at time ¢, the set J; is not absorbed by the atom which at time 7
were at @, but J, is, we can write

@) + yuo(41) S () + yu(C(»)) + o(1)

or
Wuo(dy) — up(CP(p))) < o(1).
Since .
(A1) = uo(CLV(1)) Z uo(Ce(1)) = uo( C(3)) > 5,
we conclude
y < o(l).

Define §# = {t € [t1,#,] one can find y € LN Ss so that (4.24) holds}. As in
the continuous case, we have
7] < o(1).

Now take g € C}(R'). We can write

[ dt [g D o) 2P () — fdtfg'(ﬂ)(ur(ﬂ))zdpo(ﬂ)

IIA

o(1)+

[ dt[q' (o) (@™(n; 7)) — (el 1)1 dPo()

Jdi [ aryn)

=< o(1) + const
0 Pom<p
+ | [ dt [ §'(@olm)(@™ ;1)) — (o(n; 7)) dPo(n)
kY4 Sﬁ
+| [ [ @)™ (n; 1)) — (o(1;7))*) dPo(n)
[n:61\S# sF

< o(1) + C(B) + const |SP| 4 const - ¢ = o(1) + C(B) + const - &.

The rest of the proof is the same as in the continuous case.

Proof of Lemma 4'. We will follow the proof of Lemma 4. Assume that one can
find a sequence {y™} such that Po(y™) = B and

(™) — o (™) > &
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for some ¢ > 0 and an infinite sequence of values of n. For each of these
n one can find three adjoining intervals 4%, A, A" such that Cen(y™) =
AP U AP, Ce(y™) = A7 U AP Let us assume that we have

oM"Y < @ (7). (4.26)

Arguing as above we conclude that either PO(AE")) > K e, or Po(Ag")) > K Be

for some constant K. For definiteness let us assume PO(A(I")) > Kjfe. Then GVP
gives

Chm(®) < CAgn)UAgw(f) = 0:(y") £ CAgn)(f),
i 2 €0, )=o) 2 ),
A" A4 ‘ A
or
Cm(t) < o(y™) = C (1),
1 2
Cin(® 2 970" 2 .
Since Po(A") > K, PO(A(Z”)) > B, we have

) ()= C (] = o(1),

IC((,,)(t) C (0] = o(1).

This contradicts (4.26).

5. The Gravitationally Interacting Case

In this section we prove the GVP for (1.2) and Theorem 2. Since most of
the argument is parallel to the ones in Sects. 2—4, we will only summarize the
key steps.

Lemma 5. The family of partitions {&}i~0 is decreasing, ie. for 0 <t <t
0& C aét’ .

Proof. Assume to the contrary that there exists y € d&;, but y € 9¢,. Then for some
¥y ,yT,yT < y < yT, we should have

S (1 =+ tuo(n)) dPo(n) (t’)2
Jo- @Po(n)

(Po(y,00) — Py(—00,y7))

f[y (1 tuo (1)) dPo() (t y
= Sy 1dPo(m)

Pyp(=00,y)). (5.1)
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Consider two quadratic functions ¢(s), q2(s) defined by

Sy )1+ suo)APo() 52

q1(s) = T 2Po) + -Z_(PO[ysoo) — Py(—00, 7))
r=»
—A +sB + g(f ;
(1 + sup(n))dPo(n) &2
a5 = e T apy 3P0 = Pul=o0,)
[y, y"]

2
:A++sB++%C+.

For sufficiently small s, we have 4~ < A% and ¢1(s) < ¢a2(s), while g1(¢') = g2(¢).
Since C~ — C™ = Po[y~,yT] > 0, 4~ — AT < 0, one of the two roots of the equa-
tion gi(s) = ¢2(s) is negative. Since there is one positive root in (0,#'), no roots
exist in (¢, 00). Therefore we have q,(s) > g2(s) for s > ¢/, contradicting the as-
sumption that g;(¢) < g2(¢).

There is also an obvious analog of Lemma 2 for (1.2). We omit the details
of that.

Next we study the discrete case, using the notations of Sect. 1. In the present

situation, the center of masses of the particles {x%,x% .,...,x%} becomes
i>7it] j

0(,0 0
; cmi(x, +10]) £
C[’j(t) Z;glg; I\ I <

+ = m—ml . (5.2)

I>j I<i

Lemma 6. Let Ge &, G={x{,; <i < j"}. Then for any i,j' <i <" -1,
we have

Cpi(t) 2 Cipq, (1) . (5.3)

Proof. We proceed as in the proof of Lemma 3. The key step is to show that if
two groups of particles {(x2,0?,m?), j1 £ i < j}and {(x0,00,md), j+1 i £ jn}
merge at time ¢/, then

Cijp(s) £Cj(8), st (5.4)

Consider again two quadratic functions g,(s) = C;, (s) = 41+ B1s + C| %, g:(s) =
Cit1,j,(8) = Az + Bas + C2%. Obviously we have 4] — 4, < 0,C1 — G, =5, .m?

i>j i

0 _ .

= iy = N, A D am) =Y, i j,m? > 0. Therefore the quadratic

equation g;(s) — g2(s) =0 has one negative root. Since there is already one

root in (0,#'), there cannot be any more roots in (#/,00). Therefore, we
have

Cj,, /(s) = Cji1),(s), fors > 1.

This implies (5.4).
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Similarly we can formulate

Theorem 2/, x;) is the left end point of an element of & iff

max Cy ;_1(t) < min C; #(t). (5.5)
J<j VRV

We now prove that the adhesion dynamics of gravitationally interacting particles
gives rise to weak solutions of (1.2). Since the proof of (D1’) is entirely the same
as the one for (D1), we will concentrate on (D2’). Again we only have to prove
(D2') for the case when there is no collision in (¢1,%), and at ¢t = ¢, a group of
particles, say indexed by ij,...,7, collide to form the new particle at x(#;). Let
h = Zj>i m; — Zj<i m;, then we have

;—Tvi(f) =h,

deng'(n)u(n, T)dl(n) + fzdffg(n)(Pf(n, 00) = Pr(—00,7))dP(n)
t It

N ) 1] N

_X; g (D)) (D)m; + [dr El gxi(T)him;

i=

]
= fd‘c
i

il
= e—

N d 5] N
dt mivi(f)ag(xi(‘[)) + [d 21 g(xi(t)Yhim;
4 i=

i=1

N N
; gxi(ta)Im;vi(f2) — Z:l g(xi(ty ) ymvi(t)

t N 13 N
— [dr ; mihig(xi(7)) + [dt ; g(xi())Yhim;

= [g(nydl,(n) — [g(m)dl, (n).

To pass to the continuum limit, we follow the same steps as in the proof of
Theorem 1. Some care has to be taken at the boundary of supp{P,} since p; >
const > 0 no longer holds. This can be done by making the set {x = pj(x) <
const} small by choosing the constant small,

6. The Modified Gravitational Model

In this section we study a variant of (1.2) for which some other weighted velocity,
instead of momentum, is conserved.

pet+{(pu)y =0
o+ (5 = —gs (6.1)
Gex = P

This model, or more precisely its multidimensional version, is an approximation
of the basic equations in astrophysics for the dynamic evolution of matter in which
effects of Hubble expansion are neglected [P, GS]. For this system, we will prove
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not only existence, but also uniqueness of solutions for the initial value problem.
We will also obtain precise information on the characteristics of this system. This
information will be used in the second part of this paper to study the behavior of
solutions with random initial data.

As in Sect. 5, we assume that p(x,0) = po(x) = 0, u(x,0) = up(x). Moreover,
we will assume py € L', and (A3) holds. Without loss of generality, we let
[ podx = 1.

Let A(x,t) = fioo p(n, t)dy — % Obviously, for any reasonable solution of (6.1),
we should have A(+o0,?) = +1/2.

In the following we will deal with solutions having the property that for any
t > 0, u(-,t) is of bounded variation on any compact interval; p(-,7) is a non-
negative Radon measure. We interpret the product up in the sense of Volpert [V]:

up = up = uh,, (6.2)

where @ is the symmetric mean of u :u(x,¢) = u(x,t) if (x,¢) is a point of ap-
proximate continuity of u. At jump points, #(x,?) = %(l+u(x,t) + I_u(x,t)), where
liu(x,t) and /_u(x,t) are the limits of u at (x,¢) from the two sides of the jump.
Given this, we can rewrite (6.1) in an equivalent form,

{ ht+12hx :0

ut‘f‘(%)x = —h, 63

where the first equation in (6.3) is understood in the sense of measures. We let
ho(y¥) = h(¥,0). We assume pg,ug € CP.

A special property of (6.3) is that for smooth solutions, the characteristics can
be written down very easily:

x = y+tug(y) — Sho()
h(x,t) = ho(y) (6.4)
u(x,t) = uo(y) —tho(y).
From (6.4), we get
2
X—uln i) = y+ %hg(y) . (65)

Since the right-hand side of (6.5) is a strictly increasing function of y, we can
invert it to get

y=Gx—ulx),t), (6.6)
where G(z,t) solves
2
z=G+ Eho(G). 6.7)
Therefore, we have
h(x,t) = ho(G(x — u(x,t)t, 1)) . (6.8)

This suggests the following:

Lemma 7. Let (h,u) be a solution of (6.3) such that u is locally BV on R' x
(0,00). Then u is also a solution of

Ll2
Uy + <7> = —ho(G(x — ut, 1)). (6.9)
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Conversely, if u is a solution of (6.9) with locally bounded variations on R' x
(0,00), and let h(x,t) = ho(G(x — ut, t)), then (h,u) is also a solution of (6.3).

Proof. In the proof we will use f (1) to denote the functional composition of f
and u: f(u) = fol flal_u+ (1 — o)l u)do.

Let (h,u) be a solution of (6.3) such that u is locally BV on R! x (0, 00). Using
BV calculus [V], we see that 4 and 4 also satisfy

Uy + iy = —h, by + tihe = 0 (6.10)

in the sense of measures.
Let g(x,t) = ho{G(x — ut, t)). Again using BV calculus, we get

gi + iigy = M) {G, + G—u — wt) + 7G,(1 — ust)}
= W{G, — tC.(u + iiy)} = W {Gy + 1G.h} .

The final expression only involves locally bounded functions. Therefore it can be
simply written as A({G, + tG,h}. Since

tho(G) 1

Gz,t) = — , Gz t) = ———, (6.11)
' 1+ LH\(G) 1+ 2H)(G)
we obtain )
- (G
g +igy = ——5——{g—h}.
1+ 2h)(G)
Let e = g — h. We have
(Gt
1+ Sh(G)

and e(x,0) = 0.

This implies that e = 0. Hence A(x,t) = Ao(G(x — ut, t)), i.e. u is a solution of
(6.9).

Conversely assume u is solution of (6.9) with locally bounded variation. We let
h(x,t) = ho(G(x — ut,t)). Then a similar calculation shows that / satisfies

hy +uh, =0.

Hence (h,u) solves (6.3).
Now the problem is reduced to (6.9) which is a scalar equation. We are ready
to prove:

Theorem 3. Assume that py and uy are continuous and satisfy (A3). Then there
exists a weak solution (h,u) of (6.3) with initial data (hy,uy) such that

1
uy < - (6.12)

in the distributional sense, and u is bounded locally and has locally bounded vari-
ations in R' x (0,00). Furthermore, such solutions are unique.
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Proof. This theorem follows more or less from standard arguments on conservation
laws [V], with some care on cutting off the growth at infinity. Here we will not
repeat this argument. We will only indicate how (6.12) can be derived from the
viscosity approximation.

Consider

£32
i + (%) — —ho(Glx — ut,0)) + oai (6.13)

Let ¢ = . Differentiating both sides of (6.13), we get

& dub + & = —hyG,(1 — &) + e&, . (6.14)

The standard maximum principle implies that, if we let f(#) = sup, &(x,¢), then

d
Sf S HGAft =D = 2.

Since h{G, = 0, we obtain
1
< —.
f t

Taking the limit as ¢ — 0, we get (6.12).

Next we summarize the main results on the generalized characteristics of (6.9),
drawing mainly from the work of Dafermos [D]. A Lipschitz curve &( - ): [a,b] —
R! is called a generalized characteristic if &(¢) € [u(&(2)+, 1), u(&(t)—,1)], for a.e.
t € [a,b). It is called a genuine characteristic if u(&(t)—,t) = u(&(¢)+,¢), for ae.
t € [a,b]. The following holds if u is locally BV on R' x (0, 00):

(1) If £ is a generalized characteristic on [a, b], then for a.e. ¢t € [a,b]

by W)k, 1), if w(E)+, 1) = u(E()—, 1)
O L&+ ) + w(E(t) -, 1)) = @(Er)),  if not

(2) Given (x,7) € R x (0,00), there exists a funnel of backward generalized
characteristics from (x,7) to the initial time ¢ = 0. Among them, there exists a
unique minimal and a unique maximal one. They are both genuine.

(3) Let &£ be a genuine characteristic. Then by modifying on a measure

zero set, one can extend u(&(t)—,t) = u(&(t)+,1) to a C' function #(¢), such
that
i) dit)
a = dt

In particular, if (x,7) is point of continuity, i.e. w(f+,f) = w(x—,), then from
(%,7), there is a unique backward generalized characteristic. Moreover, (6.15)
holds.

Recall that A(x,t) = ho(G(x — u(x,t)t,t)). Along a genuine characteristic, we

have J . -
/ - u
Eh(é(t)’t) =hy {Gt + G, <E —u-— ta)}

= hy {G; + tho(G)G.}
=0.

= ho(G((1) — u(), 1)) . (6.15)
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Part 11. Behavior with Random Initial Data
7. Behavior of Solutions with Random Initial Data for Systems (1.1) and (1.2)

This part is devoted to the study of the qualitative behavior of solutions constructed
above when the initial data are random. We prove that the systems (1.1), (1.2), and
(1.3) share the following common feature: For continuous but nowhere differentiable
random initial data, almost surely, the solution u(x, ) becomes discontinuous for any
t > 0, the set of discontinuities (shocks) is dense (on the appropriate intervals), and
almost all masses are absorbed by the shocks. In particular for any ¢ > 0, p(-,?)
becomes a discrete measure even though it may have a smooth distribution at £ = 0.
Such behavior was, to some extent, anticipated by Zeldovich [Z], as part of his
proposal for the formation of large scale structures in the universe. Technically, we
extend some of the arguments in {S].

Let O be the probability distribution of initial velocities, u(x;0) = up(x). We
assume

(Q1) Q is defined on the Borel g-algebra of the space of continuous functions
on R, and for a.e. uy (with respect to Q),

up(x) _ 0.

xl—oo ||
(Q2) For a.e. ug, the following holds: for any 59 € R!,

no—#(1010) — u(0; 0))dy

i, svp " =0,
h

T (s 0) — uCno; 0)dn

lim inf =—

h—0+ h?

Concerning pg, the initial distribution of masses, we will assume either

(1) po € CY(R'), 0 < const < py < const < 0o, [p'| < const < oo
or

(2) po € CHRY), po(x) >0 for x € (a,b), and po(x) =0, for xE&(a,b),
|po(x)| < const < oco. For (1.2) we will only consider the case (2).

Theorem 4. For a.e. uy, the weak solutions of (1.1) and (1.2) constructed by GVP
have the following properties: For any t > 0,

(a) The measure P, is a pure point measure, i.e. Py(x) = Zi m;0(x — x;),
(m,- > O)

(b) The closure of the set {x;} is either R! in the case of (1), or a closed
interval I1(t) in the case of (2).

Proof- We will only prove this theorem for (1.1). The modifications required for
(1.2) are obvious.
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We will show that for a.e. ug, the partition £, given by GVP has the following
properties:

i) There exists a countable set of elements of £, which are intervals of positive
length,
il} The union of these intervals is a set of full measure
iii) Between any two of these intervals there are infinitely many similar intervals.

Clearly (1)—(iii) implies the theorem.
Fix yg=+a,b and take u(-;0) satisfying (Q1). Assume that y, is the left end
point of an element of &, i.e. for any Ay, i, > 0,

yo hy

(n + tu(n;0))po(n)dn fy"* 2(n + tu(n; 0))po(n)dn

7.1
yo h,po(n)dn - fy"*’” po(m)dn 1)

We will show that the Q-probability of such u(+;0) is zero. Indeed we can rewrite
(7.1) as

yo ,,1(17 yo)po(n)dn+t o ,,,(u(n,O)—u(yo,O))po(n)dn
po(mdn o hlpo(ﬂ)d’?

oh1

h
0= ool [ 0) — uro; 0))paCndin.
+ ¢

(72)
120" po(in)dn

22 po()en

Since po( o) > 0, we have

L hl(u(n,O) w(yo; 0)po(m)dn  po(yo) [0 ,,l(u(n;O)—u(yo;O))dﬂ
po(idn  po(yo)hn + [0, (po(n) = po(y0))dn

yo a1
o0, (u150) — u(yo;O))(po(n)—po(yo))dn
po(yoYh + [0, (po(n) = po(y0))dn

20 (i 0) = u(y0; 0))dn
i (14+0(1))+0O(h). (7.3)
1
Similar estimates hold for the integrals on (yy, yo + #2). Therefore, we can write
(7.1) as

;0) — ;0))d
oy (401 21 MO0 ot

f“’*’”(u(n, 0) — u(yo; 0))dn
hy

(1 +o(1))+ O(hy) . (74)

From (Q2), this can only hold on a Q-measure 0 set of u( -;0).

Next we consider the measurable space of (u( - ;0), yo) equipped with the prod-
uct measure of Q and the Lebesgue measure on R'. The Fubini theorem implies that
for O —a.e. u(-;0) the set of y, satisfying (7.4) has Lebesgue measure zero. This
proves (ii). Since two different intervals in &, cannot have a common end point,
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there have to be infinitely many such intervals in between. Finally, since ¢, is a
continuous nondecreasing function, and ¢, is constant on each of these intervals,
the range of ¢, from these intervals has to be dense on its full range.

8. Behavior of Solutions with Random Initial Data for (1.3)

In this section we prove an analogous result of Theorem 4 for the nonconservative
model (1.3). We use mainly the method of characteristics, an approach potentially
more general than the one used in Sect. 7. For the initial data we will assume that
po € C'NLY(RY), and u(-;0) = up(+) is random with distribution Q, satisfying
(Q1), whereas (Q2) is replaced by a more stringent condition:

(Q2') There exists a function w(h), such that for almost a.e. uy,

ug(y +h) —uo(y) _

1i 1
|h(1T0 sup w(h) ’
.oy +h) —ue(y)
1 £ =1 8.1
o™ w(h) ’ @1

holds for all y € R!, and the convergence is uniform on compact sets. Moreover,
o satisfies
. . w(h)
1) 1 h)=0, lim —= = .
( )|hffow( ) |h|190 h oo
(2) There exists a constant ¢ > 0, such that for any 2 > 0, one can find 4; > 0,
such that w(h) < fw(h) and hy > ch.

(2) essentially says that @ has algebraic behavior near 0. Obviously, the Wiener
process satisfies (Q2') with w(h) = (2hlog +)/2.

Theorem 5. For a.e. uy, the weak solution of (1.3) constructed in Sect. 6 has the
Sfollowing properties: for any t > 0, let {x;} be the set of shock locations at time
t. Then

(a) The measure p(-,t) is a pure point measure. p(x,t) = X; m;(x — x;),
m; é 0.

(b) {x;} is dense in R'.
Proof. Take u(x;0) such that (Q1) and (Q2') are satisfied and fix any ¢* > 0. We
first show that the set of shock locations is dense in R'. Assume to the contrary
that there exists an interval A on which u( -,¢*) is continuous. Then for any x € 4
there is a unique backward characteristic ¢ : [0,£*] — R' connecting x to a point y
at t = 0. Furthermore, along & we have

d - d d _
SHD =), THEDN =0, S0 =—hEDD.  (82)
Thus £ is given by

2
)=y + 1) —ho(0)5, &) =x. (83)

The mapping from y to x is obviously continuous. It is also one-to-one since the
characteristics do not intersect between 0 and ¢*. Therefore, the inverse mapping
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from x to y is also well-defined and continuous. Hence, there is a interval J € R!
at ¢ = 0 on which the forward characteristics, also defined by (8.3), do not intersect
between ¢ = 0 and ¢ = t*, i.e. if we take yi, » € J, y1 < y2, then we should also
have for 0 <t < %,
t? £
vt tuo(yr) = sho(y) < 2+ tue(y2) — 5 ho(32)

or
2

Huo(y2) —uo(y1)) > y1— y2 — %(ho(}ﬁ) —ho(32)) =2 —C(y2—y1) (84)

for some constant C. This clearly violates (Q2’). Hence we have proved that the
set of shock locations is dense in R!.

Let xp € {x;}. From x; we draw the minimal and maximal backward characteris-
tics. Assume that they arrive at y; and y; respectively at t = 0. These characteristics
are classical in the sense that (8.2) is satisfied along them. Therefore, we see that
a(+,t*) is discontinuous at xy, and

h(xo+,t%) = ho(y2), h(xo—,t") = ho(y1) . (85)

In other words, the masses initially distributed in (y;, y») are absorbed into xy at
t=t*.

Let S(up) = {y : There is a genuine (or classical) characteristic connecting y at

t =0 to some x at t = £*}. We want to prove that the Lebesgue measure of S(ug)

is zero.
Let yo € S(up). If y € S(up), y > yo, then we must have

2 I
y+tu(y;0) — Eh(’(y) > yo + tu(yo; 0) — Eho(yo) (8.6)

for 0 < t < t*. Equation (8.6) implies that

u(y;0) — u(0;0) > —Co(y — yo) (8.7)

for some positive constant Cy. Choose y; sufficiently close to yg, y1 > yp such that

1
(1) u(y1;0) —u(y0;0) < —ECU()H = Yo)>
(i) [u(y;0) —u(y1;0)| < 20(y1 — y)
for y € (yg, ¥1). Then

1
w(y;0) < 20(y; — y)+u(y1;0) < 20(y1 — y) — Ew(,w — yo) + u(0;0) .

Next we choose y2 € (¥, y1) such that
o(y1 — y2) < %w(yl ~ o)
and y1 — y2 2 &(y1 — yo). For y € (y2,y1) we have
w(y;0) — u(yo; 0) < 2w(y1 — y2) — %W(J’I — o)

1
< _Zw(yl ~y0) < —Co(y1 — ¥0) = —Co(y — yo) (8.8)
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if y1 is sufficiently close to yy. Comparing (8.8) with (8.7) we see that (y3, 1)
€S5(up). Therefore, we have

[S(uo) N [yo, y11|

<l-¢.
|[y0, »1]| =1-e

Here we used |4| to denote the Lebesgue measure of the set 4. Hence y, is not a
point of density of S(up). Since this is true for all ¥y € S(up), we have [S(ug)] = 0.
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Appendix: Contact Points on the Convex Hull

In this appendix we summarize some properties of the contact points on the convex
hull of ¢y 0 ¢, !, extending the discussions in Sect. 2. We will assume that Py has
a density po(x),uo is continuous.

Definition Al. A point z is called special if

&z,z) = min &(z,z*) = max &z~ ,z) = &(z,z) .
ztz:z 2= Lz

Lemma Al. The set of special points is closed.

Proof. Let z, be a sequence of special points, z, — z. We claim that z is a special
point. Assume to the contrary, then for some z= < z < z*,

dz",z) > éz,zh).

But é(z7,z) = lim,_,o &(z7,2,), &(z,z") = lim,_,o ¢(2z,,2z7). Therefore, for suffi-
ciently large »,
5(Z_>Zn) > E(Zn>Z+) b3

which contradicts our assumption that z, is a special point.

Definition A2. A special point z is called single if é(z,zt) > &z",z) for any
z7 < z < z%. A special point z is called multiple if there exists either z* > z for
which é(z%,z) = &(z,2), or z~ < z for which &(z~,z) = é(z,2).

For every z consider a segment [z, ,zf], where z; =min{y < z:8&(y,z) =
&z,2)},zg =max{y 2 z:8&(z,y) = &(zz)}. If a point z is multiple then [z;,z;]
has positive length.

Lemma A2. Take y € (z,z§ ) where &(z,y) > &(z,z). Then y is not a special point.
Proof. We have

&z zd) = p1é(z, ) + p2é(¥,25 ),
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where
z+
7 po(mydn J,° po(n)dn
P = o B P2 = = .
L0 po(mydn L0 po(m)dn

Since &(z, y) > é(z,z ), we conclude that &(y,zf) < &(z, y). This contradicts the
definition of special point.

In the same way one proves the following lemma.
Lemma A2'. If y € (zy,2) and &(y,z) < é(z,z) then y is not a special point.
Lemma A3. Take any point 2’ € [z,z{] where &(z,2') = &(z,2), then Z' is a special
point.
Proof. We shall consider two cases.

1)z <z~ <z,z <z'. As above, we have

iz,2) = 8z,2') = p1dz,z7 )+ p2é(z,2) = min &(z, y)
y=z

for some p;,pr =20, p+p2=1, and &(z,z') £ é(z,z—). We conclude that
&z,2') £ é(z,2'). Also for some pi, p) = 0, p| + p} =1,

é(z,z7) = pié(z,z') + phé(z',z7) = &(z,7) .
We conclude that &(z’,z7) = é(z,7), ie.
&z7,2") £ dz7) £ 87, 27).

2)zm <z zZ <z'.
We have for some p{,py =20, p/' + p =1,

&z™,2) = pldz",2) + pY&(z,2) .

Since &(z,z2') = &(z,2), &(z7,2) £ &(z,2'), we find that é(z™,z') < é(z,2'), while we
have already shown that &(z’,z") = é(z,2).

The lemma is proven.
Lemma A3'. Take any point z' € [z ,z), where &(z',z) = &(z,z). Then z’ is a
special point.

Take the segment [z ,zy] constructed for the point z. We shall denote the
dependence on z as [zy ,z§ L.

Lemma A4. If z' is a special point 2’ € [z; ,z{],, then [zy .25 1o = [z5 , 2§ 1

Proof. We claim that &(z,z) = é(z',2'). Indeed, é(z,z') = é(z,z) according to
Lemmas 2,2’,3,3’. So the function &(z, y} as a function of y attains its extremum
on the semi-line at z’. z’ is an interior point of the semi-line. So %E(Z, My=r = 0.

This gives

/ /

2+ tuo@ )] po(n)dn = [(n + tuo(p))po(mdn

and so é(z',z') = &(2’,z) = &(z,2).
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Suppose z' < z. We have, for some p,pp =0, p1 + p2 =1,
&z,z) = &(zy ,2) = p1é(zy ,2' )+ p2é(Z',2) = p1é(zy ,2") + p2é(z,2),
&zy,2') = é(z,z) = &(Z',2').

If we have z~ < z; such that é(z™,z") = &(z’,z"), then for some pf, p} = 0, p| +
r=1

&z7,z) = p1éz,2) + pré(d,z) = pié(e,2) + phé(z,z) = &(z,z) .

That contradicts our assumption that z; is the smallest with such a property. The
analogous calculations can be done with zj.
The case z < z’ can be analyzed in a similar way.
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