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In speckle-based metrology systems, a finite range of possible motion or deformation can be measured. When
coherent imaging systems with a single limiting aperture are used in speckle metrology, the observed de-
correlation effects that ultimately define this range are described by the well-known Yamaguchi correlation
factor. We extend this result to all coherent quadratic phase paraxial optical systems with a single aperture
and provide experimental results to support our theoretical conclusions. © 2006 Optical Society of America

OCIS codes: 120.6150, 070.0070, 120.3940, 070.6020.

Speckle is the name given to the grainy interference
pattern observed when an optically rough target is il-
luminated with coherent light. Speckle interferom-
etry and speckle photography (SP) can be used to de-
termine the deformation of a loaded body.'™ Using
SP, surface translation’™ and tilting2’4_6 can be esti-
mated.

In this Letter, we assume that every speckle field
is fully developed and tends toward a complex
Gaussian process.” Typically, speckle fields incident
on a detector are first processed by some optical
system. The behavior of this optical system will
limit the measurement range and sensitivity. A
diffraction-limited 4-f imaging system with an
aperture in the Fourier plane can be considered as
the concatenation of two optical Fourier
transform®! (OFT) modules producing an inverted
image. A small in-plane translation of ¢ and/or a
tilting of x leads to a field at the aperture plane
that is identical to the field before motion apart
from a spatial shift of « and a linear phase term.
It is important to note that only the field passing
through the aperture can contribute to the
image field distribution. The effect of the spatial
shift « is to remove some of the field from within
the aperture area that is common to both distribu-
tions. This effect leads directly to a decorrelation be-
tween the two fields (prior to, and after motion) inci-
dent on the camera in the output plane. This result is
commonly referred to as the Yamaguchi correlation
factor and is stated mathematically in Eq. (11) of
Ref. 1.

Designing metrology systems using the linear ca-
nonical transform (LCT) has many advantages both
simplifying the analysis and allowing increased flex-
ibility and greater control over the range and sensi-
tivity of measurements.**® Thus it would be useful to
extend the applicability of the Yamaguchi correlation
factor to these more general coherent paraxial optical
quadratic ghase systems, which can be described us-
ing a LCT.” Using Ref. 12, we define the 1D LCT as
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where x, indicates the domain into which the func-
tion u(x,) is transformed, and \ is the wavelength of
the illuminating light. The second-order statistics of
the speckle field u(x,) immediately after the rough
surface is assumed to be stationary and white.! The
first term in the parentheses, Eq. (1a), is neglected
now. The effect of this mapping between the input
signal (spatial coordinate, x,; spatial frequency coor-
dinate, k,) and output signal, (x,,%k,), can be de-
scrlbed using the ABCD matrix notation of Collins.*
In this matrix, AD-BC=1, indicating a lossless af-
fine transformation. It is important to note that the
signal u,(x,) is, in general, in a mixed spatial-spatial
frequency domain. A more general linear transform
exists, which includes a fixed position or phase shifts
and thus describes offsets with respect to the optlcal
axis and the effects of gratings and prisms.
decompose the complete metrology system matrlx
into two separate ABCD matrices that represent two
separate LCTs, 13 M1 {A1,B1,C1,D1}, describing
propagation from the input plane to the aperture
plane, and M2 {A2,B2,C2,D2}, describing propaga-
tion from the aperture to the output plane (see Fig.
1). We assume that any optical elements, e.g., lens,
are infinite in extent and attribute any losses in the
system to the single limiting aperture. We note that,
although Fig. 1 depicts a particular LCT system that
is used later, the results apply to any LCT system. o1f
the optically rough surface is translated by an
amount ¢ and rotated through an angle a, then the

(1b)
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Fig. 1. Optical setup for (a) System I, (b) System II.

altered field may be represented by5’6’9 u(x,)
=u(x,+&explj(27/\)kx,], where k~2a, if a<1rad.
The field u,(x,), incident on the aperture before mo-
tion, can be found by applying an LCT (defined by
matrix M1) to u(x,). The field incident on the aper-
ture after motion, #Z,(x,) is similarly calculated.

The fields, v,(-) and 7,(-), immediately after the
aperture, prior to and following motion, respectively,
are not the same, as the aperture ensures that some
spatial and spatial-frequency information is elimi-
nated. Let the aperture be described by the function
p(=). The undeformed and deformed fields immedi-
ately after the aperture v,(-) and 7,(-) are then
given by v,(-)=u,(-)p(-) and 0,(-)=a,(-)p(-), re-
spectively. The field incident on the camera before
motion can be written as

bel) = f a6t exD

Jjm
@(D%cf +A2x% - 2xaxc):| dx,.

(2)

Similarly, we can write an expression for the field in-
cident on the camera after the motion, 0,(-). Follow-
ing the approach taken in Ref. 1, we write the nor-
malized covariance, c;i(s), of the intensities of the

speckle field, I and I, before and after motion, respec-
tively, as

(v (r)Be(r +5))[2
cri(s) = - , (3)
groy

where o, is the variance defined as o'lzﬂ:<¢//>2—<¢/2>, the
angled brackets ( ) denote the ensemble average, and
* denotes the complex conjugate. Substituting the ex-
pressions for the fields v, (-), 0,(-), v.(-), and U,(-)
into Eq. (5), performing some algebra, and finding
the maximum value,” we can obtain an expression for
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the generalized Yamaguchi correlation factor c;7, as
given by
2
fp*(xa)p(xa +A1¢+ Blk)dx,
= ) (4)

f Ip(x,)[?dx,

where the variable x, indicates that the integration is
occurring over the aperture plane.’ From Eq. (4), the
decorrelation in the output field is dependent on the
shift of the distribution incident on the aperture,
which is due to both the in-plane translation &, and
tilting « of the surface. It should be noted that cj; is
dependent on M1 only, i.e., LCT System 1.

For a general LCT-based metrology system, Eq. (4)
represents the expected decorrelation due to the ap-
erture in the optical setup. There are, however, other
factors that can contribute to decorrelation such as
the camera.? We now outline the experimental proce-
dure used to verify Eq. (4) using a system, which
minimizes the effects at the camera.

Consider a general OFT system {A,B,C,D}={0,f,
-1/f,0}, where f is the focal length of the lens. Since
the value of A is zero, in-plane translations of the
rough surface produce no translation of the field in
the output plane. However, there must be some limit
to the distance we can translate the input plane after
which there is no detectable correlation between the
fields captured by the camera before and after mo-
tion. Since the field intensity incident on the camera
should not move, the camera itself will not contribute
to any resultant decorrelation. Decorrelation thus
arises primarily because of the aperture.

We define two OFT systems: System I, Eq. (5a),
and System II, Eq. (56b), which are identical apart
from the location of the aperture [see Figs. 1(a) and
1(b)]:

|:1 Zli| ( )
X , 5a
0 1y,

1 23 1 29

“lo 1 e (L0 1

1 0 1 21
“I—ur 1llo 1 M1H'(5b)

According to matrix M1y, given in Eq. (5a), an in-
plane translation of ¢ (assuming no surface tilting)
results in a translation of the field incident on the ap-
erture of {,=A1;£ where from Eq. (5a), A1;=1.
Examining System II, we see that when we multi-
ply the component matrices of M1y, Eq. (5b) gives
that &,=A1y;¢& where Al;=1-24/f, and the expected
rate of decorrelation is a function of z5 and f. Clearly,
different decorrelations are to be expected. To vali-




3446

date this prediction, we implemented Systems I and
II and compared the experimental results to Eq. (4).

The CCD camera was a Sony XC ES50CE with a
pixel size of 8.6 um X 8.3 um, a sensing area of
6.5 mm X 4.8 mm, and with no additional imaging op-
tics. After image acquisition, the size of the grabbed
image used for processing was 450X 410 pixels. The
correlation peak was calculated using the technique
outlined in Chap. 2 of Ref. 16. The translation stage
was driven with an Oriel Encoder Mike actuator, con-
trolled using the 18113 Oriel Mike Control System.
The motion stage while rated to have a positional
resolution of 0.1 um could only be positioned with an
accuracy of ~+1 ,um.5 The target, an 8 cm X 4 cm sec-
tion of rough aluminum located perpendicular to the
optical axis, was illuminated by a plane wave at an
angle of 15° with light of wavelength 488 nm. System
I was implemented with a lens, f=20 cm, and with
z1=20 cm, z,=20 cm giving Al;=1. The diameter of
the circular aperture was /=5 mm. The input plane
was then moved over 0 < ¢<5 mm in steps of 250 um.
In System II, z;=20 cm, z9=5 cm, and z3=15 cm, thus
A1;=0.75, and once again /=5 mm. The input plane
in this case was moved over 0 <£<6.7 mm in steps of
250 um. Applying Eq. (6), the predicted decorrelation
in this case is given by the autocorrelation of the pu-
pil function. For the circular aperture, the autocorre-
lation function can be expressed analytically using

one variable'®'” where r,=x2+y2,

2 Ty ry 7o\ 2 z
crilry) = 7—7 COS_1<7> - (7) 1- (7) . (6)

In Fig. 2, we present some results measured for Sys-
tem I. It is clear that the experimental data agree
with the theoretical curve produced using Eq. (6). In
Fig. 3, we present the results for System II. In this
case, there is no one-to-one relationship (A1y;=0.75)
between the input plane translation, ¢ and the re-
sulting shift in the aperture plane distribution, &,
and so we provide two scales on the horizontal axis.
In System II, the input plane has to be translated
more than in System I to achieve the same amount of
decorrelation. The results in Figs. 2 and 3 demon-
strate our ability to change the rate of decorrelation
in a controlled manner shown by varying the position

Theory (linc)
Experimental

results

0 1 2 3 4 5
¢= ¢, (mm)
Fig. 2. Theoretical and experimental maximum correla-
tion values as a function of input plane translation for Sys-
tem I. The motion of the input surface, ¢ and the corre-

sponding shift of the distribution in aperture plane, ¢,, are
identical.
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Fig. 3. Maximum correlation values for System II. The
shift of the input plane is denoted as {&}, and the corre-
sponding shift in the aperture plane is denoted as &,.

of the aperture. Thus these experimental results con-
firm the validity of Eq. (4), the generalized Yamagu-
chi correlation factor.

Referring back to Fig. 2, it can be seen that in some
cases, higher correlation values than those predicted
by the theory are measured, however allowing for a
worst-case error of +0.5 mm in our estimated aper-
ture diameter and the misalignment of optical ele-
ments, this falls well within the experimental error
limits.
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