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Abstract

Discriminant analysis has been used for decades to extract features that preserve class separability. It is
commonly defined as an optimization problem involving covariance matrices that represent the scatter within
and between clusters. The requirement that one of these matrices be nonsingular limits its application
to data sets with certain relative dimensions. We examine a number of optimization criteria, and extend
their applicability by using the generalized singular value decomposition to circumvent the nonsingularity
requirement. The result is a generalization of discriminant analysis that can be applied even when the
sample size is smaller than the dimension of the sample data.We use classification results from the reduced
representation to compare the effectiveness of this approach with some alternatives, and conclude with a
discussion of their relative merits.

1 Introduction

The goal of discriminant analysis is to combine features of the original data in a way that most effectively
discriminates between classes. With an appropriate extension, it can be applied to our goal of reducing the
dimension of a data matrix in a way that most effectively preserves its cluster structure. That is, we want to
find a linear transformationGT that maps anm-dimensional data pointa to a vectory in the l-dimensional
space: GT : a 2 Rm�1 ! y 2 R l�1 :�This work was supported in part by the National Science Foundation grants CCR-9901992 and CCR-0204109. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation (NSF).yDept. of Computer Science and Engineering, Univ. of Minnesota, Minneapolis, MN 55455 (howland@cs.umn.edu). The
work of this author was supported in part by the Guidant Fellowship.zDept. of Computer Science and Engineering, Univ. of Minnesota, Minneapolis, MN 55455 (hpark@cs.umn.edu), and
Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130-012, KOREA (from Sept. 2001to
Aug. 2002).
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Assuming that the given data are already clustered, we seek atransformation that optimally preserves this
cluster structure in the reduced dimensional space.

For this purpose, first we need to formulate a measure of cluster quality. When cluster quality is high,
each cluster is tightly grouped, but well separated from theother clusters. To quantify this, scatter matrices
[Fuk90, TK99] are defined in discriminant analysis. For simplicity of discussion, we will assume that data
vectorsa1; : : : ; an form columns of a matrixA 2 Rm�n , and are grouped intok clusters as

A = [A1 A2 � � � Ak℄ where Ai 2 Rm�ni ; and
kXi=1 ni = n: (1)

LetNi denote the set of column indices that belong to clusteri. The centroid
(i) is computed by taking the
average of the columns in clusteri; i.e., 
(i) = 1ni Xj2Ni aj
and the global centroid
 is defined as 
 = 1n nXj=1 aj :
Then the within-cluster, between-cluster, and mixture scatter matrices are defined as

SW = kXi=1 Xj2Ni(aj � 
(i))(aj � 
(i))T ;
SB = kXi=1 Xj2Ni(
(i) � 
)(
(i) � 
)T = kXi=1 ni(
(i) � 
)(
(i) � 
)T ; and

SM = nXi=1(ai � 
)(ai � 
)T ;
respectively. It is easy to show [JD88] that the scatter matrices have the relationshipSM = SW + SB: (2)

ApplyingGT to the matrixA transforms the scatter matrices toSYW = GTSWG; SYB = GTSBG; and SYM = GTSMG;
where the superscriptY denotes values in thel-dimensional space.

There are several measures of cluster quality that involve the three scatter matrices [Fuk90, TK99]. Since

tra
e(SW ) = kXi=1 Xj2Ni(aj � 
(i))T (aj � 
(i)) = kXi=1 Xj2Ni kaj � 
(i)k22
2



measures the closeness of the columns within the clusters, and

tra
e(SB) = kXi=1 Xj2Ni(
(i) � 
)T (
(i) � 
) = kXi=1 Xj2Ni k
(i) � 
k22
measures the separation between clusters, an optimal transformation that preserves the given cluster structure
would maximize trace(SYB ) and minimize trace(SYW ).

This simultaneous optimization can be approximated by finding a transformationG that maximizestra
e((SYW )�1SYB ): However, this criterion cannot be applied when the matrixSW is singular, a situation
that occurs frequently in many applications. For example, in handling document data in information re-
trieval, it is often the case that the number of terms in the document collection is larger than the total number
of documents (i.e.,m > n in the term-document matrixA), and therefore the matrixSW is singular. Fur-
thermore, in applications where the data points are in a veryhigh dimensional space and collecting data is
expensive,SW is singular because the value forn must be kept relatively small.

One way to make classical discriminant analysis applicableto the data matrixA 2 Rm�n with m > n
(and henceSW singular) is to perform dimension reduction in two stages. The discriminant analysis stage
is preceded by a stage in which the cluster structure is ignored. The most popular method for the first part of
this process is rank reduction by the singular value decomposition (SVD), the main tool in latent semantic
indexing (LSI) [DDF+90, BDO95]. In fact, this idea has recently been implementedby Torkkola [Tor01].
However, the overall performance of this two-stage approach will be sensitive to the reduced dimension in
its first stage. LSI has no theoretical optimal reduced dimension, and its computational estimation is difficult
without the potentially expensive process of trying many test cases. We discuss this alternative approach in
greater detail in Section 4.2.

In this paper, we extend discriminant analysis in a way that provides the optimal reduced dimension
theoretically, without introducing another stage as described above. We consider the set of criteria involvingtra
e((SY2 )�1SY1 ) and ln(det((SY2 )�1SY1 )); (3)

whereS1 andS2 are chosen fromSW , SB, andSM . Classical discriminant analysis expresses their solution
in terms of a generalized eigenvalue problem whenS2 is nonsingular. By reformulating the problem in terms
of the generalized singular value decomposition (GSVD) [VL76, PS81, GVL96], we extend the applicability
to the case whenS2 is singular. We also establish the equivalence among alternative choices forS1 andS2. In
addition to the two-stage approach described above, we present a second alternative approach that optimizes
the trace of an individual scatter matrix, and show how this can be achieved efficiently. Finally, we present
experimental results demonstrating the capabilities of the GSVD approach, and comparing its effectiveness
to the alternatives.

2 Generalized Singular Value Decomposition

The following theorem introduces the GSVD as was originallydefined by Van Loan [VL76].

3



THEOREM 1 Suppose two matrices KA 2 Rm�n with m � n and KB 2 R p�n are given. Then there exist
orthogonal matrices U 2 Rm�m and V 2 R p�p and a nonsingular matrix X 2 R n�n such thatUTKAX = diag(�1; :::; �n) and V TKBX = diag(�1; :::; �q);
where q = min(p; n), �i � 0 for 1 � i � n, and �i � 0 for 1 � i � q.

This formulation cannot be applied to the matrix pairKA andKB when the dimensions ofKA do not
satisfy the assumed restrictions. Paige and Saunders [PS81] developed a more general formulation which
can be defined for any two matrices with the same number of columns. We restate theirs as follows.

THEOREM 2 Suppose two matrices KA 2 R n�m and KB 2 R p�m are given. Then for

K = � KAKB �
and t = rank(K);

there exist orthogonal matrices U 2 R n�n , V 2 R p�p , W 2 R t�t , and Q 2 Rm�m such thatUTKAQ = �A(W TR| {z }t ; 0|{z}m�t) and V TKBQ = �B(W TR| {z }t ; 0|{z}m�t);
where

�An�t =
0� IA DA OA

1A ; �Bp�t =
0� OB DB IB

1A ;
and R 2 R t�t is nonsingular with its singular values equal to the nonzero singular values of K. The
matrices IA 2 R r�r and IB 2 R (t�r�s)�(t�r�s)
are identity matrices, where

r = rank�KAKB�� rank(KB) and s = rank(KA) + rank(KB)� rank�KAKB� ;OA 2 R (n�r�s)�(t�r�s) and OB 2 R (p�t+r)�r
are zero matrices with possibly no rows or no columns, andDA = diag(�r+1; : : : ; �r+s) and DB = diag(�r+1; : : : ; �r+s)
satisfy 1 > �r+1 � � � � � �r+s > 0; 0 < �r+1 � � � � � �r+s < 1; (4)

and �2i + �2i = 1 for i = r + 1; : : : ; r + s.
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This form of GSVD is related to that of Van Loan by writing [PS81]UTKAX = (�A; 0) and V TKBX = (�B; 0); (5)

where Xm�m = Q� R�1W 00 I � :
From the form in Eqn. (5) we see thatKA = U(�A; 0)X�1 and KB = V (�B; 0)X�1;
which imply that

KTAKA = X�T � �TA�A 00 0 �X�1 and KTBKB = X�T � �TB�B 00 0 �X�1:
Defining �i = 1; �i = 0 for i = 1; : : : ; r
and �i = 0; �i = 1 for i = r + s+ 1; : : : ; t;
we have, for1 � i � t, �2iKTAKAxi = �2iKTBKBxi; (6)

wherexi represents theith column ofX. For the remainingm � t columns ofX, bothKTAKAxi andKTBKBxi are zero, so Eqn. (6) is satisfied for arbitrary values of�i and�i when t + 1 � i � m. The
columns ofX are the generalized right singular vectors for the matrix pair (KA;KB): In terms of the
generalized singular values, or the�i=�i quotients,r of them are infinite,s are finite and nonzero, andt� r � s are zero.

3 Generalization of Linear Discriminant Analysis

In this section, several criteria from discriminant analysis are extended utilizing the GSVD. We establish the
equivalence for various choices of scatter matrices, as well as for seemingly quite different criteria involving
the trace and the determinant.
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3.1 Optimization of J1 = tra
e(S�12 S1) Criteria

For now, we will focus our discussion on the criteria of optimizingJ1(G) = tra
e((GTS2G)�1(GTS1G)); (7)

whereS1 andS2 are chosen fromSW , SB, andSM . WhenS2 is assumed to be nonsingular, it is sym-
metric positive definite. According to results from the symmetric-definite generalized eigenvalue problem
[GVL96], there exists a nonsingular matrixX 2 Rm�m such thatXTS1X = � = diag(�1 : : : �m) and XTS2X = Im: (8)

Lettingxi denote theith column ofX, we haveS1xi = �iS2xi; (9)

which means that�i andxi are an eigenvalue-eigenvector pair ofS�12 S1. SinceS1 is positive semidefinite,�i � 0 for 1 � i � m. From (8), we see that only the largestq = rank(S1) �i’s can be nonzero. In addition,
by using a permutation matrix to order� (and likewiseX), we can assume that�1 � � � � � �q � �q+1 =� � � = �m = 0:

We have J1(G) = tra
e((GTS2G)�1GTS1G)= tra
e((GTX�TX�1G)�1GTX�T�X�1G)= tra
e(( ~GT ~G)�1 ~GT� ~G);
where ~G = X�1G. The matrix ~G has full column rank providedG does, so it has the reduced QR factor-
ization ~G = QR, whereQ 2 Rm�l has orthonormal columns andR is nonsingular [GVL96]. HenceJ1(G) = tra
e((RTR)�1RTQT�QR)= tra
e(R�1QT�QR)= tra
e(QT�QRR�1)= tra
e(QT�Q):
This shows that once we have simultaneously diagonalizedS1 andS2, the maximization ofJ1(G) depends
only on an orthonormal basis forrange(X�1G); i.e.,maxG J1(G) = maxQTQ=I tra
e(QT�Q) � �1 + � � �+ �q = tra
e(S�12 S1):
(Here we consider only maximization. Similar arguments will hold whenJ1 is minimized for some choices
of S1 andS2.) For anyl satisfyingl � q, this upper bound onJ1(G) is achieved for

Q = �Il0� or G = X �Il0�R:
6



Note that the transformationG is not unique. That is,J1 satisfies the invariance propertyJ1(G) = J1(GW )
for any nonsingular matrixW 2 R l�l ; sinceJ1(GW ) = tra
e((W TGTS2GW )�1(W TGTS1GW ))= tra
e(W�1(GTS2G)�1W�TW T (GTS1G)W )= tra
e((GTS2G)�1(GTS1G)WW�1)= J1(G):
Hence, the maximumJ1(G) is also achieved forG = X �Il0�. This means that

tra
e((GTS2G)�1GTS1G) = tra
e(S�12 S1) (10)

wheneverG 2 Rm�l consists ofl eigenvectors ofS�12 S1 corresponding to thel largest eigenvalues.

Now, a limitation of theJ1 criteria in many applications, including information retrieval, is that the
matrix S2 must be nonsingular. Recalling the partitioning ofA into k clusters given in (1), we define them� n matrices HW = [A1 � 
(1)e(1)T ; A2 � 
(2)e(2)T ; : : : ; Ak � 
(k)e(k)T ℄ (11)HB = [(
(1) � 
)e(1)T ; (
(2) � 
)e(2)T ; : : : ; (
(k) � 
)e(k)T ℄ (12)HM = [a1 � 
; : : : ; an � 
℄ = A� 
eT ; (13)

wheree(i) = (1; : : : ; 1)T 2 R ni�1 ande = (1; � � � ; 1)T 2 R n�1 . Then the scatter matrices can be expressed
as SW = HWHTW ; SB = HBHTB ; and SM = HMHTM : (14)

ForS2 to be nonsingular, we can only allow the casem � n, sinceS2 is the product of anm�n matrix and
ann �m matrix [Ort87]. ThusJ1 cannot be applied when the number of available data points issmaller
than the dimension of the data. We seek a solution which does not impose this restriction, and which can
be found without explicitly formingS1 andS2 fromHW ; HB ; andHM : Toward that end, we express�i as�2i =�2i , and the problem (9) generalizes to�2i S1xi = �2iS2xi: (15)

This has the form of a problem that can be solved using the GSVD, as described in Section 2.

3.2 Generalization of J1 = tra
e(S�12 S1) Criteria for Singular S2
Continuing with theJ1 criteria, we first consider the case where(S1; S2) = (SB; SW ):

7



From Eqn. (14) and the definition ofHB given in Eqn. (12),rank(SB) � k � 1. To approximateG that
satisfies both maxG tra
e(GTSBG) and minG tra
e(GTSWG); (16)

we choose thexi’s which correspond to thek � 1 largest�i’s, where�i = �2i =�2i . When the GSVD
construction orders the singular value pairs as in Eqn. (4),the generalized singular values, or the�i=�i
quotients, are in nonincreasing order. Therefore, the firstk�1 columns ofX are all we need. Our algorithm
first computes the matricesHB andHW from the data matrix A. We then solve for a very limited portion
of the GSVD of the matrix pair(HTB ;HTW ): This solution is accomplished by following the construction
in the proof of Theorem 2 [PS81]. The major steps are limited to the complete orthogonal decomposition
[GVL96, LH95] of K = � HTBHTW � ;
which produces orthogonal matricesP andQ and a nonsingular matrixR, followed by the singular value
decomposition of a leading principal submatrix ofP , whose size is much smaller than that of the data matrix.
The steps for this case are summarized in Algorithm LDA/GSVD, adapted from [HJP].

Whenm > n, the scatter matrixSW is singular. Hence, we cannot even define theJ1 criterion, and
discriminant analysis fails. Consider a generalized rightsingular vectorxi that lies in the null space ofSW .
From Eqn. (15), we see that eitherxi also lies in the null space ofSB, or the corresponding�i equals zero.
We will discuss each of these cases separately.

When xi 2 null(SW ) \ null(SB);
Eqn. (15) is satisfied for arbitrary values of�i and�i. As explained in Section 2, this will be the case for the
rightmostm� t columns ofX. To determine whether these columns should be included inG, considertra
e(GTSBG) =X gTj SBgj and tra
e(GTSWG) =X gTj SW gj;
wheregj represents thejth column ofG. SincexTi SWxi = 0 andxTi SBxi = 0; adding the columnxi toG
does not contribute to either maximization or minimizationin (16). For this reason, we do not include these
columns ofX in our solution.

When xi 2 null(SW )� null(SB);
then�i = 0. As discussed in Section 2, this implies that�i = 1, and hence that the generalized singular
value�i=�i is infinite. The leftmost columns ofX will correspond to these. Including these columns inG increasestra
e(GTSBG), while leavingtra
e(GTSWG) unchanged. We conclude that, even whenSW
is singular, the rule regarding which columns ofX to include inG remain the same as for the nonsingular
case. The experiments summarized in Section 5 demonstrate that Algorithm LDA/GSVD works very well
even whenSW is singular, thus extending its applicability beyond that of classical discriminant analysis.
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Algorithm 1 LDA/GSVD

Given a data matrixA 2 Rm�n with k clusters and an input vectora 2 Rm�1 , compute the matrixG 2Rm�(k�1) which preserves the cluster structure in the reduced dimensional space, usingJ1(G) = tra
e((GTSWG)�1GTSBG):
Also compute thek � 1 dimensional representationy of a.

1. ComputeHB andHW fromA according toHB = [pn1(
(1) � 
);pn2(
(2) � 
); : : : ;pnk(
(k) � 
)℄ 2 Rm�k ;
and (11), respectively. (Using this equivalent but lower dimensional form ofHB reduces complexity.)

2. Compute the complete orthogonal decomposition

P TKQ = � R 00 0 � ; where K = � HTBHTW � 2 R (k+n)�m
3. Lett = rank(K):
4. Compute W from the SVD ofP (1 : k; 1 : t), which isUTP (1 : k; 1 : t)W = �A:
5. Compute the firstk � 1 columns ofX = Q� R�1W 00 I �, and assign them toG.

6. y = GTa
3.3 Equivalence of J1 = tra
e(S�12 S1) Criteria for Various S1 and S2
For the case when (S1; S2) = (SM ; SW );
if we follow the analysis in Section 3.1 literally, it appears that we would have to includerank(SM) 6� k�1
columns ofX in G. However, using the relation (2), the generalized eigenvalue problemSMxi = �iSWxi
can be rewritten as SBxi = (�i � 1)SWxi; where �i � 1 for 1 � i � m:
In this case, the eigenvector matrix is the same as for the case of (S1; S2) = (SB; SW ), but the eigenvalue
matrix is�� I. Since the same permutation can be used to put�� I in nonincreasing order as was used for�, xi corresponds to theith largest eigenvalue ofS�1W SB. Therefore, whenSW is nonsingular, the solution
is the same as for(S1; S2) = (SB; SW ):

9



Whenm > n, the scatter matrixSW is singular. For a generalized right singular vectorxi 2 null(SW ),SMxi = SBxi. Hence, we include the same columns inG as we did in the case of(S1; S2) = (SB; SW ).
Alternatively, we can show that the solutions are the same byderiving a GSVD of the matrix pair(HTM ;HTW )
that has the same generalized right singular vectors as(HTB ;HTW ). To do this, we establish the following
two properties ofHB andHW .

PROPERTY1 HWHTB = 0:
Proof. From HM = HW +HB;

we have SM = HMHTM = (HW +HB)(HW +HB)T= HWHTW +HBHTB +HBHTW +HWHTB= SM +HBHTW +HWHTB ;
which implies HBHTW +HWHTB = 0:
In fact, each of these products is zero, since

HWHTB = kXi=1 Xj2Ni(aj � 
(i))(
(i) � 
)T
= kXi=1(ni
(i)
(i)T � ni
(i)
T � ni
(i)
(i)T + ni
(i)
T ) = 0:

PROPERTY2 For K = (HB ;HW )T 2 R 2n�m ; t = rank(K) � n.

Proof. ForKT = (HB;HW ) 2 Rm�2n ; we haverank(KT ) + dim(null(KT )) = 2n; or dim(null(KT )) = 2n� t:
Hence,t � n if and only if dim(null(KT )) � n: Supposez1 2 null(HB) andz2 2 null(HW ): Then(HB;HW )� z10 � = (HB;HW )� 0z2 � = 0:
This shows that dim(null(HB;HW )) � dim(null(HB)) + dim(null(HW )):
Property 1 implies dim(null(HW )) � rank(HTB):

10



Combining this with dim(null(HB)) = n� rank(HB);
we have dim(null(HB;HW )) � n� rank(HB) + rank(HTB) = n:

Now we proceed with the GSVD derivation. For the case of(S1; S2) = (SB; SW ), consider the GSVD
of the pair(HTB ;HTW ); which is given byUTHTBX = (�B; 0) and V THTWX = (�W ; 0);
where �B and �W 2 R n�t ; �TB�B +�TW�W = It; and t = rank� HTBHTW � :
Then we have HTM = U(�B; 0)X�1 + V (�W ; 0)X�1 = U(�B + UTV �W ; 0)X�1:
In addition, HWHTB = X�T ��TW0 �V TU(�B ; 0)X�1 = 0m
implies �TWV TU�B = 0t:
Hence(�B + UTV �W )T (�B + UTV �W ) = �TB�B +�TW (V TUUTV )�W +�TWV TU�B +�TBUTV �W= �TB�B +�TW�W = It;
which means�B + UTV �W has orthonormal columns. This can only be true if�B + UTV �W has no
more columns than rows, i.e. ift � n as shown above in Property 2.

There existsÛ2 such that(�B + UTV �W ; Û2) 2 R n�n is orthogonal. Hence

HTM = U(�B + UTV �W ; Û2)�It 00 0�X�1;
and we can write ÛTHTMX = (�M ; 0);

11



where Û = U(�B + UTV �W ; Û2) is orthogonal and �M = �It0� :
Together with V THTWX = (�W ; 0);
this forms a GSVD of the matrix pair(HTM ;HTW ); which has the same generalized right singular vectors as(HTB ;HTW ): As expected, each of thet nontrivial generalized singular values is infinite, finite and greater
than one, or equal to one. Note that this form of GSVD for(HTM ;HTW ) does not satisfy the condition�TM�M + �TW�W = I of the Paige and Saunders [PS81] formulation because each�i � 1: However, the
invariance property and nonuniqueness of the right singular vector matrixX can be used to convert it to the
Paige and Saunders form.

Note that ifSW is nonsingular, in them-dimensional space,tra
e(S�1W SM) = tra
e(S�1W (SW + SB)) = m+ tra
e(S�1W SB); (17)

and in thel-dimensional space,tra
e((SYW )�1SYM ) = tra
e((SYW )�1(SYW + SYB )) = l + tra
e((SYW )�1SYB ): (18)

This confirms that the solutions are the same for both(S1; S2) = (SB; SW ) and(S1; S2) = (SM ; SW ).
From Section 3.1, whenG includes the eigenvectors ofS�1W SB corresponding to thel � k � 1 largest
eigenvalues, then tra
e(S�1W SB) = tra
e((SYW )�1SYB ):
By subtracting (18) from (17) for anyl � k � 1, we gettra
e((SYW )�1SYM) + (m� l) = tra
e(S�1W SM ): (19)

In other words, each additional eigenvector beyond the leftmostk � 1 will add one totra
e((SYW )�1SYM ).
This shows that we do not preserve the cluster structure whenmeasured bytra
e(S�1W SM ); although we do
preservetra
e(S�1W SB): According to Eqn. (19),tra
e(S�1W SM) will be preserved only if we include allm
eigenvectors ofS�1W SM : This, together with Section 3.1, show indirectly thatrank(SM) = m: That is,SM
is nonsingular wheneverSW is.

For the case (S1; S2) = (SW ; SM);
we want to minimizetra
e(S�1M SW ). Once again, the relation (2) can be used to rewrite the generalized
eigenvalue problem.SWxi = �iSMxi becomesSBxi = ( 1�i � 1)SWxi;
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for �i 6= 0. The eigenvector matrix is the same, but the eigenvalue matrix is ��1�I. When�1 � � � � � �m;
we have 1�1 � 1 � � � � � 1�m � 1;
so the same permutation can be used to put��1 � I in nondecreasing order as put� in nonincreasing
order. After permuting,xi corresponds to both theith smallest eigenvalue ofS�1M SW and to theith largest
eigenvalue ofS�1W SB: Therefore, for a given value ofl; we use the firstl eigenvectors, just as we did for(S1; S2) = (SB; SW ):

Again we consider a generalized right singular vectorxi 2 null(SW ): For thatxi; SMxi = SBxi; so
the same reasoning applies regarding the effect ontra
e(GTSMG) and tra
e(GTSWG): Therefore, the
solution is the same as for(S1; S2) = (SB; SW ); even in the singular case. The GSVD of the matrix
pair (HTW ;HTM ) can be derived from that of(HTB ;HTW ) in the same way as shown above for(HTM ;HTW ):
However, since we are minimizing in this case, the generalized singular values are in nondecreasing order,
taking on reciprocal values of those for(HTM ;HTW ):

Having shown the equivalence of theJ1 criteria for various(S1; S2), we conclude that(S1; S2) = (SB; SW )
should be used for the sake of computational efficiency. The LDA/GSVD algorithm reduces computational
complexity further by using a lower dimensional form ofHB rather than that presented in Eqn. (12), and it
avoids a potential loss of information [GVL96, page 239, Example 5.3.2] by not explicitly formingSB andSW as cross-products ofHB andHW .

3.4 Generalization of J2 = ln(det(S�12 S1)) Criteria for Singular S2
Consider J2(G) = ln(det((GTS2G)�1GTS1G)) = ln(det(GTS1G))� ln(det(GTS2G));
where the scatter matricesS1 andS2 are nonsingular. It can be shown [Fuk90] that�J2(G)�G = 2S1G(GTS1G)�1 � 2S2G(GTS2G)�1;
and setting this to zero yieldsS�12 S1G = G(GTS2G)�1(GTS1G) = G((SY2 )�1SY1 ): (20)

If we simultaneously diagonalizeSY1 andSY2 ; we getZTSY1 Z = � = diag(�1 : : : �l) and ZTSY2 Z = Il;
whereZ 2 R l�l is nonsingular. Hence (SY2 )�1SY1 = Z�Z�1

13



and Eqn. (20) becomesS�12 S1GZ = GZ�; whereGZ 2 Rm�l consists ofl eigenvectors ofS�12 S1: By
the same argument we made forJ1, J2(G) = J2(GZ), and soJ2(G) = ln(det((GZ)TS1(GZ)))� ln(det((GZ)TS2(GZ)))= ln(det(((GZ)TS2(GZ))�1(GZ)TS2(GZ)�))= ln(det(�)) = ln�1 + � � �+ ln�l:
This shows that an optimumG satisfies the same generalized eigenvalue problem as forJ1, and that we
should choose the eigenvectors that correspond to thel largest (smallest) eigenvalues ofS�12 S1 if we are
maximizing (minimizing)J2.

We now extend the optimization ofJ2 to singular matrices for the case where(S1; S2) = (SB; SW ).
Consider a generalized right singular vectorxi 2 null(SB): If xi is included inG, thenGTSBG has
a zero column which forces its determinant to zero. Since we want to maximizeln(det(GTSBG)), we
restrictG to thel = rank(SB) generalized right singular vectors that correspond to the largest generalized
singular values. However, these leftmostrank(SB) vectors may include a vectorxi 2 null(SW )�null(SB):
Including thisxi will force ln(det(GTSWG)); which we want to minimize, to�1. Therefore, in the
singular case, we include the leftmostrank(SB) generalized right singular vectors, just as we did for trace
optimization ofJ1.
4 Alternative Approaches

4.1 Orthogonal Centroid Method

Simpler criteria for preserving cluster structure, such asmin tra
e(GTSWG) andmax tra
e(GTSBG),
involve only one of the scatter matrices. A straightforwardminimization oftra
e(GTSWG) seems mean-
ingless since the optimum always reduces the dimension to one, even when the solution is restricted to
the case whenG has orthonormal columns. On the other hand, with the same restriction, maximization oftra
e(GTSBG) produces an equivalent solution to the Orthogonal Centroidmethod, which is introduced
and shown to give promising reduced dimensional classification results in [PJR], and is summarized in
Algorithm 2.

Let J3(G) = tra
e(GTSBG):
If we let G 2 Rm�l be any matrix with full column rank, then essentially there is no upper bound and
maximization is also meaningless. Now, let us restrict the solution to the case whenG has orthonormal
columns. Then there existŝG 2 Rm�(m�l) such that

�G; Ĝ� is an orthogonal matrix. In addition, sinceSB is positive semidefinite, we havetra
e(GTSBG) � tra
e(GTSBG) + tra
e(ĜTSBĜ) = tra
e(SB):
If the SVD ofHB is given byHB = U�V T , thenSBU = U��T . Hence the columns ofU form an

orthonormal set of eigenvectors ofSB corresponding to the nonincreasing eigenvalues on the diagonal of
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Algorithm 2 Orthogonal Centroid Method

Given a data matrixA 2 Rm�n with k clusters and an input vectora 2 Rm�1 , compute ak-dimensional
representationy of a.

1. Compute the centroid
(i) of theith cluster,1 � i � k.

2. SetC = �
(1) 
(2) � � � 
(k)�.
3. Compute the matrixQk in the reduced QR decompositionC = QkR.

4. y = QTk a.

� = ��T . LettingUk denote the firstk columns ofU and�k = diag(�1 : : : �k), we havetra
e(UTk SBUk) = tra
e(UTk Uk�k)= �1 + � � �+ �k�1 + 0= tra
e(SB);
recalling thatrank(SB) � k � 1. This means that we preservetra
e(SB) if we takeUk asG.

Now we show that this solution is equivalent to the solution of the Orthogonal Centroid method, which
does not involve the computation of eigenvectors. Defining the centroid matrixC = �
(1) 
(2) � � � 
(k)�
as in Algorithm 2, and assuming the centroids are linearly independent,C has the reduced QR decompositionC = QkR, where the columns ofQk 2 Rm�k are an orthonormal basis forrange(C) andR is nonsingular
[GVL96]. Supposex is an eigenvector ofSB. Then

SBx = kXi=1 ni(
(i) � 
)(
(i) � 
)Tx = �x:
This meansx 2 spanf
(i) � 
j1 � i � kg, and hencex 2 spanf
(i)j1 � i � kg. Accordingly,range(Uk) = range(C) = range(Qk);
which implies that Qk = UkW
for some orthogonal matrixW 2 R k�k . SinceJ3 is invariant under any orthogonal transformation in the
same space,Qk plays the same role asUk. In other words, instead of computing the eigenvectors, we simply
need to computeQk, which is much cheaper. Therefore, by computing a reduced QRdecomposition of the
centroid matrix, we obtain a solution that maximizestra
e(GTSBG) over allG with orthonormal columns.
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4.2 Two-stage Approach

As mentioned in the Introduction, another approach for dealing with the singularity ofSW whenm > n
uses LSI/SVD as a first stage, followed by the discriminant analysis stage. The goal of the first stage is to
reduce the dimension of the data matrix enough so that the newSW is nonsingular, and classical LDA can be
performed. LSI/SVD uses the truncated SVD to find a rank-l approximation ofA. That is, ifl � rank(A),
then A � Ul�lV Tl
where the columns ofUl are the firstl left singular vectors,�l is a diagonal matrix with thel largest singular
values in nonincreasing order along its diagonal, and the columns ofVl are the firstl right singular vectors.
LSI/SVD typically uses�lV Tl as the reduced dimensional representation ofA, or equivalently, it computes
thel-dimensional representation ofa 2 Rm�1 asy = UTl a:

It is well known that the truncated SVD provides the closest approximation toA in Frobenius orL2
norm. However, unless performed locally on each cluster as in [Hul94, SHP95], LSI ignores the cluster
structure while reducing the dimension tol. Since there is no theoretical optimum value ofl, potentially
expensive testing may be required to determine the intermediate reduced dimensional representation ofA
that will be the input for the LDA stage.

5 Experimental Results

In this section, we demonstrate the effectiveness of the LDA/GSVD and Orthogonal Centroid algorithms,
which use theJ1 criterion with(S1; S2) = (SB; SW ) and theJ3 criterion withGTG = I, respectively. For
LDA/GSVD, we confirm its mathematical equivalence toJ1 using an alternative choice of(S1; S2), and we
illustrate the discriminatory power ofJ1 via two-dimensional projections. Just as important, we validate our
extension ofJ1 to the singular case. For Orthogonal Centroid, its preservation of tra
e(SB) is shown to
be a very effective compromise for the simultaneous optimization of two traces approximated byJ1. Our
final tests show the sensitivity of the two-stage approach tothe reduced dimension in its first stage, thus
strengthening our contention that the single-stage LDA/GSVD is a more effective approach.

5.1 Equivalence of J1 for (SB; SW ) and (SM ; SW )
In Table 1, we use clustered data that are artificially generated by an algorithm adapted from [JD88, Ap-
pendix H]. The data consist of 2000 vectors in a space of dimension 150, withk = 7 clusters. LDA/GSVD
reduces the dimension from 150 tok� 1 = 6. We compare the LDA/GSVD criterion,J1 = tra
e(S�1W SB),
with the alternativeJ1 criterion,tra
e(S�1W SM ). The trace values confirm our theoretical findings, namely
that the generalized eigenvectors that optimize the alternativeJ1 also optimize LDA/GSVD’sJ1, and in-
cluding an additional eigenvector increasestra
e(S�1W SM) by one.

We also report misclassification rates for a centroid-basedclassification method [HJP] and the k nearest
neighbor (knn) classification method [TK99], which are summarized in Algorithms 3 and 4. (Note that the
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Table 1: Traces and Misclassification Rates (in %) withL2 norm similarity

Method Full trace(S�1W SB) trace(S�1W SM )
Dim 150� 2000 6� 2000 6� 2000 7� 2000

trace(SW ) 299700 1.97 1.48 1.98
trace(SB) 22925 4.03 3.04 3.04
trace(SM) 322630 6.00 4.52 5.02

trace(S�1W SB) 12.6 12.6 12.6 12.6
trace(S�1W SM) 162.6 18.6 18.6 19.6

centroid 2.6 % 2.2 % 2.0 % 2.0 %
5nn 18.7 % 2.2 % 2.2 % 2.4 %
15nn 10.1 % 1.8 % 1.9 % 2.1 %

Algorithm 3 Centroid-based Classification

Given a data matrixA with k clusters andk corresponding centroids,
(i) for 1 � i � k, find the indexj of
the cluster to which a vectorq belongs.� find the indexj such thatsim(q; 
(i)), 1 � i � k, is minimum (or maximum), wheresim(q; 
(i)) is

the similarity measure betweenq and
(i).
(For example,sim(q; 
(i)) = kq� 
(i)k2 using theL2 norm, and we take the index with the minimum

value. Using the cosine measure,sim(q; 
(i)) = 
os(q; 
(i)) = qT 
(i)kqk2k
(i)k2 ; and we take the index with
the maximum value.)

classification parameter of knn differs from the number of clustersk.) These are obtained using theL2 norm,
or Euclidean distance, similarity measure. While these rates differ slightly with the choice ofSB orSM , and
the reduction to six or seven rows using the latter, they establish no advantage of usingSM overSB, even
when we include an additional eigenvector to bring us closerto the preservation oftra
e(S�1W SM). These
results bolster our argument that the correct choice ofJ1 is optimized in our LDA/GSVD algorithm, since it
limits the GSVD computation to a composite matrix withk + n rows, rather than one with2n rows.

5.2 Discriminatory Power of J1
To further illustrate the power of theJ1 criterion, we apply it to the same 2000 data vectors as in Section 5.1,
this time reducing the dimension from 150 to two. Even thoughthe optimal reduced dimension is six,J1 does surprisingly well at discriminating among seven classes, as seen in Figure 1. As expected, the
alternativeJ1 does equally well in Figure 2. In contrast, Figure 3 shows that the truncated SVD, as used in
LSI, is not the best discriminator.
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Figure 1: Max trace(S�1W SB) projection onto two dimensions.
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Figure 2: Max trace(S�1W SM ) projection onto two dimensions.
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Algorithm 4 k Nearest Neighbor (knn) Classification
Given a data matrixA = [a1 : : : an℄ with k clusters, find the cluster to which a vectorq belongs.

1. From the similarity measuresim(q; aj) for 1 � j � n, find the k nearest neighbors ofq. (We use k
to distinguish the algorithm parameter from the number of clustersk.)

2. Among these k vectors, count the number belonging to each cluster.

3. Assignq to the cluster with the greatest count in the previous step.

5.3 Comparison to Orthogonal Centroid Method in Singular Case

Another set of experiments validates our extension ofJ1 to the singular case. For this purpose, we use
five categories of abstracts from the MEDLINE1 database (see Table 2). Each category has 40 documents.
There are 7519 terms after preprocessing with stemming and removal of stop words [Kow97]. Since 7519
exceeds the number of documents (200),SW is singular and classical discriminant analysis breaks down.
However, our LDA/GSVD method circumvents this singularityproblem.

The LDA/GSVD algorithm dramatically reduces the dimension7519 to four, or one less than the num-
ber of clusters. The Orthogonal Centroid method reduces thedimension to five. Table 3 shows classification
results using theL2 norm similarity measure. LDA/GSVD produces the lowest misclassification rate using
both centroid-based and nearest neighbor classification methods. Because theJ1 criterion is not defined
in this case, we compute the ratiotra
e(SB)=tra
e(SW ) as a rough optimality measure. We observe that
the ratio is strikingly higher for LDA/GSVD reduction than for the other methods. These experimental re-
sults confirm that the LDA/GSVD algorithm effectively extends the applicability of theJ1 criterion to cases
that classical discriminant analysis cannot handle. In addition, the Orthogonal Centroid algorithm preservestra
e(SB) from the full dimension without the expense of computing eigenvectors. Taken together, the re-
sults for these two methods demonstrate the potential for dramatic and efficient dimension reduction without
compromising cluster structure.

5.4 Comparison to Two-stage Approach in Singular Case

A final set of experiments also uses the MEDLINE database of Table 2. The results are summarized in
Tables 4 and 5. Table 4 compares our LDA/GSVD method with two-stage approaches whose LSI stage
reduces the data dimension ton = 200. Although the data matrix is square after the LSI stage,SW remains
singular. We first note that if the second stage uses the GSVD,then the final trace values are identical
to those of the single stage of LDA/GSVD, and the misclassification rates are almost identical. However,
if MATLAB’s eig function is used for the second stage, the trace values are scaled quite differently, and
the classification results are slightly better for centroidand 1nn classification and considerably worse for
3nn classification. Clearly, the intermediate reduction toa square matrix produces widely varying results
depending on which LDA algorithm is used in the second stage.

1http://www.ncbi.nlm.nih.gov/PubMed
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Figure 3: Two-dimensional representation using�2V T2 from truncated SVD.

Table 2: MEDLINE Data Set

class category no. of documents
1 heart attack 40
2 colon cancer 40
3 diabetes 40
4 oral cancer 40
5 tooth decay 40

dimension 7519� 200
Table 3: Traces and Misclassification Rate withL2 norm similarity

Method Full Orthogonal LDA/GSVD
Centroid

Dim 7519� 200 5� 200 4� 200
trace tra
e(SW ) 73048 4210 0.05

values tra
e(SB) 6229 6229 3.95tra
e(SB)tra
e(SW ) 0.09 1.5 79

misclassification centroid 5 5 1
rate in % 1nn 40 3 1
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Table 4: Traces and Misclassification Rate (in %) withL2 norm similarity

Method Full LDA/GSVD LSI! 200 LSI! 200
LDA/GSVD LDA/EIG

Dim 7519� 200 4� 200 4� 200 4� 200tra
e(SW ) 73048 0.05 0.05 3:17� 10�54tra
e(SB) 6229 3.95 3.95 6:11� 10�25tra
e(SB)tra
e(SW ) 0.09 79 79 1:92� 1029
centroid 5% 1% 1% 0%

1nn 40% 1% 0% 0%
3nn 51% 1.5% 1.5% 19%

Table 5: Traces and Misclassification Rate (in %) withL2 norm similarity

Method LSI! 195 LSI! 150 LSI! 50 LSI! 20 LSI! 4
LDA/EIG LDA/EIG LDA/EIG LDA/EIG LDA/EIG

Dim 4� 200 4� 200 4� 200 4� 200 4� 200tra
e(SW ) 14.07 313 1446 2963 6962tra
e(SB) 850.60 2903 4555 5124 3473tra
e(SB)tra
e(SW ) 60.42 9.27 3.15 1.73 0.50

centroid 1% 5% 6% 8% 34.5%
1nn 2% 3.5% 4% 8% 24%
3nn 1% 2.5% 3.5% 7.5% 33.5%

In Table 5, the dimension reduction methods vary only in the intermediate dimension after the LSI
stage. Sincerank(SW ) = 195; we include it in our range of LSI dimensions, and conclude with LSI to the
LDA/GSVD optimum dimension of 4. Our rough optimality measure, tra
e(SB)=tra
e(SW ); declines as
the LSI dimension decreases, and misclassification rates increase over the same range. These tests clearly
show the sensitivity of the two-stage approach to the dimension chosen in the LSI stage.

These tests of the two-stage approach also bring up several issues in its usage. First of all, what LSI
dimension will result in nonsingularSW? Second, when choosing the generalized eigenvectors to include
as columns of theG matrix in the LDA stage, what is the meaning of negative generalized eigenvalues?
This is in contrast to the GSVD approach, for which we have infinite, finite and positive, zero, and arbitrary
generalized singular values, and a rationale for the inclusion or exclusion of the corresponding generalized
singular vectors in the solution matrixG. Third, which algorithm should be used for the LDA stage, par-
ticularly when the LSI dimension is close ton so that the LSI representation is square butSW is singular.
These issues will be explored in [HP].
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6 Conclusion

Our experimental results verify that theJ1 criterion, when applicable, effectively optimizes classification
in the reduced dimensional space, while our LDA/GSVD extends the applicability to cases that classical
discriminant analysis cannot handle. In addition, our LDA/GSVD algorithm avoids the numerical problems
inherent in explicitly forming the scatter matrices.

A disadvantage of methods that involve the GSVD is that its computation is costly. Computationally,
the most expensive part of Algorithm LDA/GSVD is Step 2, where a complete orthogonal decomposition
is needed. Assumingk � n, t � m, andt = O(n), the complete orthogonal decomposition ofK costsO(nmt) whenm � n, andO(m2t) whenm > n [GVL96]. Therefore, a fast algorithm needs to be
developed for step 2.

For Orthogonal Centroid, the most expensive step is the reduced QR decomposition ofC, which costsO(mk2) [GVL96]. By solving a simpler eigenvalue problem and avoiding the computation of eigenvec-
tors, Orthogonal Centroid is significantly cheaper than LDA/GSVD. Our experiments show it to be a very
reasonable compromise.

Compared to the two-stage approach of LSI followed by LDA, our one-stage LDA/GSVD avoids the
potentially costly experimentation involved in determining the dimension for LSI. Short of experimenting
with various LSI dimensions, one could reduce the data to dimensionn so that the matrix is square, but
classification results after the LDA stage may vary widely depending on the LDA method chosen. Our
preliminary results show that use of the GSVD may have numerical advantages in this context as well.

Finally, it bears repeating that dimension reduction is only a preprocessing stage. Since classification
and document retrieval will be the dominating parts computationally, the expense of dimension reduction
should be weighed against its effectiveness in reducing thecost involved in those processes.
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