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Abstract

A common task in computational text analyses is to quantify how two corpora differ

according to a measurement like word frequency, sentiment, or information content.

However, collapsing the texts’ rich stories into a single number is often conceptually

perilous, and it is difficult to confidently interpret interesting or unexpected textual

patterns without looming concerns about data artifacts or measurement validity. To

better capture fine-grained differences between texts, we introduce generalized

word shift graphs, visualizations which yield a meaningful and interpretable summary

of how individual words contribute to the variation between two texts for any

measure that can be formulated as a weighted average. We show that this framework

naturally encompasses many of the most commonly used approaches for comparing

texts, including relative frequencies, dictionary scores, and entropy-based measures

like the Kullback–Leibler and Jensen–Shannon divergences. Through a diverse set of

case studies ranging from presidential speeches to tweets posted in urban green

spaces, we demonstrate how generalized word shift graphs can be flexibly applied

across domains for diagnostic investigation, hypothesis generation, and substantive

interpretation. By providing a detailed lens into textual shifts between corpora,

generalized word shift graphs help computational social scientists, digital humanists,

and other text analysis practitioners fashion more robust scientific narratives.

Keywords: Text as data; Data visualization; Word shift graphs; Sentiment analysis;

Computational social science; Digital humanities; Natural language processing;

Information theory

1 Introduction

News articles, audio transcripts,medical records, digitized archives, virtual libraries, com-

puter logs, online memes, open-ended questionnaires, legislative proceedings, political

manifestos, fan fiction, and poetry collections are just some of the many large-scale data

sources that are readily available as text data [1–3]. Computational methods help funnel

what would be an otherwise overwhelming fire hose of raw text into coherent streams of

social information [3]. Social media text has allowed us to ask about the emotional pulse

of large populations [4, 5], the subtle adoption of community language by new members
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[6], and the role of social bots in instigating political dialogue [7]. Digitized archives and

collections have made it possible to observe the deliberative evolution of the French revo-

lution [8], the lifespans of words across centuries [9, 10], and the social roles of characters

in works of fiction [11]. Song lyrics let us infer the latent emotions associated with musi-

cal chords [12], legislative corpora show us the reuse of statutes across jurisdictions [13],

and transcribed police body camera footage echos lived experiences of racial disparities

in officer respect [14]. Text as data fundamentally expands the number of social questions

that we can ask across many different domains.

Computational methods for dealing with texts are abundant, but at the backbone of

many of them is an intuitive concept: the weighted average. Weighted averages are a con-

venient tool because they are mathematically simple—it is easy to draw pairwise compar-

isons between texts by averaging over them in their entirety [15–17] or measure temporal

trajectories by repeatedly averaging over time [8–10, 18, 19]. For example, sentiment anal-

ysis, one of the most popular applications of weighted averages, can be used to compare

the “happiness” expressed online by different parts of the United States [5, 20]. First, each

word is assigned a score based on how much happiness is associated with it. Then, for

each different geographic region, the average happiness is computed by summing how of-

ten different words appear and weighting them by their happiness scores. Similarly, the

expressed happiness of an online population can observed over time by repeatedly tak-

ing the weighted average over all the text from each successive day, week or month [4].

Beyond sentiment, domain knowledge [21, 22] and other social scientific constructs like

morality [23], respect [14], and hatefulness [24, 25] can also be integrated throughweights.

This makes it easy to adapt average-based methods to new situations and focus them on

particular questions of interest.

However, the simplicity of the weighted average is often one of its most significant draw-

backs. Collapsing texts down to a single number introduces serious concerns about mea-

surement validity because it is not always clear a mere weighted average can capture com-

plex social phenomena [3, 21, 26, 27]. Even if one accepts a particular weighted average as

a conceptually valid measurement, that measure can still vary in unanticipated ways. The

sheer abundance of language underlying computational text models [28, 29] can cause a

givenmeasure to rise or fall due to the frequent appearance of a single set of key words [30]

or an unexpected combination of frequent and less frequent words [16, 31]. Further, the

relative weights of those wordsmay be highly context dependent [3, 26]—regional dialects

[32, 33], variations in slang [34], and other domain-specific usage [26, 35, 36] all affect how

appropriate it is to compare across weighted averages. Even if contextual weights can be

derived for different sets of text, there are limited tools for comparing weighted averages

beyond their aggregate value. While theory can provide guidance at times, it is a perilous

path towards reliably interpreting text data if we do not have methods for interpreting the

averages themselves.

We contend that these concerns can and should be addressed by systematically quanti-

fying which words contribute to the differences between two texts, and, importantly, how

they do so. To this end, we propose generalized word shift graphs, horizontal bar charts

which provide word-level explanations of how and why two texts differ across any mea-

sure derived from a weighted average. The framework that we propose generalizes previ-

ous formulations of word shifts [4, 37] to account for how a word changes in both relative

frequency and measurement, allowing us to unify a wide range of common measures un-
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der the same methodological banner, including dictionary scores, Shannon entropy, the

Kullback–Leibler divergence, the Jensen–Shannon divergence, generalized entropies, and

any other measure that can be written as a weighted average or difference in weighted

averages.

Through a number of case studies, we show that generalized word shift graphs address

many of the aforementioned issues: they unmask the internal workings of aggregate av-

erages, enumerate exactly which words contribute to variation in a measure, account for

context-dependent measurements across different settings, diagnose measurement issues

during the research process, and provide an interpretable tool for validating, constructing,

and presenting scientifically sound stories. These case studies span presidential speeches,

classic novels, tweets from U.S. urban parks, social media platform changes, and employ-

ment diversity of labor markets, demonstrating the versatility of shift graphs across do-

mains. We advocate for the use of generalized word shift graphs among computational

social scientists, digital humanists, and other text analysis practitioners, and release open

source code to encourage their uptake in the methodological toolkit for working with text

as data. We make our open source code for constructing generalized word shift graphs

available at https://github.com/ryanjgallagher/shifterator.

2 Pairwise comparisons between texts

We first present a number of measures that are representative of the many different ways

that two different texts can be quantitatively juxtaposed. As we showmore explicitly later,

all of these can be written as a weighted average or difference in weighted averages. For

each measure, we provide guidance on the questions that it is most capable of answering,

and the benefits and limitations of applying the measure to draw out differences between

texts.

Throughout the paper, we denote our two text corpora by T (1) and T (2). We consider

the full vocabulary T , composed of all the word types in either T (1) or T (2). Each word

type τ in the vocabulary T appears with some frequency f (i)τ in each of the texts, where

either f (1)τ or f (2)τ may be zero. We notate each type’s normalized, relative frequency as

p(i)τ = f (i)τ /
∑

τ ′∈T f
(i)
τ ′ . Unless otherwise specified, we use “word” tomean “word type,” where

a “word” may be any n-gram or phrase as defined by the vocabulary, and not necessarily

just a unigram.

2.1 Relative frequency

One of the simplest and most common ways of identifying the most characteristic words

of two texts is to compare how often each word appears in one text versus the other. That

is, we can compute the difference in their relative frequencies,

p(2)τ – p(1)τ . (1)

As we can see, if the difference is positive then the word is relatively more common in T (2),

if it is negative then it is more common in T (1), and if it is zero then it is equally common

in both texts. We can rank words by the magnitude of this difference to produce a list of

words that distinguish the texts from one another.

Comparing the relative frequency of words is adequate for a cursory pass of two texts,

but it is less attuned to identifying subtle, but characteristic differences between them.

https://github.com/ryanjgallagher/shifterator
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Consider a word used frequently in both T (1) and T (2). Then the absolute difference |p(2)τ –

p(1)τ | has more potential for being large because p(1)τ and p(2)τ are themselves large. Yet,

exactly because the word is frequently used, it is unlikely that the difference in usage will

be surprising or substantively interesting. On the other hand, a less frequently used but

more distinct word, can only have a difference as large as the maximum of p(1)τ and p(2)τ ,

hindering its ability to rank highly. Comparing the relative frequencies of words putsmore

emphasis on differences between the most frequently used words, and less on the long,

rich tail of word usage [28, 29] that may leave more lexical clues to what characterizes the

texts.

2.2 Entropy

Shannon entropy accounts for both a word’s relative frequency and its unexpectedness. If

we let P denote the entire normalized distribution of words in a text with vocabulary T ,

then the (Shannon) entropy [38] is given by

H(P) =
∑

τ∈T

pτ log2
1

pτ

. (2)

The entropymeasures the unpredictability of a text: it ismaximized if everyword is equally

likely to occur (i.e., pτ = 1/N for allN words in the vocabulary), andminimized if only one

word is used (i.e., pτ = 1 for a singleword τ and 0 for all others). At theword level, the factor

log2 1/pτ distinguishes a word’s contribution to H(P) from just its relative frequency pτ .

This factor is known as a word’s surprisal—aword is more surprising if it is used relatively

less. Another way of interpreting the entropy then is as the average surprisal of a text.

To compare two texts, we can consider the difference in their entropies,

H
(

P(2)
)

–H
(

P(1)
)

. (3)

By considering the components of the sums, we can decompose the difference into the

contribution from each word τ ,

δHτ = p(2)τ log2
1

p
(2)
τ

– p(1)τ log2

1

p
(1)
τ

. (4)

Like relative frequencies, we can order words by their absolute contribution to obtain a

ranked list of the words that are most characteristic of each text. Unlike relative frequen-

cies, each word’s surprisal weights it inversely to its frequency. Generalized, or Tsallis,

entropies [39] introduce a tunable parameter to further control how much consideration

is given to rare and common words [40–42] (see Materials and methods for details), and

the Shannon entropy is a special limiting case that statistically balances between those that

frequently and infrequently occur [40, 41]. Entropy has been particularly effective as an

operationalization of diversity [40], where it has been used to measure textual diversities

like the lexical diversity of online populations [4], the hashtag diversity of online activism

[17], and the information content diversity of search engine results [43].

2.3 Kullback–Leibler divergence

At times we may want an asymmetric measure of how texts differ. For instance, we may

want to measure how language evolved with respect to some reference point in the past
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[8], or compare the language of one person to that of an entire community [6]. For these

cases, we distinguish between a reference text and a comparison text. If we let P(1) be the

relative word frequency distribution of the reference text and P(2) be the distribution of the

comparison, then the Kullback–Leibler divergence (KLD), or relative entropy, is defined

as:

D(KL)
(

P(2) ‖ P(1)
)

=
∑

τ∈T

p(2)τ log2

1

p
(1)
τ

– p(2)τ log2
1

p
(2)
τ

.

The KLD is the average number of extra bits per word required to encode the words of text

T (2) using an optimal coding scheme for T (1) instead of T (2). As such, it shares a form sim-

ilar to entropy where each word’s contribution is the difference between the surprisal of

the word in the reference and comparison, but, in contrast to entropy, both surprisals are

weighted by the word’s relative frequency in the comparison text. The KLD is a conceptu-

ally useful measure when we have a well-defined vocabulary and a meaningful reference

distribution for comparison. However, if there is a single word that appears in the vocab-

ulary of the comparison but not the reference (i.e., p(2)τ > 0 and p(1)τ = 0), then the KLD is

infinite. This makes the KLD a brittle measure for comparing texts in general because it

is only applicable if the comparison text uses a subset of words from the reference text’s

lexicon, which is very often not the case when comparing two distinct corpora.

2.4 Jensen–Shannon divergence

The Jensen–Shannon divergence (JSD) accounts for some of the shortcomings of the

Kullback–Leibler divergence. The JSD compares the similarity of the word distributions

by first constructing a probability distributionM for some artificial hybrid text:

M = π1P
(1) + π2P

(2). (5)

The mixture weights π1 and π2 must sum to 1 and are often set to be either equal, π1 =

π2 = 1/2, or proportional to the number of word tokens in T (1) and T (2). The JSD is then

computed as the average KLD from the mixture text,

D(JS)
(

P(1) ‖ P(2)
)

= π1D
(KL)

(

P(1) ‖M
)

+ π2D
(KL)

(

P(2) ‖M
)

.

By construction, the JSD is symmetric and does not infinitely diverge like the KLD because

M consists of the entire vocabulary of both texts. Conveniently, the JSD takes on a value

of 0 if the texts are identical and a value of 1 if they have no words in common (as long as

we are using base 2 logarithms). The individual contribution δJSDτ of a word τ to the JSD

is given by,

δJSDτ =mτ log
1

mτ

–

(

π1p
(1)
τ log

1

p
(1)
τ

+ π2p
(2)
τ log

1

p
(2)
τ

)

, (6)

the (corpus-weighted) difference between the surprisal of the word in the average text and

the average surprisal of the word in each observed text. Note, the contribution is always

non-negative, and δJSDτ = 0 if and only if p(1)τ = p(2)τ . Like Shannon entropy, the JSD can

be generalized to emphasize different regions of the word frequency distribution [42] (see
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Materials and methods for details). The symmetric nature of the JSD has made it a useful

tool for investigating cultural evolution across digitized collections [16], charting fluctua-

tions in the birth and death of words [10], and disentangling viewpoints in online political

discussions [17].

2.5 Dictionary-based scores

The measures that we have introduced so far all compare texts based on the relative fre-

quencies of their words. The differences between them lie in how they weight each con-

tribution, where those weights are themselves functions of word frequency. Very often

though, we have external weights that we want to specify for each word. The most com-

mon example of this is dictionary-based sentiment analysis [4, 44, 45], where we have a

dictionary ofwords and eachword is assigned aweight or score according to its association

with a particular emotion or feeling. Other dictionaries and lexicons have been curated to

encode constructs like morality [23], respect [14], profanity [24], and hatefulness [25].

When we are equipped with dictionary scores, we can calculate the average score of

each text as a whole and then compare them. If we have a single dictionary that prescribes

a score φτ for each word τ in the vocabulary T , then the difference between the weighted

averages �(1) and �(2) is

δ� =
∑

τ∈T

φτ

(

p(2)τ – p(1)τ

)

. (7)

When the dictionary does not cover the entire vocabulary (as is often the case), we typi-

cally subset the vocabulary to only words appearing in the dictionary. Like the other mea-

sures, we can use the linearity of the weighted averages to extract the contributions δ�τ

to the difference and rank them accordingly.

3 Word shift graphs

When using any weighted average for pairwise text comparison, we want to be able to in-

terpret differences betweenmeasurements. Each of themeasures that we have introduced

can be decomposed into word-level contributions, and so we can identify which words

most account for the between-text variation. We would like to go further and explain how

each word contributes. Is one set of lyrics happier than another because it uses more pos-

itive words or because, instead, it uses less negative words? Does a social bot’s language

seem unpredictable because it uses a variety of surprising words or because it uses com-

mon words in a surprising way? To what extent do misogynistic internet communities not

only use sexist slurs, but also associate other words with negative overtones? These are the

kinds of qualitative and contextual questions that can be answered quantitatively through

the word shift framework and visualized through word shift graphs.

3.1 Word shift fundamentals

We first revisit basic word shift graphs which we first introduced in ref. [18] in the context

of happiness measurements, and further developed in refs. [4] and [46]. Basic word shifts

are for use when we have single set of scores unchanged across texts [4], as is often the

case for (but in no way limited to) standard dictionary-based sentiment analyses. We then

generalize the word shift framework so that each text can be equipped with its own set of
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scores for each word. Finally, we describe and present examples of our generalized word

shift graphs, showing how they create detailed summaries of how two texts differ.

As we have been doing, let us say that we have two texts T (1) and T (2) with relative word

frequency distributions P(1) and P(2). Suppose, for now, that we have a single dictionary

which assigns a score φτ to each word τ in the vocabulary T . Ourmain quantity of interest

is the difference between the weighted averages �(1) and �(2),

�(2) –�(1) =
∑

τ∈T

φτp
(2)
τ –

∑

τ∈T

φτp
(1)
τ . (8)

Denoting the difference as δ�, we can write it as the sum of contributions from each in-

dividual word,

δ� =
∑

τ∈T

φτ

(

p(2)τ – p(1)τ

)

=
∑

τ∈T

δ�τ , (9)

where we have introduced the notation δ�τ for the summand.

To unpack the qualitatively different ways that words can contribute, we introduce�(ref),

a reference score. Consider the case of sentiment analysis. For each word in our score dic-

tionary, we not only know its score, but also whether it is consideredmore or less positive.

Importantly, the notion of being “more” or “less” positive is relative to some reference value.

For example, we may consider a word positive or not based on its position in an overall

score distribution—words that are above the average score are positive and those that are

below are not. Or instead, wemay want to knowwhich wordsmake one text more positive

than the other, in which case we can treat the average sentiment of one of the texts as the

reference score to determine which words are relatively positive. The quantity �(ref) en-

codes these kinds of reference points, distinguishing between different regimes of interest

among word scores.

Using the reference score �(ref), we can equivalently rewrite the sum of contributions

(Eq. (9)) as

δ� =
∑

τ∈T

(

p(2)τ – p(1)τ

)(

φτ –�(ref)
)

, (10)

opening up a richer set of textual interpretations. Eachword contribution is now the prod-

uct of two components: the difference between the word score and the reference score,

and the difference between relative frequencies. Both components can be either positive

or negative, which yields four different ways that a word can contribute,

δ�τ =
(

p(2)τ – p(1)τ

)

︸ ︷︷ ︸

↑/↓

(

φτ –�(ref)
)

︸ ︷︷ ︸

+/–

. (11)

If we say that φτ > �(ref) implies that a score is “relatively positive,” and that φτ <�(ref) im-

plies that a score is “relatively negative,” then without loss of generality we can colloquially

phrase the ways that T (2) can have a higher score than T (1) as follows:

1. A relatively positive word (+) is used more often (↑) in T (2) than in T (1).

2. A relatively negative word (–) is used less often (↓) in T (2) than in T (1).
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Figure 1 Types of word contributions in word shift graphs. (A) Word contributions in basic word shift graphs,

which are determined by the interaction between the signs of the difference between the word score and

the reference score (+/–) and the difference in relative frequencies (↑ / ↓) (see Sect. 3.1). For example, in

sentiment analysis, a relatively positive word appearing more is indicated by a deep yellow bar to the right

(+ ↑), while a relatively negative word appearing more is indicated by a deep blue bar to the left (– ↑).

(B) Word contributions in generalized word shift graphs, which additionally visualize the difference in word

score (△/▽) (see Sect. 3.2). If component contributions counteract one another then they are faded to

emphasize the magnitude of the resulting contribution while retaining information about the detraction of

one component from the other. For example, in sentiment analysis, if a relatively positive word is used more

and its score is higher across contexts, then it is indicated by a deep yellow bar with an adjacent orange bar,

both directed to the right (+ ↑ △). If it is a relatively positive word that is used more but its score is lower, then

the components counteract one another, indicated by a deep yellow bar to the right faded by the same

amount as a subtractive purple bar to the left (+ ↑ ▽)

Similarly, if T (2) has a higher score than T (1), two types of contributions counteract it to

give T (2) a lower score than it would have otherwise:

1. A relatively positive word (+) is used less often (↓) in T (2) than in T (1).

2. A relatively negative word (–) is used more often (↑) in T (2) than in T (1).

While the language of “positive” and “negative” most conveniently maps onto the case of

sentiment analysis, it is easily altered for other measures, e.g. a word may be “relatively

angry” or “relatively surprising” if its score is larger than the reference score.

These contributions are the visual building blocks of word shift graphs (see Fig. 1A).

If a word contribution is positive, δ�τ > 0 (i.e., + ↑ or – ↓), then the bar points to the

right, and if it is negative, δ�τ < 0 (i.e. + ↓ or – ↑), then it points to the left. We use color

and shading to differentiate the two different ways that each word can contribute in ei-

ther direction. Relatively positive words (+) are colored in yellow and relatively negative

words (–) are colored in blue, which is intuitive for sentiment word shifts, and colorblind

friendly for any shift graph in general. Contributions that are due to an increase in word

frequency (↑) are shaded with deeper yellows and blues, while contributions from a de-

crease in word frequency (↓) are shaded with lighter variations of the same colors. The

direction, color, and shading succinctly summarize the four qualitatively different ways a

word can contribute to the measurement variation between two texts.

3.2 Generalized word shifts

Already, we can start to see the richness that word shifts reveal. However, we also want

to be able to account for words that have different scores in each corpus, such as with

any of the entropy-basedmeasures we introduced, or in sentiment analysis using domain-

adapted score dictionaries [35].

We introduce generalized word shifts, which allow words to take on corpus-specific

weights. Rather than specifying a single score φτ across both texts, let φ(i)
τ indicate that a
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word’s score can be dependent on its appearance in either T (1) or T (2). The difference in

weighted averages δ� can then be written as

δ� =
∑

τ∈T

(

p(2)τ – p(1)τ

)
[
1

2

(

φ(2)
τ + φ(1)

τ

)

–�(ref)

]

+
1

2

(

p(2)τ + p(1)τ

)(

φ(2)
τ – φ(1)

τ

)

, (12)

where we provide full details of the derivation in the Materials and methods. If the scores

are the same, φ(1)
τ = φ(2)

τ , then we recover the basic word shift. When the word scores are,

in fact, different, the average score of φ(1) and φ(2) is compared to the reference �(ref) to

determine if the word is “relatively positive” or “relatively negative.” The second, new com-

ponent in the generalized word shift accounts for the difference between the scores them-

selves, and weights it by the average frequency of the word. So in the generalized word

shift framework, there are three major components to how a word contributes,

δ�τ =

↑/↓
︷ ︸︸ ︷
(

p(2)τ – p(1)τ

)

+/–
︷ ︸︸ ︷
[
1

2

(

φ(2)
τ + φ(1)

τ

)

–�(ref)

]

+
1

2

(

p(2)τ + p(1)τ

)(

φ(2)
τ – φ(1)

τ

)

︸ ︷︷ ︸

△/▽

. (13)

This gives us eight distinct ways that a word can be visualized in a word shift graph (see

Fig. 1B). Similar to before, we can visualize the interaction between the difference in rela-

tive frequency and the distance from the reference scores as yellow and blue bars. The new

component, the difference between scores, is additive, which means that we can visualize

it as an additional bar that augments or diminishes the base bar.When the signs of the two

components of Eq. (13) are congruent (as in the top two and bottom two bars of Fig. 1B),

then we can visualize the score difference as an orange (△) or purple (▽) stacked bar adja-

cent to the other. However, the two components can also counteract one another. In this

case, each component’s bar falls in a different direction, and we highlight this tension by

coloring the contribution that remains after the counteraction, and fading the underlying

offsetting components accordingly (as in the middle four bars). This maintains the full

information about a particular word’s components while emphasizing the word’s overall

contribution. The purple, orange, yellow, and blue bars are mutually colorblind friendly.

3.3 Generalized word shift graphs

We now present generalized word shift graphs in their entirety. For our visual case study,

we compare the average sentiment of speeches by two United States presidents: Lyndon

B. Johnson (1963–1969) and George W. Bush (2001–2009). We use the labMT sentiment

dictionary [4] to construct a basic word shift, and the SocialSent historical sentiment lex-

icons [35] for a generalized word shift. The SocialSent lexicons are decade-specific senti-

ment dictionaries that were adapted for each decade between 1850 and 2000 by applying

semi-supervised machine learning to the Corpus of Historical American English, and so

words can take on different scores depending on what sentiment they were associated

with in the 1960s or 2000s. We use the word shift graphs (presented in Fig. 2) primarily as

visual examples, and so we focus more on their construction and layout rather than their

substantive interpretation.

Wemeasure the difference in average sentiment of the presidential speeches, �(G.W.B.) –

�(L.B.J.), and rankwords by their absolute contribution to that difference. According to both



Gallagher et al. EPJ Data Science            ( 2021)  10:4 Page 10 of 29

Figure 2 Word shift graphs of the sentiment of presidential speeches by United States Presidents Lyndon

B. Johnson and George W. Bush. We display a basic word shift graph on the left, using the labMT sentiment

dictionary [4] (one score per word); on the right is a generalized word shift graph, using the SocialSent

decade-adapted sentiment dictionaries [35] (one score per word per decade). Word shifts show the top fifty

contributing words to the difference in sentiment. Words to the left are those that contribute to Bush’s

speeches being more negative than Johnson’s, while words to the right partly offset that negativity. Bars at

the top show the overall sentiment difference and the effect of each type of word contribution on that

difference. The bottom left corner includes a legend for interpreting the different types of contributions in the

context of the presidential speeches. In the generalized word shift graph, words that are borrowing a score

across decades are marked by an asterisk (∗). We use the center of each of labMT’s and SocialSent’s sentiment

distributions as the reference scores: �(ref) = 5 for labMT and �(ref) = 0 for SocialSent

dictionaries that we have employed, Bush’s speeches were more negative than Johnson’s,

as indicated by the average sentiments displayed in the title of each graph. We plot word

contributions as a horizontal bar chart, where words that contribute to the negativity of

Bush’s speeches are directed to the left, while words that counteract �(G.W.B.) < �(L.B.J.)

point to the right. We provide a legend for the qualitative interpretation of these bars in

the bottom left corner of Fig. 2.

Examining the basic word shift graph on the left, we see that Bush’s use of more nega-

tive words (– ↑), like ‘terror’, ‘weapons’, and ‘tax’, all lower the sentiment of his speeches

relative to Johnson. Further, the decreased use of positive words (+ ↓), such as ‘we’, ‘peace’,

and ‘hope’, also contributes to the negativity of Bush’s speech. On the other hand, these
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contributions are partly offset by a lesser use of negative words (– ↓) like ‘no’, ‘poverty’,

and ‘problems’, and greater use of positive words (+ ↑) like ‘america’, and ‘freedom’.

In the generalized word shift to the right, we see that changes in the sentiments of the

words themselves also affect the overall difference between Bush’s and Johnson’s speeches.

The words ‘nation’, ‘us’, and ‘destruction’ are all associated with more negativity (▽) in

the 2000s than in the 1960s. Similarly, but in the opposite direction, ‘freedom’, ‘together’,

and ‘life’, are all associated with more positivity (△) in the 2000s than the 1920s. We also

see counteracting contributions for individual words: ‘better’, for example, is a positive

word that was used more by Bush, but its positive contribution is offset by its decline in

sentiment from the 1960s to the 2000s.

At the top of both figures, we display how each distinct type of word shift contributes to

the total difference, �. In the basic word shift graph, we see that the negativity of Bush’s

speeches ismost explained overall by the use ofmore negativewords (– ↑) and less positive

words (+ ↓). In the generalized word shift, the negativity is most affected by the general

negative shift in word sentiment (▽) from the 1960s to the 2000s, though that component

is largely offset by other words increasing in sentiment (△). These summary totals help ac-

cumulate sentiment information across all of the words and tell us what qualitative factors

play the largest roles in differentiating the speeches of Presidents Bush and Johnson.

Note that unlike when using a single sentiment dictionary, the SocialSent historical sen-

timent lexicons have overlapping but distinct vocabularies. For example, because a war

with Iraq was not a major topic of discussion in the 1960s, the word ‘iraqi’ does not ap-

pear in SocialSent’s 1960s lexicon. Similarly, the word ‘viet’ does not appear in SocialSent’s

2000s lexicon. However, in the 1960s, the word ‘viet’ carries important emotional infor-

mation, as does ‘iraqi’ in the 2000s. To retain some of this information without discarding

it entirely, we “borrow” scores across decades that exist in one sentiment lexicon but not

another. That is, for example, we use the 1960s sentiment score for ‘viet’ when consider-

ing its appearances in Bush’s speeches made in the 2000s. We append an asterisk (∗) to

any word that borrows a score. The borrowing nullifies the component of the word shift

contribution that quantifies the change in the score, but it allows us maintain information

about the change in frequency and the relative positivity or negativity of a word. In the

Materials and methods, we discuss in more detail when “borrowing” may or may not be

appropriate.

We also highlight the example of ‘iraqi’ as a point of caution. In both the labMT and So-

cialSent dictionaries, the words ‘iraqi’, ‘iraq’, and ‘afghanistan’ are “negative” words whose

usage make Bush’s speeches quantitatively more negative than Johnson’s. However, it is

important to keep in mind how these scores were derived. For labMT, the scores are a

product human annotations collected in the late 2000s when the United States’ wars in

the Middle East were ongoing. For SocialSent, the scores are a product of machine learn-

ing, where commonly co-occurring words share similar sentiment, and so the negativity

is likely a product of those words appearing frequently with other words like ‘war’ and

‘terrorist’. Similarly, we would likely find that the word ‘woman’ is associated with negative

sentiment if we made dictionaries for misogynistic internet forums, and that the phrase

‘African American’ is “negative” if we made dictionaries for pamphlets produced by white

supremacists. In all of these cases, the negative quantitative scores should not be inter-

preted as indicating that these people and countries are bad, unworthy of respect, or de-

serving of oppression. The scores reflect biases of the cultural contexts in which they were
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produced and should be interpreted accordingly. Fortunately, the word shift graphs make

these biases clear, rather than burying them under an aggregate measure. However, while

word shift graphs are interpretable, we still need to take care with the actual interpretation

itself so that we do not reproduce systemic inequalities in our own analyses.

Overall, the generalized word shift graph succinctly visualizes which words contribute

to the negativity of George W. Bush’s speeches relative to Lyndon B. Johnson and, im-

portantly, how they do so. The word shift graphs distinguish between subtle differences

in contributions, such as whether the speeches are more negative because more nega-

tive words were used or less positive ones were. Rather than just comparing two averages,

like �(G.W.B.) = –0.03 and �(L.B.J.) = 0.03, the word shift graphs allow us to simultaneously

quantify word usage, sentiment, bias, and temporal drift to tell a richer story about how,

plausibly, Bush’s speeches were negative in part due to their focus on the IraqWar starting

in 2003 and, perhaps, also in part due to decreased positivity associated with nationalistic

words like ‘nation’, ‘us’, ‘country’, ‘america’, and ‘americans’.

3.4 Pairwise comparisonmeasures as word shifts

We have shown how dictionary scores can be naturally incorporated into the word

shift framework. We now return to the other text comparison measures that we intro-

duced earlier: relative frequency, Shannon entropy, the Kullback–Leibler divergence

(KLD), the Jensen–Shannon divergence (JSD), and their generalized forms (see

Materials and methods for details). Some of these measures, like relative frequency and

the Shannon entropy, are easily identifiable as weighted averages by how they are com-

monly written. Other measures though, like the KLD, the JSD, and the generalized en-

tropies, can often be expressed inways that do notmake it clear that they are also weighted

averages. In Table 1, we explicitly write the word contribution δ�τ of each measure as a

difference in weighted averages. Making this form explicit allows us to easily situate all of

these measures within the generalized word shift framework and visualize them through

generalized word shift graphs.

Formulating each measure in terms of weighted averages is one of two key elements for

using generalized word shift graphs. The other is identifying a reference score �(ref) that

discerns between distinct and interesting regimes of the word scores. As we have seen

with sentiment analysis, one obvious candidate for the reference score is the center of the

sentiment scale, which naturally sifts positive words from negative ones. While, in prac-

tice, researchers rarely draw an explicit boundary between different types of words when

Table 1 Contributions and scores of various text comparison measures according to the word shift

framework. The word contribution δ�τ indicates how an individual word impacts a measure, and

each contribution is expressed as a difference in weighted averages so that it can be easily identified

with the components of the word shift framework

Measure Notation Word contribution δ�τ = p(2)τ φ(2)
τ – p(1)τ φ(1)

τ

Relative Frequency P(i) p(2)τ – p(1)τ

Shannon Entropy H(P(i)) –p(2)τ logp(2)τ + p(1)τ logp(1)τ

Generalized Entropy Hα (P
(i)) –p(2)τ [

(p
(2)
τ )α–1

α–1 ] + p(1)τ [
(p
(1)
τ )α–1

α–1 ]

Kullback–Leibler Divergence D(KL)(P(2) ‖ P(1)) –p(2)τ logp(1)τ + p(2)τ logp(2)τ

Jensen–Shannon Divergence D(JS)(P(1) ‖ P(2)) p(2)τ π2 log
p
(2)
τ
mτ

– p(1)τ π1 log
mτ

p
(1)
τ

Generalized Jensen–Shannon Divergence D(JS)
α (P(1) ‖ P(2)) p(2)τ π2[

(p
(2)
τ )α–1–mα–1

τ
α–1 ] – p(1)τ π1[

mα–1
τ –(p

(1)
τ )α–1

α–1 ]
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using the measures presented in Table 1, the generalized word shift framework provides

us an opportunity to bemore intentional and creative with howwe quantify, interpret, and

visualize differences between texts. For example, researchers often remove commonly ap-

pearing “stop words” [3, 47] by applying a pre-assembled list or identifying the top, say, 1%

of frequently occurring words. Rather than discarding them in an ad hoc manner though,

we may instead choose to leave them in and use them to help us mark the boundary be-

tween frequent and infrequent, surprising and unsurprising. Or if we are working with an

entropy-based measure, we may set the reference value to be the average entropy of one

of the texts. Using the text’s entropy as a reference allows us to discern which words con-

tribute to a text’s unpredictability because they are even more surprising than the average

surprisal.

Of course, it is always mathematically valid to set �(ref) = 0 if we are satisfied with just

knowing which words distinguish two texts. However, doing so always risks masking the

richness in how those words contribute. Placing the frequency and entropy-based mea-

sures within the generalized word shift framework gives us new ways of understanding

them and disentangling the complexities of text as data.

4 Case studies: using word shift graphs in practice

To showhowgeneralizedword shift graphs can be used in practice, we present a diverse set

of case studies that highlight how they can be used as both a diagnostic tool during the re-

search process and an illustrative instrument for scientific communication. First, through

sentiment analyses of both the book Moby Dick and U.S. urban parks, we demonstrate

how word shifts warn us when there are significant measurement issues that require us to

revisit how the text is preprocessed and quantified. Second, through a case study of Twit-

ter’s change from 140 to 280 character tweets, we show howword shiftsmake it possible to

interpret unexplained textual trends and generate additional research hypotheses. Finally,

through a case study of labor diversity and the Great Recession, we show how shift graphs

enrich analyses beyond just the research process and provide fine-grained evidence that

support deeper substantive insights by domain experts.

4.1 Sentiment peculiarities of Moby Dick and U.S. urban parks

Dictionary-based sentiment analysis is sensitive, of course, to the dictionary that is used.

Sentiment dictionaries are often static objects, constructed once for general use. This can

be problematic if there has been a temporal shift in how particular words or used, or when

words take on different sentiments in particular contexts [3, 26]. As we show, word shift

graphs transparently diagnose these kinds of measurement issues.

We start with a case study ofMoby Dick, the 1851 novel by HermanMelville. We naively

apply the labMT sentiment dictionary [4] to the first and second halves of the book, a

simple quantification of the novel’s emotional arc [19]. The sentiment word shift graph is

shown on the left in Fig. 3. There are two issues that are made visible by the word shift

graph, each of which we could easily miss otherwise. First, examining the left panel of

Fig. 3, the overall sentiment is affected considerably by thewords ‘cried’ and ‘cry.’ Through-

out the book though, ‘cried’ and ‘cry’ are often understood to mean ‘said’. Second, the

word ‘coffin’ also significantly affects the sentiment. However, while coffins are mentioned

throughout the story, searching the raw text of the novela reveals that about a third of its

usage is with respect to the surname ‘Coffin.’ All three of thesewords contribute in an unin-

tended way to the sentiment differences between the first and second half the book—with



Gallagher et al. EPJ Data Science            ( 2021)  10:4 Page 14 of 29

Figure 3 (Left) Word shift graph of the sentiment difference between the first and second halves ofMoby Dick

by Herman Melville. A naive application of a dictionary-based sentiment lexicon for the two-segment

emotional arc would inflate the negative trajectory of the novel without the preprocessing or removal of

words like ‘cried’ and ‘cry’, which more often means ‘said’ in nineteenth century English, and ‘coffin’, which is

used as a surname about one third of the time. We find that δ� = 0.09 when including those words, while

δ� = 0.07 when they are excluded. (Right) Word shift graph of the sentiment difference between the in-park

and out-of-park tweets across 25 cities in the US. A naive application of a dictionary-based sentiment lexicon

would inflate the in-park tweet scores by including words like ‘park’, ‘beach’, ‘zoo’, ‘museum’, ‘music’, and

‘festival’, all of which represent physical locations and events within parks. We find that δ� = 0.12 when

including those words, while δ� = 0.10 when they are excluded. For both word shift graphs, a reference value

of 5 was used, and a stop lens was applied on all words with a sentiment score between 4 and 6. Both word

shift graphs contain cumulative contribution and text size diagnostic plots in their bottom left and right

corners, respectively. See the following case study and the Materials and methods for more details on their

interpretation

them included, the difference in sentiment is δ� = 0.09, while without them it is δ� = 0.07,

a difference of over 20%.

Word shift graphs make these contributions apparent. One way to address these issues

is through additional text preprocessing. For example, removing only capitalized uses of

‘Coffin’ (along with ‘cry’ and ‘cried’) allows for ‘coffin’ to still contribute, yielding a sen-

timent difference of δ� = 0.08, which is 15% less than the naive approach. Another way

is through modification of the dictionary itself—domain knowledge or semi-supervised

machine learning [35] can help refine or adapt the sentiment dictionary to the language of
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nineteenth century English. By highlighting these mismeasurements early in the research

process, word shift graphs allow researchers to make appropriate adjustments in the data

pipeline.

To emphasize the need for word shift graphs in identifying bias induced by sentiment

mismeasurement, we also consider a case study of tweets posted inside and outside of

U.S. urban parks. Prior work has demonstrated that people are happier when visiting ur-

ban green spaces such as parks [48], and social media data presents an opportunity to

supplement traditional survey measures with geographically fine-grained measurements.

However, naively applying the labMT sentiment dictionary to tweets may overestimate

the sentiment difference between in- and out-of-park tweets. In the right panel of Fig. 3,

we see that the word ‘park’ is contributing substantially to the higher sentiment of in-park

tweets. However, in the context of inferring happiness from tweets, writing theword ‘park’

is often simply a declaration of where a user is located, rather than a proxy for how they

may be feeling. Similarly, words like ‘museum’, ‘zoo’, and ‘beach’ also represent physical lo-

cations within parks, but contribute to the positivity of in-park tweets because they are all

relatively positive words. ‘Music’ and ‘festival’ also appear frequently within park tweets,

which are related to events in parks, but often not nature itself.

While there are defensible arguments for and against removing each of these words,

word shift graphs make their contributions visible, and allow a researcher to make trans-

parent decisions with the understanding of how results may change based onwhich words

are included in the final analysis. When removing the above six words, the sentiment dif-

ference goes from δ� = 0.12 to δ� = 0.10, more than a 15% difference. Adjustments for

specific words, in tandem with the examination of a word shift graph, allow us to apply

sentiment analysis with the confidence that one or a few individual words have not made

a folly of our analyses.

4.2 Information content of 280 character tweets

On November 7th, 2017, Twitter doubled the character limit for all tweets from 140 to

280 characters, one of the most significant changes to the platform since its inception in

2006. Prior to the change, Twitter found that there were discrepancies in how often users

reached the 140 character limit based on the language in which they tweeted [49]. They

partly attributed the discrepancies to the ability of different languages to encode more or

less information in a single character [49, 50]; for example, users tweeting in English hit

the limit 9% of the time, while those tweeting in Japanese rarely did so. Immediately fol-

lowing the update to 280 character tweets, English users only hit the limit about 1% of the

time, suggesting that the change made it “easier to tweet” by making it easier for individ-

uals to spend “less time editing their tweets in the composer” [51]. Outside of Twitter, it

has been independently verified that the increased character limit increased the Flesch-

Kincaid reading level of tweets and decreased the proportion of users hitting the character

limit [52].

Moving from individual characters to whole words, we measure the Shannon entropy

of the Twitter word distribution before and after the 280 character change to understand

how the character-level changemay have affected the information content of the language

used in tweets. We take all tweets collected from Twitter’s Decahose, a 10% sample of

tweets, 30 days before and after the change and aggregate them into two separate bags

of words, using the labMT dictionary as our vocabulary (see Materials and methods for
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Figure 4 Time series indicating the change in the entropy of Twitter language before and after the platform’s

change from 140 character to 280 character tweets (marked by dashed line)

details). Figure 4 shows that the information content of tweet language decreased after

the change to 280 characters. Using a generalized word shift graph, we can reveal what

words specifically contributed to that drop and why (see Fig. 5). We use the entropy be-

fore the change to 280 character tweets as our reference value, implying that a word is

considered relatively “surprising” if its surprisal is higher than the average word surprisal

in 140 character tweets.

As wemay expect from a change allowing for longer tweets, the top five contributions to

the decrease in entropy all come from greater use of themost common parts of speech, in-

cluding conjunctions (‘and’, ‘that’), articles (‘the’) and prepositions (‘to’, ‘of ’). All of these are

relatively “unsurprising” words, so they drive the entropy down in 280 character tweets.

It is plausible that in the shift to longer tweets, users are able to write longer messages and

use less abbreviations, allowing them to place a heavier on traditional functionwords. Fur-

ther, the entropy word shift also reveals somemore unexpected trends, namely a decrease

in first- and second-person personal pronouns (‘i’, ‘you’, ‘me’, ‘my’, ‘u’, ‘i’m’ and ‘your’) and

an increase in third-person pronouns (‘we’, ‘they’, ‘their’, ‘our’, and ‘them’). This is some-

what striking, particularly as it is an observation that has emerged from the data in an

unsupervised manner.

Finally, we note that we have appended an inset plot to the bottom left of the word shift

graph. This inset describes the percent of all variation in entropy that is explained by the

word shift. It does so by plotting how the difference δ� cumulatively changes as we suc-

cessively add word contributions according to their rank. The horizontal line demarcates

the boundary between the top forty words shown in the plot and the thousands of other

words used in the tweets. We use this plot in conjunction with the observation that the

majority of the top forty contributions are from relatively unsurprising words. As shown

by where the cumulative curve intersects the horizontal cutoff line, these explain a bit

more than 30% of the total entropy difference between 140 character language and 280

character language. Yet, by the top of the word shift graph, we see that the largest contri-

butions come from the use of relatively surprisingwords, few ofwhich appear in our figure.

This suggests that there is a richer story in the long tail of the word distribution than is

shown solely by the word shift graph. This would not be obvious without the cumulative

contribution diagnostic plot, which we describe further in the Materials and methods.
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Figure 5 Generalized word shift graph of the

change in Shannon entropy for the 30 days before

and after the 140 to 280 character change on

Twitter. Words are relatively “surprising” (+) or

“unsurprising” (–) depending on if their surprisal is

higher than the entropy, or average surprisal, of

words used in 140 character tweets. Many of the

contributions in the top forty words are from

unsurprising words being used relatively more (– ↑)

or less (– ↓). The surprisal for each word went down

(▽) or up (△) depending on if it was used more or

less, respectively, in 280 character tweets. The inset

in the bottom left shows how the word shift scores

cumulatively vary as a function of word rank, where

the horizontal line in the middle of the plot

indicates what is explained by the top forty words

shown in the graph (see Materials and methods for

more details). As seen by the top of the word shift

graph and the cumulative inset, most contributions

come from a long tail of relatively surprising words,

despite mostly not appearing among the top forty

words

Through a brief investigation of the change from 140 to 280 character tweets, general-

ized word shift graphs have allowed us to uncover three potentially fruitful hypotheses:

Twitter users do not need to abbreviate common function words as often, tweets deploy

more collective framing through third-person pronouns, and less commonwords account

for the largest shift in entropy. Of course, all of these hypotheses are speculative and re-

quire much deeper investigations. This is exactly what demonstrates the power of word

shift graphs though. These stories are hidden by the aggregate entropy measures, which

obscure why the entropy dropped after the character limit change. Generalized word shift

graphs unpack these measures and allow us to quickly generate new questions and hy-

potheses that bring our research in directions that may have been otherwise unexplored.

4.3 Employment diversity and urban resilience during the Great Recession

The Great Recession, which spanned from the end of 2007 to 2012, is one of the most

significant economic disruptions in the United States’ history [53]. Understanding which

U.S. cities were more or less resilient to the recession and why could inform urban policy

that diminishes the disruptions to labor and employment. Similar to ecological systems

[54], and complex systems more generally, employment diversity is hypothesized to play

a key role in the resilience of urban labor markets. Diverse labor markets have more po-
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tential for redundancies among occupations that enable local workers and firms to adapt

to disruptions. For example, one recent study compared labor and skill diversity in cities

to the cities’ exposure to automation [55] and found that labor market diversity was more

predictive than the size or regional economy of the city.

To study urban response to the recession, we turn to the U.S. Bureau of Labor Statistics

(BLS), which records employment data for cities across the United States. If we consider

each city to be a “corpus” and each distinct occupation to be a “word,” then we can use the

word shift framework to understand differences in employment diversity between cities.

Let J be the “vocabulary” of the 794 jobs recorded by the BLS in 2007 across 375 U.S.

cities, and denote the number of people employed with job j in city c as f
(c)
j . The total

employment across the entire urban labor market is T (c) =
∑

j∈J (c) f
(c)
j , and the relative

frequency of a job in the labor distribution P(c) is p
(c)
j = f

(c)
j /T (c), like ourword distributions.

Traditionally, many labor economists consider job markets to be “deep” or “shallow” de-

pending on the number of unique occupations, which we refer to as occupation diversity,

N (c) = |J (c)|. We can more fully account for the distribution of worker employment by

considering the employment diversity, the Shannon entropy [40, 41] of the worker em-

ployment distribution,

H
(

P(c)
)

= –
∑

j∈J

p
(c)
j log2 p

(c)
j . (14)

Using these measures, we examine the relationship between labor diversity and peak city

unemployment during the Great Recession, as given by the BLS’s Local Area Unemploy-

ment Statistics, and present the results in Fig. 6 in the form of regression coefficients.

As we would expect, total employment is significantly positively associated with raw un-

employment counts. After controlling for the total employment though, we find evidence

that the occupation diversityN (c) is not significantly associatedwith unemployment, while

employment diversity H (c) is significantly negatively associated with peak unemployment

during the Great Recession. The inset in Fig. 6 visualizes this negative association when

controlling for total employment and occupation diversity.

Figure 6 Linear regression coefficients showing that U.S. cities with greater employment diversity H(c) saw

lower peak unemployment during the Great Recession, after controlling for total employment T (c) and the

number of unique occupations in each city N(c) (R2 = 0.915). All variables were centered and standardized

prior to regression. Error bars represent 95% confidence intervals. Additional details on the regression analysis

are provided in the Materials and methods
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Figure 7 By treating the employment distribution

in each U.S. city as a “text” and each occupation as a

“word,” we employ a generalized word shift graph to

compare the differences in employment between

the 15 cities with the most diverse employment

distributions and the 15 cities with the least diverse

employment distributions, as measured by the

Shannon entropy. We use the average employment

diversity across cities’ workforces as the reference

value (�(ref)). Occupations are relatively “surprising”

(+) or “unsurprising” (–) depending on their surprisal

in each class of city

The relationship between lower unemployment and employment diversity H (c), rather

than the number of unique jobs N (c), suggests that urban policy may want to focus on

growing the employment diversity of a city’s workforce to bolster its economic resilience.

However, it is not clear from the aggregate employment diversity which occupations are

most likely worth the time, money, and effort of designing policy that reshapes the labor

market. By using a (word) shift graph, we can quantify the jobs that most distinguished

employment differences between the 15 most diverse cities and the 15 least diverse cities

in 2007 (see Fig. 7). We consider a job to be relatively more “surprising” or “unsurprising”

compared to the entropy of employment distributions averaged across all U.S. cities, i.e.

〈H (c)〉. As shownby the shift graph, the differences in employment diversity come from two

main sources: less common occupations (+ ↑) that are relatively abundant in high diversity

cities, and jobs that are common in low diversity cities but less so in high diversity cities

(△). There are some deviations from these trends; for example, kindergarten teachers and

agricultural workers have high surprisal but were relatively more abundant in cities with

low employment diversity (+ ↓).

It is beyond the scope of this brief case study to suggest causal policy interventions based

on this one shift graph. However, given a more comprehensive study examining labor di-
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versity, unemployment, and economic resilience, it is clear how a shift graph could provide

targeted and actionable insights that are not otherwise possible through aggregate mea-

sures. The details provided by generalized shift graphs allow us to more deeply draw on

our domain knowledge and build a more comprehensive understanding of the social sci-

entific phenomena under study.

5 Discussion

We have introduced generalized word shifts, a framework for taking pairwise compar-

isons between texts and understanding their differences at the word level. In this frame-

work, comparison measures are decomposed into their individual word contributions so

that the words can be ranked and categorized according to how they contribute. The word

shift form that we have presented generalizes a previous iteration [4, 37], which was lim-

ited to single dictionary-based weighted averages. Our generalization naturally incorpo-

rates multi-dictionary scoring, the Shannon entropy, generalized entropies, the Kullback–

Leibler divergence, the Jensen–Shannon divergence, and any other measure that can be

rewritten as a weighted average or difference in weighted averages. All of these gener-

alized word shifts can be summarily visualized as horizontal stacked bar charts, and we

have detailed how to effectively interpret the various interacting components of general-

ized word shift graphs. To help facilitate their use in computational text analyses, we have

implemented generalized word shift graphs in an accessible open source Python package,

available at https://github.com/ryanjgallagher/shifterator.

Generalized word shift graphs are an interpretative tool that allows researchers to fully

harness textual measures, both for their audiences and for themselves. While researchers

are often limited to arguing in terms of aggregate weighted averages, generalized word

shift graphs provide a principled way of decomposing them into word level characteriza-

tions that highlight the most salient differences between two texts. In the best case sce-

nario, when the micro word dynamics exposed by a word shift graph align with a macro

research story, visualizing word shifts helps audiences better understand and trust what

is being measured. However, generalized word shift graphs are not just visual embellish-

ments to persuade audiences. They are also a robustness check that allow us to convince

ourselves that we have constructed scientifically sound stories. During the research pro-

cess, generalized word shift graphs can alert us to data peculiarities, counterintuitive phe-

nomena, andmeasurement errors. Using generalizedword shift graphs as a diagnostic tool

gives us the opportunity to catch these oddities, account for them, and better understand

our text data. Generalized word shift graphs are immediately applicable to a wide range of

computational text analyses, and making them a regular part of the text-as-data workflow

promises to enrich the work of many computational social scientists, digital humanists,

and other practitioners.

Of course, not every text comparison measure can be formulated in terms of weighted

averages. For example, many forms of the commonly used term frequency-inverse doc-

ument frequency cannot be disentangled into a weighted average. Any non-parametric

measure that works with ranks rather than frequencies [56] cannot, by definition, be writ-

ten as a weighted average. However, while some additive measures like these cannot be

retrofitted into the generalized word shift framework that we have outlined here, we still

strongly encourage researchers to always visualize the word contributions that differen-

tiate texts, even if just for themselves during exploratory analyses. Linear, additive text

https://github.com/ryanjgallagher/shifterator


Gallagher et al. EPJ Data Science            ( 2021)  10:4 Page 21 of 29

comparison measures are inherently interpretable, and we should always make sure to

leverage that interpretability to question, improve, and defend the data stories that we

discover.

Generalized word shift graphs directly confront the complexity that is inherent in work-

ing with text as data. Used together with other methods, tools, and visualization tech-

niques that open up otherwise opaque black-box methods, word shift graphs can help

us better triangulate interesting and meaningful social-scientific phenomenon among the

vast and ever expanding landscapes of language, stories, and culture encoded in textual

data.

6 Materials andmethods

6.1 Generalized entropies

For a relative word frequency distribution P(i), we can calculate its generalized, or Tsallis,

entropy of order α [39, 42],

Hα =
1

1 – α

(
∑

τ∈T

pα
τ – 1

)

=
1

α – 1
–

∑

τ∈T

p(i)τ

[
p(α–1)τ

α – 1

]

, (15)

where the latter form is more recognizable as a weighted average. The parameter α con-

trols how much weight is given to common and uncommon words. When α > 1, more

weight is given to frequent words. When α < 1, more weight is given to rare words.

When α = 1, we retrieve the Shannon entropy H1 = –
∑

τ p
(i)
τ logp(i)τ , which marks the

information-theoretic boundary between giving preference to frequently or infrequently

occurring words [40, 41]. Like the other measures, we can identify a word’s contribution

by considering the components of H (2)
α –H (1)

α ,

δ�τ = –p(2)τ

[
(p(2)τ )α–1

α – 1

]

+ p(1)τ

[
(p(1)τ )α–1

α – 1

]

, (16)

where the quantity 1/(α – 1) cancels out in the difference.

The Jensen–Shannon divergence (JSD) can also be extended through generalized en-

tropies [42]. Recall, for the JSD we form a mixture distributionM = π1P
(1) + π2P

(2), where

π1 and π2 are tunable weights. Rather than writing the JSD as an average KLD relative to

themixture distribution, we can equivalently formulate the JSD in terms of the generalized

entropy,

D(JS)
α =Hα(M) – π1Hα

(

P(1)
)

– π2Hα

(

P(2)
)

. (17)

With some rearranging, we can write this as a single sum across words and identify their

word shift form,

δ�τ = p(2)τ π2

[
(p(2)τ )α–1 –mα–1

τ

α – 1

]

– p(1)τ π1

[
mα–1

τ – (p(1)τ )α–1

α – 1

]

. (18)

Like the generalized entropy, we recover the familiar JSDwhen α = 1. The heavy tail nature

ofword distributions canmake the JSD sensitive to differentword frequencies, particularly

when we are working with a sample of texts from a larger corpus (which is very often the

case) [42]. To obtain more reliable estimates of the JSD for those situations, it is advisable

to tune the parameter α acccordingly (see ref. [42] for details).
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6.2 Derivation of generalized word shifts

Recall, for a word τ in text T (i), we denote its relative frequency as p(i)τ and its (possibly

text dependent) score as φ(i)
τ . The average score across the entire text T (i) is notated as�(i),

and the difference in weighted averages is

δ� = �(2) –�(1) =
∑

τ∈T

φ(2)
τ p(2)τ – φ(1)

τ p(1)τ . (19)

We first introduce �(ref). Note,
∑

τ p
(i)
τ = 1, and so we may write

∑

τ

�(ref)
(

p(2)τ – p(1)τ

)

= �(ref)(1 – 1) = 0. (20)

Because the entire above quantity is simply zero, we can subtract it from Eq. (19) to get

δ� =
∑

τ

φ(2)
τ p(2)τ – φ(1)

τ p(1)τ –
∑

τ

�(ref)
(

p(2)τ – p(1)τ

)

(21)

=
∑

τ

p(2)τ

(

φ(2)
τ –�(ref)

)

– p(1)τ

(

φ(1)
τ –�(ref)

)

. (22)

Now, we again use the mathematical sleight of hand of adding zero to rewrite the scores

φ(i)
τ as

φ(1)
τ =

1

2

(

φ(2)
τ + φ(1)

τ

)

–
1

2

(

φ(2)
τ – φ(1)

τ

)

, (23)

and

φ(2)
τ =

1

2

(

φ(2)
τ + φ(1)

τ

)

+
1

2

(

φ(2)
τ – φ(1)

τ

)

. (24)

Substituting into Eq. (22) and working through some algebra, we have the generalized

word shift form,

δ� =
∑

τ

(

p(2)τ – p(1)τ

)
[
1

2

(

φ(2)
τ + φ(1)

τ

)

–�(ref)

]

+
1

2

(

p(2)τ + p(1)τ

)(

φ(2)
τ – φ(1)

τ

)

. (25)

The basic word shift [4] is a special case of the general form when the scores are text

independent φ(1)
τ = φ(2)

τ = φτ ,

δ� =
∑

τ

(

p(2)τ – p(1)τ

)(

φτ –�(ref)
)

. (26)

6.3 Handling missing types and scores

At times, wemay have a word present in one text only, and so either p(1)τ = 0 and p(2)τ > 0, or

p(2)τ = 0 and p(1)τ > 0. If the scores φ(i)
τ are functions of the relative frequencies, then this can

be problematic at times. Consideration needs to be given to the particularmeasure at hand

to decide how to deal with the missing types. For some of the measures, like the general-

ized entropy, setting φ(i)
τ = 0 does not cause any mathematical troubles. For the Shannon

entropy, it may seem at first that we have cause for concern because φ(i)
τ = – logp(i)τ , which
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is undefined if p(i)τ = 0. However, in the Shannon entropy the surprisal is always multiplied

by p(i)τ , and so by the magic of limits and differential calculus, we can safely write

–p(i)τ logp(i)τ = 0, (27)

when p(i)τ = 0. Practically, for programmatic implementation, it is enough to set φ(i)
τ = 0.

Similarly for the JSD, the form of φ(1)
τ = logmτ /p

(1)
τ may appear to be undefined when

p(1)τ = 0. If we step back to the overall word contribution δ�τ shown in Eq. (6) though, then

by the same limiting argument as the Shannon entropy, we can safely simply set φ(1)
τ = 0.

The same cannot be done for the KLD though, unfortunately. One part of the word con-

tribution is the quantity –p(2)τ logp(1)τ . Because the relative frequencies are different in this

case (unlike the Shannon entropy and JSD), no amount of applying L’Hôpital’s rule will

give us a finite limit as p(1)τ approaches zero. All we can say is that the KLD is undefined

when p(1)τ = 0 and p(2)τ > 0.

For dictionary scores, we may have both p(1)τ > 0 and p(2)τ > 0, but, without loss of gener-

ality, only φ(1)
τ is defined. This can happen in domain-adapted sentiment dictionaries. For

example, if we were to build sentiment dictionaries for every year since the early 1900s,

we would not be able to assign sentiment to the hashtag “#worldwar3” for texts from 1910

because neither social media nor World War I existed at the time. In a less extreme case,

“trump” is certainly used enough in 2020 to be included in any contemporary frequency-

based sentiment dictionary, but it may not have been used enough for inclusion in a dic-

tionary for, say, the 1940s, even though the word certainly existed. There is ambiguity in

how to handle these cases. We default to setting the missing score φ(2)
τ to the value of the

defined score φ(1)
τ , which we refer to as “borrowing” in the main text. In practice, this nul-

lifies the score difference component, and places the contribution’s emphasis on the basic

word shift component. This may be reasonable in some cases and less so in others. It is

questionable if we expect a shift in a word’s sentiment to be well-defined and noticeable

between two texts or contexts—as may be the case with “trump” between 1940 and 2020,

for example. If that is the case, then it may be necessary to further expand the sentiment

dictionaries through additional human or algorithmic annotation, or exert domain exper-

tise to make some other defensible decision.

6.4 Word shift diagnostics

Generalized word shift graphs contain a significant amount of substantive and visual in-

formation. However, they are still a particular summary of the data, and so they can benefit

from other summaries that contextualize the word contributions. We refer to these sum-

maries as word shift diagnostics.

The first set of diagnostics are the bars present at the top of all word shift graphs, which

show the cumulative contribution of each type of word shift and the total difference �.

These summary bars quickly quantify the relative importance of each type of contribution.

This is important because it provides context on what types of contributions are most

significant, even if they do not appear among the top words presented in the word shift

graph. For example, a word shift graph may report that the top fifty contributions come

primarily from relatively negative words that appear more often (– ↑, dark blue bars to the

left). However, the cumulative type contributions at the top may indicate that relatively

negative words that appear more often are only a small portion of the overall sum of the
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other five types of word contributions. Without the summary cumulative bars at the top,

it is difficult to quickly say what types of contributions, including those not shown in the

top words, affect the word shift difference the most.

To further aid the interpretation of the cumulative effects, we include a second diagnos-

tic plot that is in the bottom left corner of all of the case study plots in Sect. 4. We omit it

from the presidential speeches word shift graphs for simplicity. This inset shows how each

word cumulatively contributes to the total word shift difference as a function of rank.More

specifically, we first rank all words by the absolute magnitude of their contribution |δ�τ |.

We then cumulatively add these ranked absolute contributions to produce the cumulative

contribution curve. If we normalize by the total sum of the absolute contributions,

∑

τ∈T

|δ�τ |, (28)

we can interpret the plot as quantifying the percent of all variation explained up to a given

word rank. The horizontal line in each plotmarks the boundary between the words shown

in the word shift graph and all those that are not. The intersection of the cumulative curve

with the horizontal line indicates how much of the word shift difference is explained by

the words presented in the figure. This is important for determining how much weight

should be given to an interpretation that relies on the word shift graph. If a large portion

of the variation is explained by the top words, then the word shift graph reliably describes

most of the story of how two texts differ. However, if only a small portion of the variation

is explained by the top words, as revealed by the cumulative contribution curve, then we

can be less sure that the word shift graph is fully exposing the qualitative story. This may

indicate that more words should be presented in the figure, or that additional analyses are

needed for unpacking the texts, as we call for in our case study of 280 character tweets.

An alternative way that we may present the cumulative contributions, which we do not

use in any of the word shift graphs here but that is available in the code we provide, is to

plot the raw, rather than absolute, contributions as a function of rank. That is, plotting
∑

τ δ�τ as a function of rank, and normalizing by

|δ�| =

∣
∣
∣
∣

∑

τ∈T

δ�τ

∣
∣
∣
∣
. (29)

This displays the trajectory of the word shift difference as we add additional words,

which helps highlight effects of the long tail of contributions. This trajectory may be non-

monotonic, unlike the absolute cumulative curve. Together with the total contribution

bars at the top, the inset cumulative rank contribution plot gives us important summary

information about how individual word contributions come together in total, and draws

our attention to textual differences that may not be explained by the high ranking words

that are visualized in the bar chart.

The final diagnostic plot, shown in the bottom right corner of most of the case study

plots in Sect. 4, simply quantifies the relative size of the two corpora under study. The size

is measured by counting the number of word tokens in each corpus. The text size diag-

nostic alerts us if one of our texts is much larger than the other. This can be especially

problematic for any of the word shift measures that calculate their scores directly from
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the relative frequency distribution. If one text is much smaller than another, its word dis-

tribution will be less stable, and small differences may be improperly magnified by certain

measures, like the Jensen–Shannon divergence [42].

6.5 Case studies

6.5.1 Presidential speeches

We collected presidential speeches online from the University of Virginia’s Miller Center

(https://millercenter.org/the-presidency/presidential-speeches). The text of each speech

is clearly organized by speaker and we parsed them to separate presidents from other

entities (such as audiences or moderators). Unigrams were lowercased and the average

sentiment was calculated over a president’s entire set of speeches as a single text (not the

average of average sentiments of each individual speech).Our dataset includes 71 speeches

from Lyndon B. Johnson, consisting of 256,133 word tokens across 10,094 word types, and

39 speeches fromGeorgeW. Bush, consisting of 107,913 tokens across 7804 types. For the

labMT sentiment dictionary [4], we use a reference value of �(ref) = 5, which is the center

of the dictionary’s 1 to 9 sentiment scale. We also apply a stop window which excludes

any labMT word whose sentiment falls between the scores 4 and 6. For the SocialSent

historical lexicons [35], we use a reference value of�(ref) = 0, as all dictionaries were scaled

to have a mean of zero when they were constructed.

6.5.2 Moby Dick

The raw text of Moby Dick by Herman Melville is freely available on Project Gutenberg

at http://www.gutenberg.org/files/2701/2701.txt. We process the raw text by removing

the head matter and manually ending the text at the ‘ETYMOLOGY’ section. For the

figures in this paper, we use a manually trimmed version of the raw text, with chap-

ter headings removed (in contrast the larger emotional arc corpus [19], which relied on

automated header and footer removal). We remove spaces and punctuation, and low-

ercased all tokens. There are 213,984 total tokens in Moby Dick across 16,858 word

types, resulting in 106,992 tokens in each the first and second halves with 11,930 and

11,646 word types, respectively. For sentiment scores, we make the same choices as

we did for the presidential speeches: we use the labMT sentiment dictionary [4], ap-

ply a stop window which excludes any labMT word whose sentiment falls between the

scores 4 and 6, and use a reference value of 5. A reproducible analysis is available at

https://github.com/andyreagan/shifterator-case-study-moby-dick (as mentioned above,

the results herein rely on the ‘raw’ versions in the codebase).

6.5.3 US urban parks

We collected tweets from Twitter’s Decahose (10%) feed, stored in the Computational

Story Lab’s database at the University of Vermont. We restricted our sample to English

language tweets with GPS coordinates posted from January 1st, 2012 to April 27th, 2015

(a period in which geolocation was widely used). Using boundaries from the US Census,

we subsampled tweets within each of the 25 largest cities in the US by population. Within

these cities, we found 297,494 posted within urban park boundaries using the Trust for

Public Land’s Park Serve database at https://parkserve.tpl.org/. To compare sentiment be-

tween in-park and out-of-park tweets, we paired each in-park tweet with the closest-in-

time out-of-park tweet from another user within the same city (see ref. [57] for details).

https://millercenter.org/the-presidency/presidential-speeches
http://www.gutenberg.org/files/2701/2701.txt
https://github.com/andyreagan/shifterator-case-study-moby-dick
https://parkserve.tpl.org/
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Across the park tweets, there were 3,920,722 tokens across 451,627 word types. Across

the out-of-park control tweets there were 3,861,357 tokens across 410,397 word types.

For sentiment scores, we make the same choices as we did for the presidential speeches

and Moby Dick: we use the labMT sentiment dictionary [4], apply a stop window which

excludes any labMT word whose sentiment falls between the scores 4 and 6, and use a

reference value of 5.

6.5.4 Information content of 280 character tweets

We collected English-language tweets from Twitter’s decahose (10%) feed, stored in the

Computational Story Lab’s database at the University of Vermont. Language detection

came from the ‘en’ language label on each tweet provided by Twitter’s API. This comprised

577,985,080 tweets over the 60-day period studied: 274,888,052 from the 30 days before 7

November 2017, and 303,097,028 from the 30 days afterwards. We restricted to consider-

ing changes in a consistent vocabulary of all 10,222 word types contained in the LabMT

dictionary (i.e., without removal of any stop words) before and after the change. This re-

sulted in a collection of 2,526,152,975 word tokens from the period before the change,

and 2,555,503,284 from the period after the change. We use the average entropy of 140

character tweets as the reference value for the generalized word shift.

6.5.5 Regression analysis of urban labor diversity and the Great Recession

Employment data for U.S. cities in 2007 comes fromOccupational Employment Statistics

(OES) data provided by the U.S. Bureau of Labor Statistics (BLS). Employment is reported

using the StandardOccupation Classification (SOC) system that unifies occupational data

across the U.S. Department of Labor. The SOC is a hierarchical classification system, and

we use the most detailed (i.e., 6-digit) occupation codes in our analysis. However, occupa-

tion titles in Fig. 5 are simplified to conserve space; for example, the occupation category

“Correctional Officers and Jailers” (occupation code: 33-3012) is simplified to “Correc-

tional officers.” For comparing high and low diversity cities in Fig. 5, we first rank U.S.

cities based on the Shannon entropy of their employment distributions in 2007 (i.e., H (c))

and consider the 15 most diverse cities to the 15 least diverse cities. For each one of these

collections of 15 cities, we produce an aggregated employment distribution by taking the

average employment share for each occupation across the cities in the collection of cities.

We analyze unemployment in U.S. cities during the Great Recession using Local Area

Unemployment Statistics (LAUS) provided from the U.S. BLS. This data includesmonthly

statistics for each U.S. city. Since economic disruptions begin in different cities at different

times and urban economies recover at different rates, we consider themonth in the period

between January 2008 and December 2012 with the most unemployment in a given city.

Table 2 displays a more complete analysis of urban labor statistics and unemployment

during the Great Recession. All variables are centered and standardized prior to analysis

so that each variable is unit-less; this makes it easier to compare the relative importance

of each independent variables in predicting the dependent variable. It is very important to

first control for the size of each city’s labor force (i.e., T (c)) before considering the effects

of labor diversity on economic resilience. This is because cities with larger labor forces

have greater potential for absolute unemployment. Models 1, 2, and 3 show the Pearson

correlations between each individual independent variable and the dependent variable.

Model 3 combines all independent variables and reveals that both T (c) and H (c) are signif-

icant predictors of maximum unemployment during the Great Recession, but occupation



Gallagher et al. EPJ Data Science            ( 2021)  10:4 Page 27 of 29

Table 2 Regressing urban labor statistics against log10 the maximimum unemployment in each U.S.

city during the Great Recession. All variables are centered and standardized prior to analysis.

Regression coefficient estimates from Model 4 are presented in Fig. 6

Variable Model 1 Model 2 Model 3 Model 4 Model 5

log10 Total Employment (T (c)) 0.950∗∗∗ 1.214∗∗∗ 1.296∗∗∗

Employment Diversity (H(c)) 0.802∗∗∗ –0.220∗∗∗ –0.203∗∗∗

Occupation Diversity (N(c)) 0.925∗∗∗ –0.068 –0.140

T (c) × H(c) 0.114

N(c) × H(c) –0.040

T (c) × N(c) –0.072∗

R2 0.903 0.643 0.856 0.914 0.915

adj. R2 0.903 0.642 0.856 0.913 0.914

pval < 0.1∗ , pval < 0.01∗∗ , pval < 0.001∗∗∗ .

diversity (i.e., N (c)) is not. Adding the measures for labor diversity in addition to labor

force size yields an improvement in the overall predictive performance of the regression

model from 90.3% variance explained to 91.4% thus accounting for an additional 14% of

the unexplained variance when using labor force size alone. Finally, Model 5 includes the

interaction terms between independent variables and again demonstrates the added pre-

dictive value of H (c) in addition to T (c). Interestingly, we also find large cities with large

occupation diversity experienced lower unemployment during the Great Recession.
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