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Abstract

A well trained and generalized deep neural network

(DNN) should be robust to both seen and unseen classes.

However, the performance of most of the existing supervised

DNN algorithms degrade for classes which are unseen in

the training set. To learn a discriminative classifier which

yields good performance in Zero-Shot Learning (ZSL) set-

tings, we propose to generate an Over-Complete Distri-

bution (OCD) using Conditional Variational Autoencoder

(CVAE) of both seen and unseen classes. In order to enforce

the separability between classes and reduce the class scat-

ter, we propose the use of Online Batch Triplet Loss (OBTL)

and Center Loss (CL) on the generated OCD. The effec-

tiveness of the framework is evaluated using both Zero-Shot

Learning and Generalized Zero-Shot Learning protocols on

three publicly available benchmark databases, SUN, CUB

and AWA2. The results show that generating over-complete

distributions and enforcing the classifier to learn a trans-

form function from overlapping to non-overlapping distri-

butions can improve the performance on both seen and un-

seen classes.

1. Introduction

Deep Neural Network (DNN) models have exhibited su-

perlative performance in a variety of real-world applications

when the models are trained on large datasets. However,

small sample size training sets pose a challenge to deep

learning models. It has been observed that in such cases,

the DNN models tend to overfit, thus leading to poor gen-

eralization. Based on the availability of labeled/unlabeled

data, multiple learning paradigms such as transfer learn-

ing [7], life-long learning [31], self-taught learning [26],

and one-shot learning [22] have been proposed for bet-

ter generalization. The problem becomes further challeng-

ing when the training dataset does not contain any sample

from the classes in the test dataset. Learning in this sce-

nario is known as zero-data learning or Zero-Shot Learning

(ZSL) [18].

To design algorithms for classifying in presence of lim-
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Figure 1. Illustrating seen and unseen 2D distributions before and

after the generation of over-complete distribution. f1 and f2 are

two dimensions of the data. (a) Distributions of three approxi-

mated unseen classes and generated OCDs for the corresponding

classes. (b) Three approximated unseen and seen class distribu-

tions, and generated OCDs for the corresponding classes. (Best

viewed in colour)

ited or no training data, researchers have designed two dif-

ferent protocols: 1) conventional Zero-Shot Learning and

2) Generalized Zero-Shot Learning (GZSL) [39]. In ZSL

problems, dataset is split into two sets with zero intersec-

tion in classes and the objective is to maximize the perfor-

mance on unseen classes. In GZSL, the test dataset contains

both unseen and seen classes, and it is required to maximize

the performance across both sets of classes. To address the

challenges of ZSL and GZSL, researchers have proposed to
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generate samples pertaining to unseen distribution synthet-

ically [10], [19], [32], [41]. The next section summarizes

the research efforts present in the literature. However, the

generated unseen classes fail to mimic the real unseen dis-

tribution, which is expected to have hard samples. Hence,

utilizing synthetically generated classes for training the dis-

criminative classifier does not necessarily improve the per-

formance.

One of the primary reasons for performance degradation

in ZSL is that the testing set contains hard samples which

are closer to another class and the decision boundary is not

optimized for such instances present in the test set. There-

fore, it is our assertion that generating hard samples and

approximating unseen classes may lead the network to re-

duce the bias. In this research, we propose the concept of

Over-Complete Distribution (OCD). The objective of over-

complete distributions is to generate challenging samples

that are closer to other classes, which consequently helps in

increasing the generalizability of the network with respect

to the unseen classes. Secondly, as shown in Figure 1, we

propose to incorporate Online Batch Triplet Loss (OBTL) to

enforce separability between classes and Center Loss (CL)

to reduce the spread within the class. We experimentally

demonstrate that synthetically generated over-complete dis-

tribution allows the classifier to learn a feature space where

the separability of seen/unseen classes can be efficiently im-

proved.

2. Related Work

The literature in this domain is segregated in two direc-

tions: ZSL and GZSL. In ZSL, Larochelle et al. [18] have

proposed to learn a mapping from input space view to the

model space view. Similarly, Akata et al. [2] have suggested

embedding each class into the attribute vector space, called

as Attribute Label Embedding (ALE). Liu et al. [19] have

proposed a Deep Calibration Network (DCN) for learning

the common embedding space between the visual features

of an image to the semantic representation of its respective

class. A widely used method to handle the ZSL problem is

to learn a mapping between seen observation to the attribute

vector space. Lampert et al. [17] proposed Direct Attribute

Prediction (DAP) where a weighted probabilistic classifier

has been trained for each attribute. After learning sample-

to-attribute mapping, Bayes rule is used to map attributes to

the class label. Xian et al. [37] proposed a more challeng-

ing protocol and demonstrated that existing state-of-the-art

(SOTA) algorithms do not perform well.

In GZSL, researchers have utilized the generated un-

seen classes to have representative data in the training

set [20], [23]. Verma et al. [32] have proposed a generative

model based on conditional variational autoencoder. They

have shown that the synthetically generated unseen distribu-

tion is closely approximated to the real unseen data distri-

bution. On synthetically generated data, they have trained

supervised linear SVM and shown state-of-the-art perfor-

mance on the GZSL protocol. Similarly, Gao et al. [10]

have proposed to synthesize the unseen data by utilizing a

joint generative model. They have used CVAE and GAN,

and observed that preserving the semantic similarities in the

reconstruction phase can improve the performance of the

model.

Zhang et al. [41] have proposed a hybrid model consist-

ing of conditional Generative Adversarial Network (cGAN)

and Random Attribute Selection (RAS) for the synthesized

data generation. They have trained the hybrid model while

optimizing the reconstruction loss. Zhang et al. [40] ob-

served that the performance of conventional zero-shot learn-

ing algorithms suffer due to Class-level Over-fitting (CO)

when they are evaluated for the GZSL task. To overcome

the CO problem, they have utilized the triplet loss, which

significantly outperforms the state-of-art methods. In an-

other research direction, Long et al. [20] have proposed

Unseen Visual Data Synthesis (UVDS) for generating syn-

thesized classes from semantic attributes information. The

authors have also proposed Diffusion Regularization (DR),

which helps to reduce redundant correlation in the attribute

space. Atzmon et al. [5] have proposed adaptive confidence

smoothing for GZSL problem. They have utilized three

classifiers as seen, unseen and gating experts to improve

the model performance. Huang et al. [14] have proposed

generative dual adversarial network for learning a mapping

function semantic to visual space. Schonfeld et al. [29] have

proposed to align the distribution generated from VAE and

showed improvement on benchmark databases.

Significant efforts have been made in the direction of

generating unseen synthetic distributions for training the

model. However, as discussed earlier, there are still chal-

lenges to be addressed to improve the performance on ZSL

and GZSL problems, such as generalization of the model

on the test set and reduce the bias for both seen and unseen

classes.

3. Proposed Framework

Figure 2 demonstrate the steps involved in the proposed

framework. For a given input x with associated attribute

a and latent variable z, there are three modules in the pro-

posed pipeline: (i) an encoder (pE(z|x)) to compute the

latent variables z on given x, (ii) a decoder (pG(x̂|z, a))
to generate samples x̂ on given z and attribute a, and (iii)

a regressor (pR(â|x̂)) to map x̂ to their predicted attribute

â. The combined encoder and decoder modules is called

as CVAE, which has been conditioned on attribute a. The

regressor module is trained with the OBTL and CL losses

to optimize the interclass and intraclass distances. This sec-

tion presents the details of each of the modules followed by

the training process and the implementation details.
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Figure 2. Illustration of the proposed OCD-CVAE framework. The framework uses Conditional Variational AutoEncoder (CVAE) with

encoder pE(z|x) and decoder pG(x̂|z, a) modules. The output of CVAE is given to the regressor pR(â|x̂) where regressor maps the

generated samples to its respective attributes. To generate the unseen synthetic data, attributes of unseen samples and randomly sampled z

are provided to the trained decoder.

Four Different classes 
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Figure 3. Illustration of over-complete distribution generation

while generating hard samples between two classes. The boundary

of the distribution would be decided from equations 1 and 2. Since

µOC is the average between one class to other competing classes,

the boundary would be extended based on the new obtained µOC .

3.1. Over­Complete Distribution (OCD)

The primary task of the decoder (shown in Figure 2) is to

generate or approximate a distribution which is closer to the

real unseen data. As shown in Figure 3, creating the OCD

for a class involves generating all the possible hard samples

which are closer to other class-distributions. Since simulat-

ing the behaviour of real unseen distribution is a challeng-

ing problem, we first propose to generate OCD for a class

and visually show that the generated OCD simulates the be-

haviour of the real unseen distribution. Using the given dis-

tribution, OCD is generated by mixing a finite number of

multiple Gaussian distributions [27] while shifting the mean

towards other classes. If the distribution is not known (in

case of unseen classes), the distribution of the class can be

approximated by using generative models. The parameters

of approximated distribution from the variational inference

of a class are represented by µ, σ and the over-complete

distribution is represented via µOC , σOC , where σOC > σ.

Let X̂ , and X̂OC be the approximated unseen distribu-

tion and over-complete distribution, respectively.

X̂ = pG(x|N (µHP , σHP ), a) and Ẑ = pE(z|x̂) ,

where x̂ ∼ X̂, µz|X̂ , σz|X̂ (1)

X̂OC = pG(x|N (µOC , σ
′

HP ), a),

µOC =
µz|X̂ + µ

′

z|X̂

2
, µ

′

z|X̂
= µz|X̂ [j] (2)

Equations 1 and 2 represent the process of generating the

over-complete distribution. Here, pG(.) is a generator mod-

ule of the pipeline. µHP and σHP are the hyper-parameters

for normal distribution. µz|X̂ and σz|X̂ are mean and stan-

dard deviation obtained while encoding the data X̂ into the

latent space, z. In Equation 2, σ
′

HP is a hyper-parameter

and j is a randomly sampled index variable for shuffling of

the parameter µz|X̂ . In both the equations, N (.) is a Gaus-

sian distribution generator.

In the first part of Equation 1, distribution of unseen

classes, X̂ , is generated by randomly sampling z ∼
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(b) Approximated distribution of unseen 

classes via CVAE

(c) OCD: approximated distribution of unseen 

classes while generating hard samples via CVAE(a) Real distribution of unseen classes

Figure 4. Illustrating synthetically generated distributions for unseen classes of the AWA2 database. (a) Real unseen distribution of the

AWA2 database. Different colours represent different classes of the AWA2 database with the PS protocol, (b) Approximated distribution

of unseen classes via CVAE, and (c) Approximated over-complete distribution of unseen classes via CVAE. From the distribution plot, it

can be observed that (c) is a closer representation of the real unseen class distribution shown in (a). (Best viewed in colour)

N (µHP , σHP ) with µHP , σHP as the parameters of the

distribution and unseen class attributes a. In the second part

of Equation 1, µz|X̂ and σz|X̂ are estimated by using the

encoder module pE(.). The first part of Equation 2 rep-

resents the generation of over-complete distribution X̂OC

in which latent variable z ∼ N (µOC , σ
′

HP ) is randomly

sampled from the Gaussian distribution, where, mean of the

distribution µOC is estimated by the average of the current

and each competing class. For example, on a given batch of

µ, j is an index variable ranging from 1, ..., batch size, and

it is randomly sampled without repetition.

In our approach, the decoder/generator PG(x|z, a)
is conditioned on attributes and used in Equations 1

and 2. In ZSL problems, it is assumed that attributes

are a good representation of a class and separated in the

attribute space. Within a class, if a sample is away from

the centre of the distribution, then it can be considered

as a hard sample. However, attributes of the sample

should be the same as the attributes of a class. Therefore,

while generating the OCD, attributes of a class are kept

unchanged. On the other hand, the latent variable z has

been changed based on the mean parameter of other classes.

Visualization of the Distributions: Figure 4(b) shows

the unseen distribution predicted/generated via CVAE, and

the classes are well-separated. However, as shown in Fig-

ure 4(a), the real distribution of unseen classes are closer

to other classes and some of them are overlapping. If the

generated distribution fails to mimic the behaviour of real

distribution, then the utility of such distributions is limited

in training. Usually, the discriminative classifier trained on

such distribution performs poorly on unseen classes. On the

other hand, learning class separability by maximizing inter-

class distance and minimizing intra-class distance might

provide a viable solution when the behaviour of the train-

ing set is close to the test set. In the case of ZSL, distribu-

tion is unknown and approximating unknown distribution

where latent variables are sampled from Gaussian distribu-

tion can lead to blind-spots in the feature space. As ob-

served in Figure 4(b), blind-spot is the place where samples

are not present and training a classifier with such data would

not ensure the model to learn transformations which are ef-

fective for separating real unseen distributions. Figure 4(c)

illustrates the OCD, which is an approximated distribution

of unseen classes while generating hard samples via CVAE.

Experimentally we have shown that training using such dis-

tribution can improve the classification performance.

3.2. Proposed OCD­CVAE Framework Training

As shown in Figure 2, we propose to train the OCD-

CVAE framework in three phases. In the first phase, CVAE

loss (LCV AE) is optimized. In the second phase, OBTL

loss along with center loss, i.e., LOBTL + LCL, is mini-

mized. The trained model is then utilized as a pre-trained

model for the third phase, where we propose training the re-

gressor on the generated OCD while minimizing the Online

Batch Triplet Loss (OBTL) and CL losses. In this section,

we first discuss the loss functions, followed by the details

of the three training phases.

3.2.1 Loss Functions

Online Batch Triplet Loss to Maximize Inter Class Dis-

tance: The triplet loss has been widely used in the literature

to increase the inter-class distance (Dinter) and decrease the

intra-class distance (Dintra). Mathematically, triplet loss

can be represented as:
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Lt(f
a, fp, fn) =

N
∑

i=1

[

||fa
i − f

p
i ||

2
2 − ||fa

i − fn
i ||

2
2 + α

]

+

(3)

where, f represents the embedded feature vector, Lt is the

triplet loss and triplet (fa, fp, fn) is a 3-tuple of anchor,

positive, and negative, respectively. α represents the margin

to control the distance between the positive and negative

pairs.
[]

+
= max(0, .) represents the hinge loss function.

If Dinter < Dintra then triplet < A,P,N > is consid-

ered to be a hard triplet. From Equation 3, it can be ob-

served that Lt(f
a, fp, fn) > 0 only if ||fa − fp||22 + α >

||fa − fn||22. Therefore, hard triplet mining is an essential

step to minimize triplet loss.

As shown in Figure 3, the generated hard samples be-

tween two classes lead to generating the over-complete dis-

tribution for a class. The approximated OCD is then utilized

for training a discriminative classifier for triplet loss mini-

mization. Selecting Nt hard triplets in offline mode requires

processing all the generated triplets in a single epoch which

is very challenging in real-world ZSL settings. Therefore,

we propose the Online Batch Triplet Loss, which is inspired

by the online triplet loss [4]. Generating triplets in a batch-

wise manner reduces the search space to find hard negative

samples and the total training time of the deep model1.

The proposed LOBTL minimizes the generated triplets

for every batch while training the model. LOBTL is opti-

mized in a manner similar to Lt as defined in Equation 3. It

is our assertion that synthetically generating hard negatives

can improve the learning of the deep model.

Center Loss: Mapping a sample to their attributes has been

used to find a solution for the ZSL problem. In order to learn

the mapping of different samples to the attribute of a class,

the standard deviation of a class distribution in the attribute

space should be minimum. Therefore, center loss [35],

along with regressor loss [32] has been utilized to minimize

the deviation from the center.

As shown in Figure 2, the regressor maps the approxi-

mated x to the associated attribute a. Since hard samples

increase the standard deviation, it is important to minimize

the centre loss for the over-complete distribution. There-

fore, the discriminative classifier is trained with center loss

LCL:

1For instance, we have 20 samples per class from 10 classes in the

dataset. Selecting every combination of 2 images from each class for the

anchor and positive images and then selecting a hard-negative from the re-

maining images gives 10×(C20

2
) = 1900 triplets. Despite 200 unique sam-

ples, it requires 19 forward and backwards passes to process 100 triplets at

a time. In OBTL, these embeddings are mapped to 1900 triplets that are

passed to the triplet loss function, and then the derivative is mapped back

through to the original sample for the backwards network pass - all with a

single forward and single backward pass.

LCL =
1

2

S+U
∑

c=1

||xc − xCT
c ||22 (4)

where, xc represents a sample from class c and xCT
c is the

learned center of class c.

3.2.2 Learning Phase of the Proposed Model

As shown in Figure 2, the learning phase of the proposed

framework can be divided into three phases. In the first

phase, encoder followed by decoder (CVAE) is trained

using KL-divergence and conditional marginal likelihood.

In the second phase, regressor/classifier is trained using

the proposed OBTL along with CL. In the third phase,

the decoder/generator and the regressor have been trained

while minimizing the OBTL, CL, and discriminator driven

losses [32].

Let the training set contain ‘S’ seen classes and the test-

ing set contain ‘U ’ unseen classes. Their respective class

attributes are represented as {ac}
S+U
c=1 where, ac ∈ R

L and

L is the length of attributes. Training DS and testing DU

sets can be represented as the triplet of data, attributes, and

label {Xs, as, ys}
S
s=1 and {Xu, au, yu}

U
u=1, respectively.

On the aforementioned settings, ZSL algorithm aims to

build a classification model on DS which can learn a

mapping function f : XU → YU where, XU = {Xu}
U
u=1

is a set of unseen samples and YU = {yu}
U
u=1 is the

corresponding class set [2, 16].

First phase of training: In the first phase of training,

CVAE is trained on DS , where the input sample is xi for the

encoder which encodes the latent variable zi. Encoded vari-

able is appended with the attributes ai of the corresponding

sample. The appended latent variable [zi, ai] is then pro-

vided to the generator module that generates the outputs x̂i

for a particular distribution which is close to the input pro-

vided to the encoder module. Trained CVAE allows the de-

coder to generate synthetic data on given attributes a. The

CVAE loss (LCV AE) can be defined as:

LCV AE = −EpE(z|x),p(a|x)
[logpG

(x̂|z, a)]+

KL(pE(z|x)||p(z)) (5)

where, −EpE(z|x),p(a|x)
[logpG

(x̂|z, a)] is the conditional

marginal likelihood and KL(pE(z|x)||p(z)) is the KL-

divergence. Inspired from Hu et al. [13], the joint distri-

bution over the latent code [z, a] is factorized into two com-

ponents pE(z|x) and pR(â|x) as a disentangled representa-

tion.

Second phase of training: In the second phase of training,

regressor is trained on DS while minimizing the two losses
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min
θR

LOBTL + LCL (6)

The regressor is trained to improve the mapping of gener-

ated synthetic data to the corresponding attribute.

Third phase of training: In the third phase of the training,

Ds and approximated OCD have been utilized. From the

first phase, we obtain θG (the generator parameter) which

is used in the third phase of training. In the third phase,

loss Lc(θG) is based on the discriminator prediction and

LReg(θG) is used as a regularizer.

Lc(θG) = −EpG(x̂|z,a)p(z)p(a)[log pR(a|x̂)]

LReg(θG) = −Ep(z)p(a)[log pG(x̂|z, a)]
(7)

This regularization is used to ensure that the generated OCD

produces class-specific samples, even if z is randomly sam-

pled from p(z). The complete objective function of the third

phase can be represented using the equation below where,

λc, and λreg are the hyper-parameters.

min
θG,θR

(λc.Lc + λreg.LReg + LOBTL + LCL) (8)

3.3. Implementation Details

Experiments are performed on a 1080Ti GPU using

Tensorflow-1.12.0 [1]. Hyper-parameters for CVAE learn-

ing: λc = 0.1, λR = 0.1, λreg = 0.1, and batch size =
256. To generate hard samples, the value of hyper-

parameters µHP , σHP and σ
′

HP in Equations 1 and 2 are

0, 0.12, and 0.5, respectively. In our experiments, the size

of µ is 256× 100 and row-wise shuffling is performed.

4. Experimental Results and Analysis

The proposed framework is evaluated on both ZSL and

GZSL settings, and compared with recent state-of-the-art

algorithms. This section briefly presents the databases and

evaluation protocols, followed by the results and analysis

on the AWA2 [17], CUB [34], and SUN [25] benchmarking

databases.

4.1. Database Details

The statistics and protocols of the databases are pre-

sented in Table 1. All databases have seen/unseen splits

as well as attributes of the corresponding classes. The An-

imals with Attributes2 (AWA2) [17] is the extension of the

AWA [16] database containing 37, 322 samples. It has im-

ages from 50 classes and size of attribute vector is 85, both

these are consistent with the AWA database. The 85 dimen-

sional attributes are manually marked by humans experts.

The Caltech UCSD Bird 200 (CUB) [34] database contains

Table 1. Databases used in the experiments.

Dataset Seen/Unseen Classes Images Attribute-Dim

SUN 645/72 14340 102

CUB 150/50 11788 312

AWA2 40/10 37322 85

11, 788 fine-grained images of 200 bird species. The size

of the attribute vector is 312. The SUN Scene Classifica-

tion (SUN) [25] database contains 14, 204 samples of 717

scenes. It has an attribute vector of 102 length.

4.2. Evaluation Protocol

The experiments are performed with both Zero-Shot

Learning and Generalized Zero-Shot Learning protocols. In

ZSL, OCD for unseen classes are generated and utilized to

train the proposed OCD+CVAE framework. The results are

reported on both standard split (SS) given by Larochelle et

al. [18] and proposed split (PS) given by Xian et al. [37]

protocols. Unseen class classification accuracies are re-

ported for both PS and SS protocols.

For GZSL, the seen classes of the dataset are divided

into 80-20 train-test ratio to obtain the two sets: XS
train

and XS
test. The set S + U is used for the training where

U has been synthetically generated by the generator mod-

ule of the proposed framework. For testing, the model is

evaluated on XU and XS
test. In GZSL, as defined in the

literature, average class accuracies of protocols A and B

are reported. Protocol A is an average per-class classifi-

cation accuracy on XU
test where, a regressor is trained on

S + U classes (A : U → S + U ). Protocol B is an average

per-class classification accuracy on XS
test where, a regres-

sor is trained for S + U classes (B : S → S + U ). The

above mentioned protocols are predefined for AWA2 [17],

CUB [34], and SUN [25] databases and widely used to eval-

uate ZSL/GZSL algorithms. The proposed model maps a

sample to the corresponding attribute.

4.3. Conventional Zero­Shot Learning (ZSL)

Table 2 summarizes the results of conventional Zero-

Shot Learning. The train split of all three datasets has been

used to optimize the proposed framework. For the ZSL

problem, synthetic hard samples are generated between un-

seen classes. The classification accuracies obtained on the

PS protocol on AWA2, CUB and SUN databases are 71.3%,

60.3%, and 63.5%, respectively. The proposed framework

has improved the state-of-art performance on AWA2, SUN,

and CUB databases by 1.8%, 0.7%, and 0.1%, respectively.

To estimate whether this difference is significant or not, the

McNemar Test [21] is used. Keeping a significance thresh-

old of 0.05, or 5%, we have observed that the null hypoth-

esis is rejected for AWA2 and CUB databases, showcasing
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Table 2. Classification accuracy (%) of conventional zero-shot

learning for standard split (SS) and proposed split (PS) [37]. (Top

two performances are in bold)

Method
AWA2 CUB SUN

SS PS SS PS SS PS

CONSE [24] 67.9 44.5 36.7 34.3 44.2 38.8

SSE [42] 67.5 61.0 43.7 43.9 54.5 51.5

LATEM [36] 68.7 55.8 49.4 49.3 56.9 55.3

ALE [2] 80.3 62.5 53.2 54.9 59.1 58.1

DEVISE [9] 68.6 59.7 53.2 52.0 57.5 56.5

SJE [3] 69.5 61.9 55.3 53.9 57.1 53.7

ESZSL [28] 75.6 58.6 55.1 53.9 57.3 54.5

SYNC [8] 71.2 46.6 54.1 55.6 59.1 56.3

SAE [15] 80.2 54.1 33.4 33.3 42.4 40.3

SSZSL [12] - - 55.8 - - -

GVRZSC [6] - - 60.1 - - -

GFZSL [33] 79.3 67.0 53.0 49.2 62.9 62.6

CVAE-ZSL [23] - 65.8 - 52.1 - 61.7

SE-ZSL [32] 80.8 69.2 60.3 59.6 64.5 63.4

DCN [19] - - 55.6 56.2 67.4 61.8

JGM-ZSL [10] - 69.5 - 54.9 - 59.0

RAS+cGAN [41] - - - 52.6 - 61.7

Proposed 81.7 71.3 60.8 60.3 68.9 63.5

Table 3. Ablative study on three datasets with the PS protocol. The

reported values are classification accuracy (%).

AWA2 SUN CUB

OBTL 65.8 56.4 54.5

CL 65.3 56.2 53.7

OCD+OBTL 70.9 62 60.5

OCD+CL 66.5 57.6 56.8

OCD+OBTL+CL 71.3 62.1 60.9

that the difference is statistically significant for these two

databases. However, for the SUN database, the null hypoth-

esis is not rejected, which implies that the difference be-

tween the proposed algorithm from SOTA is insignificant.

For the SS protocol, the classification accuracies on AWA2,

CUB, and SUN databases are 81.2%, 60.8%, and 68.4%,

respectively. In general, across the three databases, the pro-

posed algorithm yields one of the best accuracies compared

to several existing approaches.

4.4. Ablative Study

The proposed framework OCD-CVAE has utilized mul-

tiple loss functions for improving the performance of

ZSL/GZSL. Ablation study is conducted to evaluate the ef-

fectiveness of each of the components individually and in

combination. Table 3 summarizes the results of five settings

thus obtained. It can be observed that OCD+OBTL+CL

yields the best results, followed by OCD+OBTL. Also, ap-

plying only OBTL and only CL yields poor performance,

and it can be attributed to lack of sufficient hard samples

for the OBTL and CL loss functions to backpropagate the

gradient.

4.5. Generalized Zero­Shot Learning (GZSL)

In GZSL, the testing samples can be from either seen or

unseen classes. This is a challenging setting where the train

and test classes are not completely disjoint, but the samples

of the train and test sets are disjoint. Hence, the possibility

of overlapping distribution and hard samples increases in

the test set. Most of the ZSL algorithms perform poorly on

GZSL. It is our assertion that addressing this GZSL requires

learning separability in the embedding space (output of the

regressor). The results are reported in terms of average per-

class classification accuracies for the protocols A and B,

and the final accuracy is the harmonic mean of accuracies

(represented as H), which is computed by 2× A×B

A+B
.

Table 4 summarizes the results of existing algorithms

on the three databases in GZSL settings. The algorithms

are segregated into non-generative and generative mod-

els. Among the non-generative models, COSMO+AGO [5]

yields the best performance. While considering all the algo-

rithms, it can be observed that utilizing approximated distri-

bution of unseen class by generative models performs better

than non-generative models. The proposed method also uti-

lizes CVAE based generative model. We postulate that gen-

erating OCD on the train set and utilizing it to optimize the

proposed framework leads the network to better generalize

on the test set.

Between the two protocols A and B, as expected, the re-

sults on protocol B which corresponds to the test set with

seen classes are better than the results with unseen test

set (protocol A). It is interesting to observe that the pro-

posed framework not necessarily yields the best results for

the seen test set, but it is among the top three algorithms

on the more challenging unseen test protocol for all three

databases. Further, it can be observed from Table 4 that

the proposed framework improves state-of-the-art harmonic

mean accuracies H on the AWA2 dataset by 1.8%. The

proposed algorithm is among the two best performing algo-

rithms on the SUN and CUB databases. It is worth men-

tioning that the GZSL is a challenging problem, and none

of the algorithms has consistently outperformed on all three

databases.

4.6. Hyper­Parameter Selection

Figure 5(a) shows the performance with an increasing

number of synthetically generated samples. It can be ob-

served that when OCD is not used for training the regres-

sor, increasing the number of samples does not affect the

performance. With the use of OCD, generating 400 to 600
samples leads to improved performance. To determine the

value of σ
′

HP in Equation 2, we have explored the range of

σ
′

HP from 0.05, to 0.95. As shown in Figure 5(b), it can

be observed that the best performance has been achieved on

0.5 standard deviation. The value of σHP is chosen from

a standard normal, while σ′
HP is computed using the PS
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Table 4. Average per-class classification accuracy (%) and harmonic mean accuracy of generalized zero-shot learning when test samples

can be from either seen (S) or unseen (U) classes. A: U→S+U, and B: S→S+U. (Top two performances are highlighted)

Type Method
AWA2 CUB SUN

A B H A B H A B H
N

o
n

-G
en

er
at

iv
e

M
o

d
el

s

CONSE [24] 0.5 90.6 1.0 1.6 72.2 3.1 6.8 39.9 11.6

SSE [42] 8.1 82.5 14.8 8.5 46.9 14.4 2.1 36.4 4.0

SJE [3] 8.0 73.9 14.4 23.5 59.2 33.6 14.7 30.5 19.8

ESZSL [28] 5.9 77.8 11.0 12.6 63.8 21.0 11.0 27.9 15.8

SYNC [8] 10.0 90.5 18.0 11.5 70.9 19.8 7.9 43.3 13.4

SAE [15] 1.1 82.2 2.2 7.8 54.0 13.6 8.8 18.0 11.8

LATEM [36] 11.5 77.3 20.0 15.2 57.3 24.0 14.7 28.8 19.5

ALE [2] 14.0 81.8 23.9 23.7 62.8 34.4 21.8 33.1 26.3

DCN [19] - - - 28.4 60.7 38.7 25.5 37.0 30.2

COSMO+LAGO [5] 52.8 80.0 63.6 44.4 57.8 50.2 44.9 37.7 41.0

DEVISE [9] 17.1 74.7 27.8 23.8 53.0 32.8 16.9 27.4 20.9

G
en

er
at

iv
e

M
o

d
el

s

CVAE-ZSL [23] - - 51.2 - - 34.5 - - 26.7

SE-GZSL [32] 58.3 68.1 62.8 41.5 53.3 46.7 40.9 30.5 34.9

JGM-ZSL [10] 56.2 71.7 63.0 42.7 45.6 44.1 44.4 30.9 36.5

f-CLSWGAN [38] - - - 43.7 57.7 49.7 42.6 36.6 39.4

RAS+cGAN [41] - - - 31.5 40.2 35.3 41.2 26.7 32.4

CADA-VAE [29] 55.8 75.0 63.9 51.6 53.5 52.4 47.2 35.7 40.6

GDAN [14] 32.1 67.5 43.5 39.3 66.7 49.5 38.1 89.9 53.4

Proposed 59.5 73.4 65.7 44.8 59.9 51.3 44.8 42.9 43.8

(a) Number of synthetically 

generated samples/class

(b) Standard deviation 

[σ for z~N(0, σ)]

Figure 5. Hyper-parameter selection on the AWA2 dataset with the

PS protocol. Accuracy plots on varying (a) the number of samples

and (b) standard deviation.

split train set. The results in Figure 5 also demonstrate that

the chosen value (0.5) yields the best results. Most of the

hyper-parameters are kept consistent with Verma et al. [32].

In OBTL loss, α parameter is computed during optimization

on the train set and is set as 0.4.

5. Conclusion

This paper addresses the challenge of Zero-Shot Learn-

ing and Generalized Zero-Shot Learning. We propose the

concept of over-complete distribution and utilize it to train

the discriminative classifier in ZSL and GZSL settings. An

over-complete distribution is defined by generating all pos-

sible hard samples for a class which are closer to other com-

peting classes. We have observed that over-complete distri-

butions are helpful in ensuring separability between classes

and improve the classification performance. Experiments

on three benchmark databases with both ZSL and GZSL

protocols show that the proposed approach yields improved

performance. The concept of OCD along with optimiz-

ing inter-class and intra-class distances can also be utilized

in other frameworks such as Generative Adversarial Net-

works, heterogeneous metric learning [11], and applications

such as face recognition with disguise variations [30].
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