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Abstract— We address the problem of real-time navigation
in dynamic environments for car-like robots. We present an
approach to identify controls that will lead to a collision
with a moving obstacle at some point in the future. Our
approach generalizes the concept of velocity obstacles, which
have been used for navigation among dynamic obstacles, and
takes into account the constraints of a car-like robot. We use
this formulation to find controls that will allow collision free
navigation in dynamic environments. Finally, we demonstrate
the performance of our algorithm on a simulated car-like robot
among moving obstacles.

I. INTRODUCTION

The problem of computing a collision-free path for a

robot moving among dynamic obstacles is important in many

robotics applications, including automated transportation sys-

tems, automated factories, and applications involving robot-

human interactions, such as robotic wheelchairs [18]. In

many of these applications, the robot of interest is a car-like

robot and subject to non-holonomic kinematic constraints.

In this paper, we extend the velocity obstacle concept

to handle such robots. This concept was introduced by

Fiorini and Shiller [2] for navigating robots among arbitrarily

moving obstacles and has been extended to multi-agent

navigation and real-world applications. The velocity obstacle

formulation works well for robots that can move in any

specified direction, but it may not capture the movement of

car-like robots well, which can only move, at any instant,

with a velocity parallel to the rear wheels.

In this paper, we present an extension of the velocity

obstacle concept to handle robots with kinematic constraints.

We present a new algebraic formulation of the velocity

obstacle in terms of the set of controls that can, at some point

in the future, result in a collision. This generalized velocity

obstacle approach is used to safely navigate a car-like robot

among dynamic obstacles.

Our approach focuses on iteratively sensing and avoiding

obstacles. The intended use is within sense-plan-act iter-

ations that could be incorporated in a global planner or

a partial motion planner, a concept introduced in [16] to

compute global collision-free paths incrementally.

The rest of this paper is organized as follows. Section

II discusses the related work and focuses on techniques for
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navigating car-like robots. Section III provides background

information on velocity obstacles and the issues in using

them for car-like robots. Section IV introduces the idea

of generalized velocity obstacles. In Section V, we apply

generalized velocity obstacles to a car-like robot moving

among dynamic obstacles, and highlight the algorithm’s

performance. Section VI presents concluding remarks on

future work and some deficiencies of the approach.

II. PRIOR WORK

In this section, we give a brief overview of related work

on navigating agents and robots in dynamic environments.

Numerous motion planning algorithms have been devel-

oped for car-like robots in static environments. In [11], the

notion of a car-like robot was formalized, and the fact that a

path for a holonomic robot lying fully in open regions of the

configuration space can always be transformed into a feasible

path for a nonholonomic robot was proven. Laumond et al.

[11] also provided an algorithm to generate a feasible path

for a nonholonomic robot from a path found for a holonomic

robot. Smooth planning for car-like robots among obstacles

was first proposed by Scheuer et al. [20], and this idea

was extended by Lamiraux and Laumond [9], which uses a

steering function rather than computing clothoid curves.

Approaches applicable to car-like robots have been de-

veloped for complete trajectory planning among moving

obstacles, such as [4], [6], [26]. Some of these approaches

decompose the problem of planning in a dynamic environ-

ment into generating a feasible path and planning a velocity

profile to safely traverse the path, [7], [15], [25].

An alternative to complete planning is to plan for the

robot as it acts, taking new sensor inputs as they arrive and

planning locally. Some of the prominent work in this area

is based on velocity obstacles (VO) [1], [2]. The idea is to

define a set of velocities that would, if used as a control for

the agent, lead to a collision with an obstacle at some time

in the future. In its original formulation, VO was applied to

agents moving along piecewise linear velocities and assumed

the obstacles would be moving at constant velocities over a

time interval. The idea was extended in [21], which used the

idea of a non-linear velocity obstacle to define a VO for an

obstacle moving along an arbitrary trajectory, which needs to

be known in advance. Large et al. [10] addressed the problem

of predicting the motion of obstacles and applied the result

to a car-like robot, but they still model the agent velocity

as a piecewise linear function. An extension of VO by van

den Berg et al., the Reciprocal Velocity Obstacle, appeared

in [24], which addressed the oscillation issue that occurs in

the VO formulation. This work was expanded to address the
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Fig. 1. The velocity obstacle V OA|B for robot A relative to dynamic
obstacle B. The cone of velocities that would lead to a collision in the
static case is translated by vB. Note that as the velocity vA is inside the
velocity obstacle, the relative velocity, vA − vB, leads to a collision.

n-body collision avoidance problem [23]. The VO concept

has been applied to control real robots, such as in [17], [18].

An analytical approach to compute a trajectory for a

non-holonomic robot moving among dynamic obstacles is

given in [19], and this approach was combined with rapidly-

exploring random trees (RRTs) in [13]. Another approach to

navigating non-holonomic agents in dynamic environments

is presented in [14].

Some iterative approaches to planning in dynamic envi-

ronments exist, such as [3], [6], [10], that seek to balance

this local planning strategy with reaching a goal.

Finally, another approach to navigation among dynamic

obstacles is to create potential fields for obstacles [8], [22].

III. VELOCITY OBSTACLES

In this section, we review the concept of velocity obstacles

and discuss its application to car-like robots.

A. Definition

For a disc-shaped agent A and a disc-shaped moving

obstacle B with radii rA and rB , respectively, the velocity

obstacle for A induced by B, denoted V OA|B , is the set of

velocities for A that would, at some point in the future, result

in a collision with B. This set is defined geometrically. First,

let pA and pB be the center points of A and B, respectively,

and let B be a disc centered at pB with a radius equal to the

sum of A’s and B’s. This is generalized as the Minkowski

sum. If B is static (i.e. not moving), we could define a cone,

C, of velocities for A that would lead to a collision with B as

the set of rays shot from pA that intersect the boundary of B.

To derive a velocity obstacle from this, we simply translate

the cone C by the velocity vB of B, as shown in Figure 1.

More formally:

V OA|B = {v | ∃t > 0 :: pA + t(v − vB) ∈ B}. (1)

B. Robots with Kinematic Constraints

For many kinematically constrained robots, such as car-

like robots, the set of feasible velocities at any instant is

a single velocity – the specific velocity in the direction of

the rear wheels. One way to workaround this constraint and

use velocity obstacles is to use the set of velocities that

can be achieved over some time interval τ [2]. However,

this approach does not guarantee collision-free navigation:

consider the set of velocities, V , that a car-like robot can

reach after τ seconds. VOs can be constructed for the robot,

and a velocity from V outside the VOs can be selected to

navigate the robot. In this case, a car-like robot will actually

need to follow an arc to achieve the selected velocity, and

the VOs provide no guarantee that this arc will be collision-

free. Additionally, the robot will be at a different position

when it achieves the selected velocity, but the VOs that

were computed using the robot’s initial position, and thus

the velocity is no longer guaranteed to be collision-free. To

alleviate these issues, we can select a small value for τ , but

this has some implications for navigation: as τ decreases,

the set of velocities that are being considered by the robot

becomes smaller, and the robot can miss feasible controls.

IV. GENERALIZED VELOCITY OBSTACLES

In this section, we define a new concept called the Gen-

eralized Velocity Obstacle. This is a generalization of the

velocity obstacle concept and seeks to address the difficulty

of using velocity obstacles with kinematically constrained

agents (e.g. car-like robots).

A. Definition

The generalized obstacle can be defined as follows. Given

an obstacle B, let us denote its position at time t by B(t).
Similarly, given the position of agent A at time t = 0 and

a control u, let us denote the position agent A will have

after undertaking u for time interval t by A(t, u). Here,

a control u is a set of inputs to the kinodynamic model

that results in a change in the robot’s configuration. If we

continue to restrict our attention to agents and obstacles

that are circularly shaped, we can define the obstacle in the

control space as

{u | ∃t > 0 :: ‖A(t, u)−B(t)‖ < rA + rB}. (2)

Given a specific set of kinematic constraints for some

system, we can apply the V OA|B formulation as follows.

Let tmin(u) be the time at which the distance between the

centers of A and B is minimal for a given control u for A:

tmin(u) = arg min
t>0

‖A(t, u)−B(t)‖. (3)
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Fig. 2. The kinematic model of a simple car.

If a closed expression for tmin(u) is obtained, for example by

solving
∂‖A(t,u)−B(t)‖

∂t
= 0 for t, then it may also be possible

that an explicit equation for the velocity obstacle can be

found by solving ‖A(tmin(u), u)−B(tmin(u))‖ < rA + rB

for u.

For the cases when a closed form solution is not obtain-

able, this approach can be used in a sampling scheme. In

this case, controls in U are sampled. For each control u,

the minimum distance that agent A and obstacle B would

achieve were A to use control u is numerically calculated.

This distance determines whether the control would be

collision free.

B. Example: an Unconstrained Robot

To illustrate this approach, let us take as an example an

agent without kinematic constraints – the type of agent for

which the original velocity obstacle formulation was defined

by Fiorini and Shiller [1]. In this case, a control u for A

directly corresponds to a velocity v for A. Let us assume,

without loss of generality, that the initial position of A is at

the origin. Let an obstacle B be at the initial position pB

and be moving with the velocity vB . Then we have

A(t,v) = tv, (4)

B(t) = pB + tvB . (5)

Solving for t the equation
∂‖A(t,u)−B(t)‖

∂t
= 0 gives the

equation for tmin(v):

tmin(v) =
pB · (v − vB)

‖v − vB‖2
. (6)

Reducing ‖A(tmin(v),v) − B(tmin(v))‖ < rA + rB yields

an expression that is true for all velocities in the velocity

obstacle.

This velocity obstacle is identical to those derived in [2]

and can be used for navigation in a fast sampling algorithm.

A preferred control u∗ can be computed based on a function

of the current configuration and the goal configuration, and

the control closest to the preferred control but outside all

velocity obstacles can be used to navigate the robot. The

difference between the two definitions of VOs in (1) and (2)

is that we can generalize the latter to incorporate kinematic

constraints, as shown in Section V.

Fig. 3. The agent, green, navigates among numerous obstacles, in red,
while heading toward a goal in the upper right corner.

Fig. 4. Obstacle B is moving along trajectory B(t), and agent A is
trying to evade. A tests control u′, which generates trajectory A(t, u′).
The minimum distance between B and A occurs at tmin, and this distance
is greater than the sum of the radii. Therefore, control u′ is not in the
velocity obstacle.

C. Finite Time Horizon

In practice it is useful to limit the velocity obstacle to

address only those collisions that will happen before a time

horizon, tlim. Beyond the time horizon the collisions are

assumed to be too unlikely to consider. For the traditional

velocity obstacle formulation, this time horizon changes the

velocity obstacle from a cone to a truncated cone with a

rounded end, which can be approximated as in [5]. The time

horizon can easily be incorporated in the above definitions:

the clause “t > 0” must be replaced by “t ∈ [0, tlim]” in (1),

(2) and (3). The rest of the paper assumes the use of a time

horizon.

V. NAVIGATING A SIMPLE CAR

A. Velocity Obstacles for Car Kinematics

We address navigating a simple car robot following the

framework laid out above. Let (x, y) be the position of the

robot and θ its orientation. Following [12], its kinematic
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Algorithm 1 Find best feasible control

for i = 0 to n do

u← sample controls from the set of all controls U

tlim ← sample time limit ∈ (0, max]
free← true

min←∞
for all Moving Obstacles B do

let D(t) = the distance between A(t, u) and B(t)
tmin ← solve min(D(t)) for t ∈ [0, tlim].
d← D(tmin).
if d < rA + rB then

free← false

end if

end for

if ‖u− u∗‖ < min then

min← ‖u− u∗‖
argmin← u

end if

end for

return argmin

constraints are given as

x′(t) = us cos θ(t), (7)

y′(t) = us sin θ(t),

θ′(t) = us

tanuφ

L
,

where us and uφ are the controls of the car, i.e. speed and

steering angle, respectively, and L is the wheelbase of the

car. This is shown in Figure 2.

Integrating the above equations (7) yields an expression

for the position of a car at time t under the assumption that

the controls remain constant:

A(t, u) =

(

1
tan(uφ) sin(us tan(uφ)t)

− 1
tan(uφ) cos(us tan(uφ)t) + 1

tan(uφ)

)

. (8)

This derivation assumes the car has a wheelbase L = 1.

For the full derivation of these equations, please see the

appendix. These positions are derived relative to the robot’s

frame of reference, in which the robot is at the origin with

its orientation along the positive x-axis. We will assume that

there are an arbitrary number of obstacles Bi and that we

can view them as moving linearly over a short time interval,

Bi(t) = pBi
+ vBi

t (9)

We proceed by finding an expression for the minimum

distance between the robot A and a dynamic obstacle B

given a control u for A. The derivative of the distance can

be calculated, but this does not produce a simple analytical

expression for tmin. Therefore, we will solve for tmin numer-

ically for specific control and check whether the control is

inside the velocity obstacle. In Figure 4, we see an example

of a control u′ that is outside the velocity obstacle.

B. Approach

We use an optimization procedure to navigate the robot

among multiple moving obstacles, as shown in Figure 3.

Let u∗ be the control the robot would select if no moving

obstacles were around. We refer to u∗ as the preferred

control. In this paper, the preferred control is simply the

control that would bring the agent closest to its goal, ignoring

local minima. However, the preferred control could be the

result of another algorithm. In this case, the algorithm used

should have the ability to quickly replan from an unforeseen

starting point. This would allow the agent to move in a way

that does not exactly conform to the path, but that avoids the

obstacles.

The actual control u to give the robot is given by the

solution to the problem

u = arg min
u′ 6∈

S

Bi
V OA|Bi

‖u∗ − u′‖. (10)

That is, the problem of navigation among multiple dynamic

obstacles can be formulated as the minimization of the dis-

tance between the optimal control, u∗, and a sampled control,

u′, where u′ is subject to a velocity obstacle constraint for

each moving obstacle.

An approach to solving this optimization procedure is

given in Algorithm 1. At each discrete time step, t, we

sample n controls, where n is a parameter. For each sampled

control, we check, for each moving obstacle Bi, whether

this control is inside the velocity obstacle induced by Bi.

If the control is outside all of the velocity obstacles, then

the control is feasible and is tested against the current best

feasible control in terms of distance from the preferred

control, u∗.

Collision free controls. The controls chosen are guaran-

teed to be collision free only so long as the obstacles continue

along their paths and only up to the time horizon used in the

computation, tlim. Otherwise, the robot is guaranteed not to

collide with the obstacles.

C. Experiments

Empirical tests of some of the algorithm’s parameters are

summarized in Figure 5. Each experiment takes place in an

open environment in which the agent starts at (-5,0) and

must move to a goal located at (10,10). The obstacles are

distributed at random within a square region bounded by (-

12.5, -12.5) and (12.5, 12.5). The obstacles are given random

velocities, and both the obstacles and the agent are subject to

the same upper limit on their speed,
+

− 1.5unit
sec

. The agent and

obstacles both have radius of size 1. For all the experiments,

the probability that an obstacle will change direction within

1 second is 0.2. This could occur at any timestep, however,

so the timestep of the simulation influences when an obstacle

can change direction. The time horizon for each experiment

is 3.5 seconds. Each experimental value presented is the

mean of 10 trials. These experiments were done on a 3.2

GHz computer with 1 GB of memory.
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Fig. 5. These graphs present the experiments done for three parameters, the number of obstacles, the number of samples drawn, and the length of the
timestep. The effect on processing time and success rate are investigated. The processor time plots are the time taken to process the algorithm, and the
agent time plots are the time that elapses in the simulation, i.e. the time that passes from the agent’s perspective. A successful run is one in which the
agent reaches the goal without being hit by an obstacle, which occurs when an obstacle changes direction and traps the agent. (1) On the left, the number
of obstacles present is varied. The top image shows that between ten and fifteen obstacles, the processing can no longer be done in real time. As more
obstacles are added, the required route becomes more circuitous and takes longer in agent time. On the bottom, the percentage of trials that were successful
drops as more obstacles are added. In both of these experiments, the timestep is set to 0.2 seconds and the number of samples is 30. (2) In the center,
the number of samples is varied. As shown in the top graph, real time processing is possible until 40 samples per timestep. As the number of samples
increases, the agent finds better controls and takes a more direct path to the goal, reducing the time required by the agent (red line). On the bottom, we
see the success rate rise as the number of samples increases. In these scenarios, there are 10 obstacles and the timestep is set to 0.2 seconds. (3) On the
right, the experiments vary the timestep length, the time between which new samples are taken and a control is selected. The top graph shows that between
0.1 and 0.3 seconds, real time processing becomes possible. However, as shown in the bottom graph, the success rate drops as the timestep increases. For
these experiments, the number of obstacles was 10 and 30 samples were taken at each step.

VI. CONCLUSION

In this paper, we have generalized the velocity obstacle

concept to formulate an approach to navigating a car-like

robot among dynamic obstacles. The algorithm presented

allows for fast navigation for car-like robots among dozens

of arbitrarily moving obstacles and allows the robots to test

their entire control space for a feasible control, rather than a

constrained subset.

While effective, this approach has some limitations. First,

the method uses a numerical means to calculate the minimum

distance. The inaccuracy in the computation of the minimum

time implies that a small safety buffer is required around

each obstacle. Second, as this is a probabilistic algorithm, a

feasible solution may not be found even if one exists. Third,

this algorithm relies on the robot measuring the position and

velocity of the obstacles: in a real world scenario, such mea-

surements would surely be noisy. The noise in the reading

of the obstacle’s position can be overcome by enlarging the

radius of the obstacle in the formulation, however, noisy

velocity readings are harder to incorporate. And finally, as

the current implementation uses a greedy preferred control, it

is not suitable for complex environments with local minima.

To handle scenarios such as this, the preferred control would

need to come from a complete planner.

In our future work, we will attempt to incorporate addi-

tional constraints into the approach in order to handle fast

moving agents and to generate smooth paths, rather than

piece-wise smooth paths. We will also investigate using this

approach for multi-agent navigation.
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APPENDIX

In this section, we derive equations used in our approach.

The car is modeled as a rigid body moving along a plane,

and thus its configuration is (x, y, θ). In the car’s frame of

reference, the origin is at the midpoint of its rear axle and it

is pointed in the positive x direction. In all of our derivations,

we assume the wheelbase of the car is 1. To restate (7), the

kinematic equations in this reference frame are given as

dx

dt
= us cos θ, (11)

dy

dt
= us sin θ,

dθ

dt
= us tanuφ,

where us and uφ are possible controls in the control space

U . These are the speed and turning angle, respectively.

We can integrate as follows to derive our equation for

A(u, t). First, we integrate dθ
dt

,

θ = us tan(uφ)t. (12)

Next, we integrate dx
dt

by substituting us tan(uφ)t = θ,

dx

dt
= us cos(θ(t)), (13)

= us cos(us tan(uφ)t), (14)
∫

dx =

∫

1

tanuφ

cos(θ)dθ, (15)

thus, x =
1

tanuφ

sin(us tan(uφ)t). (16)

We can make a similar argument for dy
dt

, and we can

determine from inspection that the integral adds the constant

1 to avoid a division by zero. This leads to the equation

y = 1
tan uφ

(− cos(us tan(uφ)t) + 1). The velocity obstacle

for the simple car and linearly moving obstacle uses the

distance function,

D(u) =

√

(

sin(us tan(us)t)

tanuφ

− pBx
− vBx

t

)2

(17)

+

(

−
cos(us tan(uφ)t)

tanuφ

+
1

tanuφ

− pBy
− vBy

t

)2

,

and seeks to find its minimum by searching for a zero in the

derivative of D(u)2,

dD(u)2

dt
= 2

(

sin(us tan(uφ)t)

tanuφ

− pBx
− vBx

t

)

(18)

∗

(

cos(us tan(uφ)t)us tanuφ

tanuφ

− vBx

)

+2

(

−
cos(us tan(uφ)t)

tanuφ

+
1

tanuφ

− pBy
− vBy

t

)

∗

(

sin(us tan(uφ)t)us tanuφ

tanuφ

− vBy

)

.

With these defined, we can proceed along the lines of

Algorithm 1.
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