
RESEARCH ARTICLE Open Access

Generalizing cell segmentation and
quantification
Zhenzhou Wang* and Haixing Li

Abstract

Background: In recent years, the microscopy technology for imaging cells has developed greatly and rapidly.

The accompanying requirements for automatic segmentation and quantification of the imaged cells are becoming

more and more. After studied widely in both scientific research and industrial applications for many decades, cell

segmentation has achieved great progress, especially in segmenting some specific types of cells, e.g. muscle cells.

However, it lacks a framework to address the cell segmentation problems generally. On the contrary, different

segmentation methods were proposed to address the different types of cells, which makes the research work

divergent. In addition, most of the popular segmentation and quantification tools usually require a great part of

manual work.

Results: To make the cell segmentation work more convergent, we propose a framework that is able to segment

different kinds of cells automatically and robustly in this paper. This framework evolves the previously proposed

method in segmenting the muscle cells and generalizes it to be suitable for segmenting and quantifying a variety

of cell images by adding more union cases. Compared to the previous methods, the segmentation and quantification

accuracy of the proposed framework is also improved by three novel procedures: (1) a simplified calibration method is

proposed and added for the threshold selection process; (2) a noise blob filter is proposed to get rid of the noise

blobs. (3) a boundary smoothing filter is proposed to reduce the false seeds produced by the iterative erosion. As it

turned out, the quantification accuracy of the proposed framework increases from 93.4 to 96.8% compared to the

previous method. In addition, the accuracy of the proposed framework is also better in quantifying the muscle cells

than two available state-of-the-art methods.

Conclusions: The proposed framework is able to automatically segment and quantify more types of cells than

state-of-the-art methods.
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Background

Imaging of cells in biology are becoming more and more

popular with the fast development of microscopy and

nanotechnology [1–7]. In different applications, different

ways had been utilized to separate the imaged cells and

they usually took the researchers great effort. As a

powerful tool, the image processing technology is be-

coming more and more important for the segmentation,

quantification and analysis of microscopy data [8, 9]. In

different applications, the forms, the dimensions of the

cells and their gray-level distributions vary significantly,

which makes the segmentation task challenging. In many

applications, the cells are frequently neighboring or

overlapping on each other, which makes the quantifica-

tion difficult. In this paper, we propose a generalized

framework for robust segmentation and quantification

of different types of cells imaged in different biological

applications.

In the past decades, image processing technology has

been utilized widely in segmenting and quantifying

different types of cells. The absence of a generalized

framework for different types of cell images makes the
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research work application specific instead of convergent

to a common solution. Different methods were pro-

posed and claimed to be superior in segmenting a class

of cells. These methods include watershed method

[10–12], region growing based method [13], morpho-

logical method [14, 15], clustering based method [16],

contour based method [17], multilayer segmentation

based method [18], pattern modeling based method

[19], supervised learning method [20], morphological

watershed based method [21], inference based method

[22] and methods that combine the threshold selec-

tion and morphology techniques [23–25]. However,

the performance and applicability of most of these

methods are very limited because they are diverging

rather than convergent to a generalized solution to

address so many types of cells. To overcome this

drawback, the author has proposed a new approach

to segment and quantify different types of cells or

nanoparticles based on the general property of the

cell images: global intensity distribution and local gra-

dient [24], which is more versatile than the refer-

enced state of the art methods. The approach

proposed in [24] evolves the method proposed in [25]

and makes it to be able to segment and quantify

more types of cells or nanoparticles. One fundamental

improvement of [24] compared to [25] is that the

threshold selection method used in [25] was im-

proved to be able to segment more types of cells or

nanoparticles robustly. However, the details of how to

apply the proposed threshold selection method with

practical cell images are not addressed adequately in

[24]. In this paper, we design the practical algorithm

to apply the threshold selection method proposed in

[24] to segment the practical cell images. In addition,

we calibrate more parameters than [24] to guarantee

the robust segmentation.

A more important goal of this paper is to propose

a generalized framework to segment and quantify dif-

ferent types of cells imaged in different systems with

higher accuracy compared to the past work [10–25].

To this end, we tested more cell images in addition

to the muscle cell images in [25]. Some imaged cell

images have artifacts or the segmentation results con-

tain too much noise. Consequently, the segmented

cells contain shape noises which will increase the

number of the eroded seeds by the iterative erosion

method proposed in [25], which will affect the final

quantification accuracy. To eliminate these shape

noises, we propose a Fourier Transformation based

shape filter and it could decrease the wrong quantifi-

cation effectively. In addition to the shape filter, we

also propose a blob filter that could remove the line

shape noise blobs effectively. For the muscle cell im-

ages [25], two cases are defined in the union method

based on the image characteristics. For the general-

ized framework to segment more types of cell images,

three cases are defined in the union method in this

paper. To verify the advantages of the proposed

generalized framework over the past research work

[10–25], we give both the qualitative results and the

quantitative results.

Methods

The generalized framework

The proposed framework for segmentation and quantifi-

cation of the cells is illustrated in Fig. 1. In the frame-

work, the content in the ellipse vary depending on the

input image to be processed while the content in the

rectangle are the proposed algorithms and they remain

the same for different types of cells. The input image de-

notes the original cell image. The gradient image is ob-

tained after edge enhancement. Both the input image

and the gradient image are segmented by the threshold

selection method automatically to get the binarized

image and the constraint edge image, respectively. The

segmentation result is obtained by unifying the binarized

image and the negative constraint edge image. The noise

blob removing filter is used to eliminate the thread-like

or small noise blobs. The boundary smoothing filter is

used to remove the noise contained in the extracted

Fig. 1 Flowchart of the proposed framework (The black solid arrow

denotes the obligatory operation while the white hollow arrow denotes

the optional operation)
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boundary. The quantification method is used to obtain

the quantification result after identifying each cell indi-

vidually. Except the segmentation method, the union

method and the quantification method, all the other

methods are optional based on the characteristics of

the cells. For each type of cell, the methods are se-

lected and then applied one by one in the framework

and they need to be prepared and calibrated carefully

before the framework could segment and quantify the

cells automatically.

The enhancement method

The gradient image is generated by the enhancement

method. In the current framework, we generate the gra-

dient image using the Sobel operators. Firstly, the Sobel

operator is applied to the cell image along the row direc-

tion to get the horizontal gradient components, Ix.

Secondly, the Sobel operator is applied to the cell image

along the column direction to get the vertical gradient

components, Iy. Thirdly, the gradient image is formed by

the following equation.

Ig h; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ix
2 h; jð Þ þ Iy

2 h; jð Þ
q

ð1Þ

where h = 1,…,H; is the index of the pixel along the col-

umn direction and j = 1,…, J; is the index of the pixel

along the row direction. H × J denotes the dimension of

the cell image.

The segmentation method

The segmentation method should be flexible and ro-

bust enough for a vast variety of cell images. We

tested all the available state of the art segmentation

methods [26–33] to segment the cell images and the

generated gradient images. Unfortunately, we did not

find any state of the art segmentation method that

could yield adequate accuracy consistently for so many

types of cell images. A more versatile, flexible and

generalized image segmentation method has been pro-

posed in [25] to produce acceptable segmentation re-

sults consistently for many types of muscle cell

images. However, the histogram modalities of the

muscle cell images are similar and so are the modal-

ities of their gradient images, which makes the image

segmentation less challenging compared to segment-

ing more divergent types of cell images. Fortunately,

the flexibility of the previously proposed threshold se-

lection method makes it adjustable for different types

of images by varying the its parameters. Hence, we

introduce the process of calibration in this paper to

find the optimal parameters of the threshold selection

method for each specific type of cell image. The

previously proposed threshold selection method could

be summarized as follows.

The threshold is calculated from the slope difference

distribution of the normalized histogram. The histogram

is assumed as Gaussian-mixture distributions in this

research work. We define the slope difference distribu-

tion of the image as the variation rate of the normalized

histogram and it could be computed by the following

steps.

Step 1, Assuming the image is non-negative, the cell

image is modified by rearranging its gray-scale values in

the interval [0, 255] with the following equation.

I′ h; jð Þ ¼
255� I h; jð Þ

max Ið Þ
; h ¼ 1;…;H ; j

¼ 1;…; J ð2Þ

where H × J is the resolution of the cell image, I. h

is the index of the pixel along the vertical direction

of the cell image and j is the index of the pixel

along the horizontal direction of the cell image.

Here, 255 is used for convenience because most gray

images have the maximum value of 255. 255 could

be changed to other values based on the application

requirements.

Step 2, the histogram distribution P(x) of the modi-

fied cell image, I′ is normalized by the following

equations:

P x ¼ mð Þ ¼
Nm

N l

;m ¼ 0;…; 255; ð3Þ

l ¼ argmax
l∈ 0;255½ �

N~l ð4Þ

where Nl denotes the maximum frequency that occurs

at l in the interval [0, 255]. Nm denotes the frequency of

the pixel value m.

Step 3, after the histogram distribution is normalized,

it is then filtered in the frequency domain. Firstly, the

normalized histogram distribution, P(x) is transformed

into the frequency domain with the Discrete Fourier

Transformation (DFT):

F kð Þ ¼
X

255

x¼0

P xð Þe−i
2πkx
255 ; k ¼ 0;…; 255 ð5Þ

Then, we select the low frequency parts from 1 to L

and eliminate the rest of high frequency parts with the

following equation.

F ′ kð Þ ¼
F kð Þ; k ¼ 0; 1;…;W

F kð Þ; k ¼ 255−W ;…; 254; 255
0; k ¼ W þ 1;…; 255−W−1

8

<

:

ð6Þ

where W the bandwidth of the low pass DFT filter and it

is going to be determined by the calibration process.
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After the above equation is performed to filter

histogram distribution in the frequency domain, we

transform the smoothed histogram distribution back

into spatial domain by the following equation.

P′ xð Þ ¼
1

255

X

255

k¼0

F ′ kð Þei
2πxk
255

�

�

�

�

�

; x ¼ 0;…; 255

�

�

�

�

�

ð7Þ

where P′(x) is the filtered and smoothed histogram.

Step 4, for each point, i on P′(x), there are two

slopes, a1(i) and a2(i). They are on the left side and

the right side of the point, i respectively. They could

be computed by a fitted line model with N adjacent

points at each side and the parameter N will also be

determined by the calibration process. The line model

is formulated as:

yi ¼ axi þ b ð8Þ

a; b½ �T ¼ BTB
� �−1

BTY ð9Þ

B ¼

x1 1
x2 1
⋮

xN

⋮

1

2

6

4

3

7

5
ð10Þ

Y ¼ ½y1;y2;…; yN �
T ð11Þ

When the N fitting points are on the left side of the

point i, the slope a equals a1(i). When the N fitting

points are on the right side of the point i, the slope a

equals a2(i). Both slopes are computed by Eq. 9.

Accordingly, the slope difference of the point i is com-

puted by the following equation.

s ið Þ ¼ a2 ið Þ−a1 ið Þ; i ¼ N þ 1;…; 255−N ð12Þ

The continuous version as s(i) is defined as the slope

difference distribution. Setting its derivative to zero, we

could get the Nv valleys Vi; i = 1,…,Nv with greatest

local variations and Np peaks Pi; i = 1, 2,…,Np with

greatest local variations of the slope difference distribu-

tion. Not all peaks or valleys are caused by the histo-

gram variations because the smoothing process by the

low-pass DFT filter might produce small harmonics

when significant parts of the original histogram remain

the same or close to the horizontal axis. Conse-

quently, these harmonics produce pseudo peaks and

valleys. Fortunately, the pseudo peaks or valleys are

much smaller compared to the real peaks or valleys.

The real peaks or valleys could be distinguished from

the pseudo ones easily based on their magnitudes.

On the other hand, the produced harmonics avoid

the possible ill-conditions of the matrix inverse

operation in Eq. 9. The matrix inverse operation will

become ill-conditioned when the N fitting points are

from a horizontal line. The horizontal parts in the

histogram are replaced with harmonics after DFT

filtering. We demonstrate the slope difference distri-

bution with three synthesized images in Fig. 2. The

first synthesized image is an image with two objects

as shown in Fig. 2a. The grayscale of the background

equals 50, the grayscale of the dark object equals 120

and the grayscale of the bright object equals 220. Its

slope distribution is demonstrated in Fig. 2d. The

original histogram distribution consists of three iso-

lated peaks. After DFT filtering, the histogram distri-

bution become continuous with small harmonics that

produce many small pseudo peaks and valleys. There

are three real peaks and six real valleys and their

magnitudes are much greater than those of the

pseudo ones. The peaks and valleys are denoted by

the blue crosses and red circles respectively in Fig. 2d.

The second image is synthesized by adding Gaussian

noise to the first synthesized image and it is shown

in Fig. 2b. Its slope difference distribution is shown

in Fig. 2e. As can be seen, its original histogram is

continuous with less parts on the horizontal axis. As

a result, less harmonics and less pseudo peaks and

valleys are generated. The third image is synthesized

by blurring the second synthesized image with an it-

erative moving average filter and it is shown in

Fig. 2c. Its slope difference distribution is shown in

Fig. 2f. As can be seen, its original histogram is also

continuous. However, many parts are close to the

horizontal axis. As a result, many pseudo peaks and

pseudo valleys occur. From all these results, it is

seen that the real peaks or valleys could be easily

distinguished from the pseudo peaks or valleys. For

most practical images, their histograms are usually

continuous without significant parts close to the

horizontal axis or remain the same, thus no pseudo

peaks or valleys will occur. For the image with

known number of pixel classes Kc, the rule to select

the peaks is as follows. Firstly, all the peaks are

sorted in the magnitude descending order. Secondly,

the first Kc peaks are then selected as the real peaks.

The slope difference distribution has three fundamen-

tal properties that help to design the threshold selection

process.

Property 1: in situations where the histogram distri-

bution of background and the histogram distribution

of the cells are both Gaussian distributed, the valley

positions between the background and the object on

the slope difference distribution change monotonic-

ally with the number of the fitted points N in the

line model while the peak positions are almost the

same when the parameter, N is changed gradually. In
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the experiments, we found that this property holds

only when the histogram is filtered by the designed

filter with the bandwidth parameter W calibrated and

chosen properly for each specific type of image.

When we used other filters, for instance, the finite

impulse response (FIR) filter and the infinite impulse

response (IIR) filter, both the peaks and the valleys

of the slope difference distribution change irregularly.

Hence, we conclude that the Fourier Transformation

based filtering is capable of removing the high fre-

quency noises effectively while maintaining the shape

of the histogram well. However, the FIR filter and

IIR filter lack this capability and will change the

shape of smoothed histogram undesirably. Conse-

quently, they cause the peaks of the slope difference

distribution to change randomly.

Property 2: the peaks of the slope difference distribu-

tion correspond to the cluster centers of the objects or the

background while the valleys correspond to the thresholds

that could separate the objects and the background.

Property 3: the fitting number N of line model de-

termines the number of the peaks of the slope dif-

ference distribution. A large N value could suppress

small peaks and unify adjacent peaks into one peak.

The proposed threshold selection method is flexible

and has some changeable manual inputs that could be

adjusted to meet different segmentation requirements. The

first manual input defines how many pixel classes the

image contains. The default value of it is 2, which indicates

that there are one object class and one background class.

The second manual input defines what classes to segment.

When the user wants to separate the background class and

all the objects classes, it is defined as Case 1. When the

user wants to separate the first object class and the second

object class along the pixel increase direction, it is defined

as Case 2. Case 3 is defined as the separation between the

second object class and the third object class. In the same

way, other cases are defined. Case 1 is default case. The

third input is how many points the line model uses to fit

the line and the fourth input is the bandwidth of the low

pass filter. To determine the third and fourth inputs for

each type of cell images before segmentation, we calibrate

the threshold selection method based on the popular F-

measure. For a specific type of cell images, the calibration

process is summarized as follows.

For a specific type of cell images, we select several

typical images and obtain the ground truth manual seg-

mentation results for these images.

Then, we vary the value of the third input, the par-

ameter N in Eq. (11) from 3 to 60 and the fourth in-

put, the parameter W in Eq. (6) from 2 to 50. We

compute the F-measure, Fm of the automatic

Fig. 2 Demonstration of slope difference distribution. a The first synthesized image. b The second synthesized image. c The third synthesized

image. d Slope difference distribution of first synthesized image. e Slope difference distribution of second synthesized image. f Slope difference

distribution of third synthesized image
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segmentation result by the threshold selection method

and the manual segmentation result for each pair pa-

rameters (N,W) by the following equations.

Fm ¼
2� P � R

P þ R
ð13Þ

P ¼
SSD∩Sm

Sm
ð14Þ

R ¼
SSD∩Sm

SSD
ð15Þ

where Sm is the ground truth manual segmentation

and SSD is the automatic segmentation result by the

threshold selection method. We choose the pair of

parameters (N,W) that yields the largest Fm.

During segmentation of a great of variety of cell

images, it might be inconvenient to obtain the bench-

mark manual segmentation from the cytologist for

each type of cell image. Here, we propose a rational

calibration method in the absence of benchmark

manual segmentation result based on Property 3 of

the slope difference distribution.

Step 1: we determine how many pixel classes the

image contains rationally. Here, we give an example

of cell image with three pixel classes: the black cell,

the gray clutters and the brighter background as

shown in Fig. 3a. There are small abrupt parts with

pixel values close to 255 in the original histogram

distribution, which affects the normalization of the

histogram and makes most parts of the histogram

below 0.5. After DFT filtering, this bad effect is re-

moved and the normalized histogram becomes much

better.

Step 2: we use the default value, N = 15 and W = 10

to calculate the thresholds visually as shown in

Fig. 3b. It is seen that there are 7 peaks instead of 3

peaks existing in the calculated slope difference

distribution.

Step 3: we increase the value of N until there are only

3 peaks in the calculated slope difference distribution as

shown in Fig. 3c.

Step 4: we select the threshold according to rules de-

scribed above from the calculated slope difference distri-

bution with three peaks.

Please note that the proposed rational calibration

method is used only when the benchmark manual

segmentation is not available. When the benchmark data

is available, the calibration method based on the F-

measure is used because it is more robust than the

proposed rational method.

The union method

We calculate the threshold, T0 for the modified input

cell image, I′ with the efficiently calibrated threshold

selection method. Then, the modified cell image is

binarized by the following equation.

SI ¼
1; I′≥T0

0; I′ < T0

�

ð16Þ

We calculate the threshold, T1 for the gradient

image, Ig with the efficiently calibrated threshold se-

lection method. Then, the gradient image is binarized

as follows.

Sg ¼
1; Ig≥T 1

0; Ig < T 1

�

ð17Þ

After calculating the two segmentations, SI and Sg,

we compute their union segmentation Su in three

cases. For one specific type of cell image, the user need

to decide which case it belongs to. For the cell images

with a lot of overlapping/neighboring boundaries and

their segmented boundaries are not closed for each

Fig. 3 Demonstration of threshold selection by the proposed efficient calibration method. a The gray image. b Threshold selection process with

N = 15. c Threshold selection process with N = 31
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cell, we define that they belong to Case 1 and most cell

images belong to this case. For this case, the segmenta-

tion method is formulated as follows to utilize the seg-

mentations of the gradient image and original image,

Sg and SI.

Su ¼
1; if SI ¼ 1ð Þ and Sg ¼ 0

� �

0; else

�

ð18Þ

For the cell images with many overlapping or neigh-

boring boundary and the segmented boundary for each

cell is closed, we define that they belong to Case 2. For

instance, many muscle cell images belong to this case.

For this case, the segmentation method is formulated as

follows to utilize the segmentation of the gradient image,

Sg alone.

Su ¼
1; if Sg ¼ 0
0; else

�

ð19Þ

For the cell images with little overlapping or neighboring

boundary, we define that they belong to Case 3. In this case,

we formulate the segmentation method as follows to

make use of the segmentation of the original input

image, SI only.

Su ¼
1; if SI ¼ 1
0; else

�

ð20Þ

The noise blob removing filter

In many situations, there are a lot of noise blobs in

the union segmentation Su, which might affect the ac-

curacy of the automatic quantification process. One big

difference between the noise blob and the cell blob is that

the noise blob is usually more tenuous than the cell blob

as shown in Fig. 4a, where the noise blobs are threadlike

while the cell blobs are relatively massive. Hence, we

propose the following filter to remove this kind of noise

blobs.

Step 1: Erode the union segmentation, Su morpho-

logically by the following equations.

Su′ ¼ Su⊖B ¼ zj Bð Þz⊆Su
� �

ð21Þ

Bð Þz ¼ cjc ¼ pþ z; p∈Bf g ð22Þ

Su ¼ Su′ ð23Þ

where B is the 4-connected structure element with the

disk shape and its radius is 1. p is the point in the struc-

turing element B and z is the translation vector.

Step 2: Repeat Step 1 Nl times. The value of Nl is

determined by the user and its default value is 3.

Step 3: Dilate the union segmentation, Su morpho-

logically by the following equations.

Su′ ¼ Su⊕B ¼ zj Bsð Þz∩C j
i
≠∅

� �

ð24Þ

Su ¼ Su′ ð25Þ

where Bs denotes the symmetric or supplement of B.

Step 4: Repeat Step 3 Nl times.

The functionality of the above filter is to remove the

threadlike or small blobs by a repeating morphological

erosion process at first. Then, a morphological dilation

process with the same repeating times is used to restore

the eroded cell blobs. Figure 4b shows the result of

applying the above filter to the union segmentation

shown in Fig. 3a. As can be seen, the tenuous noise

blobs are removed effectively while the cell blobs are

maintained well.

Fig. 4 Demonstration of removing the noise blobs by the proposed filter. a The result of union segmentation. b The filtering result by the proposed

noise blob removing filter
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The boundary smoothing filter

There are some imaged cell images with poor quality or

with imaging artifacts. As a result, the segmentation

results produce a lot of boundary noise that is defined

as the elements e.g. the boundary roughness or holes

inside the segmented cells that make the cells irregular.

The irregular cells will produce more seeds during the

iterative erosion process proposed in [24, 25], which

will increase the quantified number. To eliminate the

shape noises, we propose a boundary smoothing filter

as follows.

Step 1: Exact the boundaries {xi
j, yi

j}; i = 1, 2,…,Nj of

all the binary blobs and the holes inside the blobs in

the union segmentation Su. j denotes the index of the

binary blobs and the holes inside the blobs. i denotes

the index of the point in the j th extracted boundary

for the j th binary blob or the hole. Nj denotes the

total number of the points in the j th extracted

boundary.

Step 2: For the j th boundary, if Nj > Tsn, the bound-

ary is valid and will be kept. Otherwise, the boundary

is invalid and will be removed. Tsn is the shape noise

threshold and it could be computed based on the

average size of all the segmented blobs in the image.

For a specific type of cell images, the sizes of the

cells and the sizes of the noise blobs usually change

in different ranges. Offline analysis could find a more

accurate size threshold, Tsn to separate cells and the

noise blobs robustly.

Step 3: For all the valid boundaries, filter them by

the Fourier filter defined by Eqs. (5-7). The input is

changed from the normalized histogram to x coordi-

nates and y coordinates of the valid boundaries

respectively.

Step 4: Using the filtered boundaries to compute

binary blobs again and form the filtered blob image, Ifb.

The quantification method

In most cases, there are cells separate from others and

there are also cells connected with each other in the

filtered blob image, Ifb. To identify the cell individually,

the same iterative morphological erosion method pro-

posed in [24, 25] is used here.

Step 1: Initialize the seeds of all the cells to be the

filtered blob image, Ifb.

Ib
1 ¼ I f b ð26Þ

Step 2: Erode the seeds Ib
i morphologically with the

structure element B = {(0, 0)} as follows.

Ib′ ¼ Ib
i
⊖B ¼ zj Bð Þz⊆ Ib

i
� �

ð27Þ

Bð Þz ¼ cjc ¼ pþ z; p∈Bf g ð28Þ

where p is the point in the structuring element B and z

is the translation vector.

Step 3: Then calculate the union of the separated cells

that are determined according to their areas. Use them

as the updated seeds.

Ic
iþ1 ¼∪C ~J

� �

; ~J ¼ arg
j

area C jð Þð Þ < S0 ð29Þ

Ib
iþ1 ¼ Ib′−Ic

iþ1 ð30Þ

S0 that is defined as the area threshold to distinguish

the area of the cell and the area of noise blob, is com-

puted as the mean area of all the cells after a number of

erosions on the segmented cells.

Step 4: Use the above steps to erode the segmented

cells until the area of each cell is smaller than S0. At last,

the seeds are updated as:

Is ¼∪
L

i¼1
Ic

i ð31Þ

where L denotes the total number of the isolated cells.

After all the cells are identified, the coordinate (x
c
k, yc

k) of

the k th cell’s center is computed as:

xkc ¼
1

M

X

M

j¼1

xkj ð32Þ

ykc ¼
1

M

X

M

j¼1

ykj ð33Þ

where M is the total number of pixels in the segmented

cell and j is the pixel index of the segmented cell.

The algorithm of the generalized framework

The generalized framework is summarized in Algorithm 1.

The calibration process based on the F-measure is

summarized in Algorithm 2.

Results
In this section, we verify the robustness and the gen-

erality of the proposed framework with both the

muscle cell images used in [24, 25] and other types

of cell images.

One big difference between the proposed framework

in this paper and the methods proposed in [24, 25] is

the inclusion of the boundary smoothing filter. Here, we

use two examples of muscle cells to demonstrate the

advantages of the proposed framework in this paper over

the methods proposed in [24, 25]. Two typical muscle

images that have been used to testify the proposed

method in [25] are used to show the superiority of the

proposed framework in Figs. 5 and 6 respectively. Fig-

ure 5a shows the gradient image enhanced from the gray
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image by Eq. (1). Figure 5b shows the threshold selection

process for the gradient image. The smoothed histogram

is plotted in cyan. The original histogram is plotted in

mauve. The peak part of the slope difference distribution

is plotted in blue and the valley part of the slope differ-

ence is plotted in red. The derivative of the slope differ-

ence is plotted in green and its interception points with

the horizontal axis are denoted as blue crosses when

they correspond to the peaks of the slope difference.

They are denoted as the red circles when they corres-

pond to the valleys of the slope difference. The selected

threshold is denoted as the red asterisk. After calibra-

tion, the optimal W value is chosen as 10 and the

optimum N value is chosen as 17. Figure 5c shows the

segmented edges with the selected threshold. Figure 5d

shows the gray image of the muscle cell image and

Fig. 4e shows the threshold selection process for it.

Figure 5f shows the segmented edges from the gray

image. Figure 5g shows the filtered boundary overlaying

on the segmentation result by the case 1 union method.

Figure 5h shows the cell quantification result overlaying

on the original cell image.

Figure 6a-h show the segmentation and quantifica-

tion results of another testified muscle cell image in

[25]. To compare the quantification accuracy of the

generalized framework in this research work and the

method previously proposed in [25] more conveniently,

we show the quantification results by [25] in Fig. 7. As

can be seen, two missing cells in the quantification re-

sult of Fig. 7a are quantified correctly in Fig. 5h. In

addition, the extra one false quantification in Fig. 7a is

avoided in Fig. 5h. Similarly, the quantification result in

Fig. 6h are better than that in Fig. 7b.

To demonstrate the advantage of the generalized

framework over state of the art methods, we show the

results of the two muscle cell images by the SMASH

method [34] and the CELLSEGM method [35] in Fig. 8.

As can be seen, the generalized framework yields
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significantly better results than state of the art methods

[34, 35]. More comparisons are given with different

types of cell images in Figs. 9 and 10. In Fig. 9, the

muscle cell boundaries are much more unclear than

those in Fig. 7. The generalized framework still achieves

good result while state of the art methods performed

significantly worse. We show the quantitative compari-

son with ten muscle cell images in Table 1. As can be

seen, the proposed generalized framework achieves

better accuracy than the two state of the art methods

[34, 35] in segmenting muscle cell images. More im-

portantly, the proposed framework is capable of seg-

menting other different types of cells besides the

muscle cell images while the other two state of the art

methods [34, 35] might not be capable. In Fig. 10, we

show the results of a different type of cell image by

these three methods. It is seen that only the generalized

framework yielded meaningful result while SMASH

and CELLSEGM failed.

The effectiveness of the proposed boundary smoothing

filter has been verified by the qualitative results shown

in Figs. 5 and 6. Similarly, we show the effectiveness of

the proposed noise blob removing filter in Figs. 11 and

12. Figure 11a shows the boundary extracted directly

from the union segmentation without noise blob filtering

and Fig. 11b shows the extracted boundary from the

union segmentation after noise blob filtering. Figure 11c

shows the final quantification results based on the
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extracted boundary in Fig. 11a and d shows the final

quantification results based on the extracted boundary

in Fig. 11b. As can be seen, the quantification accuracy

based on the filtered result by the noise blob filter is sig-

nificantly higher that of the result without noise blob fil-

tering. Figure 12 shows another example of muscle cell

image. The extracted boundary without and with the

noise blob filter affects the final accuracy of the quantifi-

cation result obviously. There is one missing quantifica-

tion in Fig. 12c, which is caused by the noise blobs.

For the quantitative result, the same cell image data-

set used in [24, 25] is used for validation of the gener-

alized framework proposed in this paper. The measure

for accuracy evaluation is the same as [24, 25]. The

true positive (TP) is defined as that there is one and

only one identified cell inside each “ground-truth”

boundary; The false positive (FP) is defined as that

there is more than one identified cell inside each

“ground-truth” boundary. The false negative (FN) is

defined as that there is none identified cell inside

each “ground-truth” boundary. The comparison is

shown in Table 2. As can be seen, the robustness of

the generalized framework is superior to the pro-

posed method in [24, 25].

We use the 20 synthetic fluorescent cell images

from the open access Broad Bioimage Benchmark

Collection (BBBC) [36] for the general comparison

with state-of-the-art methods. Among the referenced

literatures, only [18] reports quantitative results based

on the BBBC dataset. Hence, we compare the pro-

posed method with [18] using the quantitative results

in Table 3. The correct quantification rate which is

denoted as TP in Table 2 is 93.5%, which is better

than that of [18], 91.8%. Overall, the robustness and

generality of the proposed framework is validated. We

share the codes for testing the quantitative results

with these 20 synthetic images in the section of Data

availability. Since the generalized framework evolves

and enhances the previous approaches [24, 25] and it

inherits all their merits, more performance evaluation

of the generalized framework could also be referred

from the past work [24, 25].

Discussion
The microscopy imaging technology has been developed

rapidly in recent years. Accordingly, image processing

techniques for automatic cell segmentation and robust

quantification are becoming more and more necessary.

According to our investigation, we concluded that

threshold selection is the most appropriate method in

this application due to its good efficiency, good resist-

ance to noise and easy implementation. State of the art

Fig. 5 Demonstration of segmentation and quantification by the proposed framework using one tested image from [25]. a The gradient image.

b Threshold selection for the gradient image. c Segmentation result of the gradient image. d The gray image. e Threshold selection for the gray

image. f Segmentation result of the gray image. g The green filtered shape and the red original shape overlaying on the union result of case 1.

h The quantified cells denoted by the green dots overlaying on the original image
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threshold selection methods [29–33] failed to select the

threshold robustly for the gradient image as stated and

proved in [24, 25]. As a result, the threshold selection

method was evolved and utilized in [25] to segment the

muscle cell images and its advantage over state of the

art thresholding methods was also verified in [25]. Later,

the threshold selection is improved further in [24] by

adding the calibration procedure to the selection

process. As a result, the threshold selection becomes

flexible and could segment different types of cells

Fig. 7 Quantification results of the same two muscle cell images in [25]. a The tested muscle cell image in Fig. 5. b The tested muscle cell image

in Fig. 6

Fig. 6 Demonstration of segmentation and quantification by the proposed framework using another tested image from [25]. a The gradient

image. b Threshold selection for the gradient image. c Segmentation result of the gradient image. d The gray image. e Threshold selection for

the gray image. f Segmentation result of the gray image. g The green filtered shape and the red original shape overlaying on the union result of

case 1. h The quantified cells denoted by the green dots overlaying on the original image
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robustly. In this paper, we propose a simpler and more

practical calibration method to determine the parame-

ters for the threshold selection method based on the

third property of the slope difference distribution.

Only with the thresholding method to guarantee

the accurate enough and complete enough segmenta-

tion, we could proceed to high level applications,

e.g. boundary extraction or quantification. There are

two challenging aspects for automatic and reliable

quantification of cells by the proposed iterative

erosion method in [24, 25]: (1), there are some noise

blobs that might be identified as the cell seed by the

iterative erosion method. (2), the extracted boundar-

ies of the cell blobs are usually irregular with noise.

Fig. 8 Results of the same two muscle cell images in [25] by state of

the art methods. a Results of SMASH for the first tested muscle cell

image. b Results of CELLSEGM for the first tested muscle cell image.

c Results of SMASH for the second tested muscle cell image. d

Results of CELLSEGM for the second tested muscle cell image

Fig. 9 Comparison of the results of the generalized framework with

state of the art methods. a Result of the generalized framework. b

Intermediate result of SMASH. c Final result of SMASH. d Intermediate

result of CELLSEGM. e Final result of CELLSEGM

Fig. 10 Comparison of the results of the generalized framework with state of the art methods. a Result of the generalized framework. b Results

of SMASH. c Result of CELLSEGM
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(3), there might be holes inside the cell blobs. All

these three aspects will increase the number of the

false seeds produced by the iterative erosion method

proposed in [24, 25]. To solve these problems, we

propose a noise blob removing filter to get rid of

the threadlike or small noise blobs. We propose a

boundary smoothing filter to smooth the extracted

boundary of the cell blobs and also eliminate small

holes inside the cell blobs.

To verified the proposed methods in this paper,

both qualitative and quantitative experiments are

conducted. As it turned out, the proposed frame-

work is more versatile than other state of the art

methods due to the fact that it utilizes the character-

istics of the adjacent cells and the general property

of the cell images: the global intensity distribution

and the local gradient. The frequently occurring

overlapping characteristics of the adjacent cells could

be dealt effectively by the iterative erosion method.

The intensity image and the gradient image could be

segmented effectively by the proposed segmentation

method. The segmentation method is able to segment

different kinds of images and their formed gradient

images more accurately because of the introduced

calibration process.

Conclusion

In this paper, we propose a generalized framework

for automatically segmenting and quantifying different

types of cells. To simplify the calibration process for

the threshold selection, we proposed a practical cali-

bration method. To improve the quantification accur-

acy over the past research, we proposed a noise blob

filtering method and a boundary smoothing filtering

method in this paper. Experimental results verified

their effectiveness. As a generalized tool for auto-

matic segmentation and quantification of different

kinds of cells, it possible for the proposed framework

to benefit a lot of automated microscopy applications

in the future.

Fig. 11 Demonstration of the effectiveness of the proposed noise

blob filter. a The extracted boundary from the union segmentation

without noise blob filtering. b The extracted boundary from the

union segmentation after noise blob filtering. c The quantification

result based on the extracted boundary in a. d The quantification

result based on the extracted boundary in b

Table 1 Quantitative comparison of the proposed approach

with state of the methods [34, 35]

Methods TP FP FN

SMASH [34] 84.27% 11.89% 16.08%

CELLSEGM [35] 82.69% 2.10% 17.31%

Proposed 95.28% 1.92% 4.72%

Fig. 12 Demonstration of the effectiveness of the proposed

noise blob filter with a muscle cell image. a The extracted

boundary from the union segmentation without noise blob

filtering. b The extracted boundary from the union segmentation

after noise blob filtering. c The quantification result based on

the extracted boundary in a. d The quantification result based

on the extracted boundary in b

Table 2 Quantitative comparison of the quantification accuracy

with [24, 25]

Methods TP FP FN

[24, 25] 93.4% 0.18% 6.6%

Proposed 96.8% 0.12% 3.2%
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Additional file

Additional file 1: Source codes of the proposed framework with test

images. (ZIP 31244 kb)
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