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Abstract

Discriminant analysis has been used for decades to exgatires that preserve class separability. It is
commonly defined as an optimization problem involving c@amee matrices that represent the scatter within
and between clusters. The requirement that one of thesécamtrie nonsingular limits its application
to data sets with certain relative dimensions. We examinanaber of optimization criteria, and extend
their applicability by using the generalized singular watlecomposition to circumvent the nonsingularity
requirement. The result is a generalization of discrimireamalysis that can be applied even when the
sample size is smaller than the dimension of the sample W&aise classification results from the reduced
representation to compare the effectiveness of this appraéth some alternatives, and conclude with a
discussion of their relative merits.

1 Introduction

The goal of discriminant analysis is to combine featuresefdriginal data in a way that most effectively
discriminates between classes. With an appropriate extgriscan be applied to our goal of reducing the
dimension of a data matrix in a way that most effectively press its cluster structure. That is, we want to
find a linear transformatio6” that maps am:-dimensional data point to a vectory in thel-dimensional
space:

GT . q e R™¥1 —>y€RlX1.
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Assuming that the given data are already clustered, we s&@ksformation that optimally preserves this
cluster structure in the reduced dimensional space.

For this purpose, first we need to formulate a measure ofarlggtality. When cluster quality is high,
each cluster is tightly grouped, but well separated fronother clusters. To quantify this, scatter matrices
[Fuk90, TK99] are defined in discriminant analysis. For digify of discussion, we will assume that data

vectorsaq, . . ., a, form columns of a matrid € R™*", and are grouped intb clusters as
k
A=[Ay Ay -+ A where A; e R™™, and Y n=n. (1)
=1

Let N; denote the set of column indices that belong to clust&he centroid:(*) is computed by taking the
average of the columns in clustgli.e.,

: 1
) = — Z a;

' jEN;

and the global centroidis defined as

n
1
c= — g a;.
n &~
J=1

Then the within-cluster, between-cluster, and mixturdgtecanatrices are defined as

k
Sw = Z Z (a; — c(i))(aj — )T,
k - - k - -
Sp = Z (D — )W — )T = Zni(c(l) —)(c = )T, and
; i=1

Sy = ‘ (aifc)(aifc)T,

respectively. Itis easy to show [JD88] that the scatter itedrhave the relationship
Sum = Sw + S. 2)
Applying G*' to the matrixA transforms the scatter matrices to
Sy, =G'SwG, Sy =GTSpG, and S} =GTSyG,
where the superscripf denotes values in thHedimensional space.

There are several measures of cluster quality that invblwéiree scatter matrices [Fuk90, TK99]. Since

k k
trace(Sy ) = Z Z (a; — T (a; — i)y = Z Z la; — @3

=1 jEN; =1 jEN;



measures the closeness of the columns within the clustads, a

k k
trace(Sp) = (D — )Tl —¢) = e — ¢|)3
i=1 jEN; i=1 jEN;

measures the separation between clusters, an optimdbmanadion that preserves the given cluster structure
would maximize trace{}) and minimize trace{};).

This simultaneous optimization can be approximated by figdi transformatiorz that maximizes
trace((S),) 'SY%). However, this criterion cannot be applied when the maiix is singular, a situation
that occurs frequently in many applications. For exampiehandling document data in information re-
trieval, it is often the case that the number of terms in thmudtent collection is larger than the total number
of documents (i.ean > n in the term-document matrid), and therefore the matrifyy is singular. Fur-
thermore, in applications where the data points are in a higfly dimensional space and collecting data is
expensiveSy is singular because the value fomust be kept relatively small.

One way to make classical discriminant analysis applicabtee data matrixd € R™*" with m > n
(and hencesy singular) is to perform dimension reduction in two stagese @liscriminant analysis stage
is preceded by a stage in which the cluster structure is eghdrhe most popular method for the first part of
this process is rank reduction by the singular value decaitipn (SVD), the main tool in latent semantic
indexing (LSI) [DDF"90, BDO95]. In fact, this idea has recently been implemebtediorkkola [Tor01].
However, the overall performance of this two-stage apgredt be sensitive to the reduced dimension in
its first stage. LSI has no theoretical optimal reduced dsiten and its computational estimation is difficult
without the potentially expensive process of trying marsf teses. We discuss this alternative approach in
greater detail in Section 4.2.

In this paper, we extend discriminant analysis in a way thavides the optimal reduced dimension
theoretically, without introducing another stage as dbsdrabove. We consider the set of criteria involving

trace((S3)~'SY) and In(det((S3)~'sY)), (3)

whereS; andS; are chosen fron8yy,, Sg, andS),. Classical discriminant analysis expresses their saiutio
in terms of a generalized eigenvalue problem whlers nonsingular. By reformulating the problem in terms
of the generalized singular value decomposition (GSVD)T81PS81, GVL96], we extend the applicability
to the case whef is singular. We also establish the equivalence among aligachoices fof; andSs. In
addition to the two-stage approach described above, weptrasecond alternative approach that optimizes
the trace of an individual scatter matrix, and show how this loe achieved efficiently. Finally, we present
experimental results demonstrating the capabilities®f@$VD approach, and comparing its effectiveness
to the alternatives.

2 Generalized Singular Value Decomposition

The following theorem introduces the GSVD as was origind#¥ined by Van Loan [VL76].



THEOREM1 Suppose two matrices K 4 € R™*™ withm > n and Kg € RP*™ are given. Then there exist
orthogonal matricesU € R™*™ and V € RP*P and a nonsingular matrix X € R™*"™ such that

UTKaX = diag(ai,...,an) and VIKpX = diag(f1, ..., By),
where g = min(p,n),a; > 0for 1 <i<n,andg; > 0for1 <i<gq.

This formulation cannot be applied to the matrix pAig and K g when the dimensions df 4 do not
satisfy the assumed restrictions. Paige and Saunders J[@8&dloped a more general formulation which
can be defined for any two matrices with the same number ofrumdu We restate theirs as follows.

THEOREM2 Supposetwo matrices K4 € R"*™ and Kg € RP*™ are given. Then for

K = ( Ka ) and t = rank(K),
Kp

there exist orthogonal matricesU € R**", V € RP*P W € R¥*? and Q € R™*™ such that

),

—— ——
t t t t

UTKsQ=3Xs(WTR, 0 ) and VIKpQ=Xp(WTR, 0
where

Iz OB
Ya= D4 , XUp= Dp ;
nxt OA pxt IB

and R € R**! is nonsingular with its singular values equal to the nonzero singular values of K. The
matrices
I4€ R™" and Ig € R(tfrfs)x(tfrfs)

are identity matrices, where

r = rank Ka) _ rank(Kp) and s=rank(K4)+ rank(Kg) — rank Ka ,
KB KB

Oy € R==9)x(=1=5)  and O e RE-1+7)x7
are zero matrices with possibly no rows or no columns, and
Da = diag(ari1,...,0045) and  Dp = diag(Bri1,-- -, Bris)
satisfy
I1>ap11 2245 >0, 0<Brp1 <o < Brys < 1, (4)

anda? + B2 =1fori=r+1,....r+s.



This form of GSVD is related to that of Van Loan by writing [P38

UTKAX = (24,00 and VTKpX = (Z3,0), (5)
where
RW 0

From the form in Eqn. (5) we see that
Ki=U(24,00X ! and K=V (Zp,0)X !,

which imply that

KiKa=xT ?521“ 8 X' and KLKp=Xx" 5%23 8 x!
Defining
a;=1,6,=0fori=1,...,r
and
a; =0,8,=1fori=r+s+1,...,¢,
we have, forl <1 <,
B2K Kz, = ! KL Kpu;, (6)

wherezx; represents théth column of X. For the remainingn — ¢ columns of X, both KfKAmi and
KgKBxi are zero, so Eqgn. (6) is satisfied for arbitrary valuestoind 5; whent + 1 < ¢ < m. The
columns of X are the generalized right singular vectors for the matrix p& 4, Kg). In terms of the
generalized singular values, or the/g; quotients,r of them are infinites are finite and nonzero, and
t —r — s are zero.

3 Generalization of Linear Discriminant Analysis

In this section, several criteria from discriminant anayse extended utilizing the GSVD. We establish the
equivalence for various choices of scatter matrices, alsasdbr seemingly quite different criteria involving
the trace and the determinant.



3.1 Optimization of J; = trace(S,'S;) Criteria
For now, we will focus our discussion on the criteria of optimg
J1(G) = trace((G1 $,G) 1 (GT 81G)), (7)

where S; and S» are chosen fronbyy, Sg, andSy,. When S, is assumed to be nonsingular, it is sym-
metric positive definite. According to results from the syatric-definite generalized eigenvalue problem
[GVL96], there exists a nonsingular matk € R™*™ such that

X181 X = A=diag(M;... \m) and XTS,X =1,,. (8)
Letting z; denote theth column of X, we have
S]il?i = )\iSQIEi, (9)

which means thak; andx; are an eigenvalue-eigenvector pairngl S1. SincesS is positive semidefinite,
Ai > 0for1 <i < m. From (8), we see that only the larggst rank(S;) A;'s can be nonzero. In addition,
by using a permutation matrix to ordér(and likewiseX), we can assume thag > --- > A\ > A1 =
s = Ay = 0.

We have

J1(G) = trace((GTS2G)"1GTS,G)
= trace((GTXTX1@)7'GTX"TAX™'@G)
= trace((GTG) 1GTAG),

whereé~ = X1@. The matrixG has full column rank provided does, so it has the reduced QR factor-
izationG = QR, whereQ € R™*! has orthonormal columns arilis nonsingular [GVL96]. Hence

J1(G) = trace((RTR) 'RTQTAQR)
= trace(R 'QTAQR)
= trace(QTAQRR ™)
= trace(QTAQ).

This shows that once we have simultaneously diagonazexhdSs, the maximization of/; (G) depends
only on an orthonormal basis feinge(X 'G); i.e.,

max J1(G) = Qr%lQail trace(QTAQ) < A\ + -+ 4 A, = trace(S, 1Sy).
(Here we consider only maximization. Similar arguments old when.J; is minimized for some choices
of S1 andSs.) For any! satisfyingl > g, this upper bound od (G) is achieved for

Q= g o G=x

OR.



Note that the transformatia® is not unique. That is/; satisfies the invariance propety(G) = J1(GW)
for any nonsingular matrid¥ € R*!, since

JUGW) = trace(WTGTSoGW) L (WTGTS,GW))
(W HGT$,G) W ITwT(GT$:.G)W)
(

)-

= trace

= trace

= a@

(GTS,G) L (GTs . G)yww 1)

I

0 - This means that

Hence, the maximuni; (G) is also achieved fofz = X

trace((GT $2G) 'GT $1G) = trace(S, *Sy) (10)

whenevelG € R™*! consists of eigenvectors 055151 corresponding to thelargest eigenvalues.

Now, a limitation of theJ; criteria in many applications, including information ietral, is that the
matrix So must be nonsingular. Recalling the partitioningAuinto & clusters given in (1), we define the
m x n matrices

Hy = [A;—cWe®™ 4y — @@ 4, — Ke®T) (11)

Hp = [(cM— c)e(l)T, (¢ — c)e(Q)T, o (P — c)e(k)T] (12)

Hy = [a1—¢...,an —c|=A—cel, (13)
wheree) = (1,...,1)T e R**'ande = (1,--- ,1)T € R**'. Then the scatter matrices can be expressed
as

Sw = HwH},, Sp—=HpHp, and Sy = HyHj,. (14)

For S5 to be nonsingular, we can only allow the case< n, sinceS, is the product of am: x n matrix and
ann x m matrix [Ort87]. ThusJ; cannot be applied when the number of available data poirsshidier
than the dimension of the data. We seek a solution which doesnpose this restriction, and which can
be found without explicitly formings; and.S, from Hy,, Hg, and Hy,. Toward that end, we expreas as
o? /B2, and the problem (9) generalizes to

BSiz; = of Sou;. (15)

This has the form of a problem that can be solved using the G@¥described in Section 2.

3.2 Generalization of J; = trace(S,'S;) Criteriafor Singular S

Continuing with theJ; criteria, we first consider the case where

(S1,52) = (SB, Sw)-



From Eqn. (14) and the definition dfz given in Eqn. (12)rank(Sg) < k — 1. To approximates that
satisfies both

max trace(GT SpG) and m(}n trace(GT Sw@G), (16)

we choose ther;’s which correspond to thé — 1 largest);'s, where); = a?/ﬁ?. When the GSVD
construction orders the singular value pairs as in Eqn.tf#),generalized singular values, or thg/5;
guotients, are in nonincreasing order. Therefore, thefirst columns ofX are all we need. Our algorithm
first computes the matricd$g and Hyy from the data matrix A. We then solve for a very limited pomtio
of the GSVD of the matrix paitH%, H). This solution is accomplished by following the construatio
in the proof of Theorem 2 [PS81]. The major steps are limitethe complete orthogonal decomposition
[GVL96, LH95] of

_  Hj

K —_ H%"/ )

which produces orthogonal matric&sand @ and a nonsingular matriR, followed by the singular value
decomposition of a leading principal submatrixtéfwhose size is much smaller than that of the data matrix.
The steps for this case are summarized in Algorithm LDA/GS¥@apted from [HIP].

Whenm > n, the scatter matrixSy is singular. Hence, we cannot even define fheriterion, and
discriminant analysis fails. Consider a generalized rigghgiular vectorr; that lies in the null space dyy .
From Eqgn. (15), we see that eithgralso lies in the null space &fg, or the corresponding; equals zero.
We will discuss each of these cases separately.

When
x; € null(Sy ) N null(Sp),

Eqn. (15) is satisfied for arbitrary values@fand;. As explained in Section 2, this will be the case for the
rightmostm — ¢t columns ofX . To determine whether these columns should be includét] tonsider

trace(GTSBG) = gJTSBg]- and trace(GTSWG) = ngSng,

whereg; represents thgth column ofG. SincexiTSWmi =0 andx;fSBn:i = 0, adding the columm; to G
does not contribute to either maximization or minimizatio16). For this reason, we do not include these
columns ofX in our solution.

When
x; € null(Sy) — null(Sp),

thens; = 0. As discussed in Section 2, this implies tlagat= 1, and hence that the generalized singular
value«;/f; is infinite. The leftmost columns ok will correspond to these. Including these columns in
G increasesrace(GT SpG), while leavingtrace(GT Sy G) unchanged. We conclude that, even wisgn

is singular, the rule regarding which columnsXfto include inG remain the same as for the nonsingular
case. The experiments summarized in Section 5 demondtittélgorithm LDA/GSVD works very well
even whenSyy is singular, thus extending its applicability beyond thiatlassical discriminant analysis.



Algorithm 1 LDA/GSVD

Given a data matrid € R™*™ with k clusters and an input vectare R™*!, compute the matriG e
R™*(k=1) which preserves the cluster structure in the reduced diimealsspace, using

J1(G) = trace((GT Sw @) 1GTSBQG).
Also compute thé — 1 dimensional representatigrof a.

1. ComputeH g and Hyy from A according to

Hp = [/ri(cW —¢),yna(c? —¢),..., \/n_k(c(k) — )] € R™*k,
and (11), respectively. (Using this equivalent but lowenelnsional form off g reduces complexity.)

2. Compute the complete orthogonal decomposition

T
i 0 where K = H’T3
Hyy

(k+n)xm
0 0 ° eR

PTKQ =

3. Lett = rank(K).
4. Compute W from the SVD aP(1: k,1: ¢), whichisUTP(1: k,1: )W = % 4.

R™'wW

5. Compute the first — 1 columns ofX = Q 0 7

, and assign them t@'.

6. y=G"a

3.3 Equivalenceof J; = trace(S,"'S;) Criteriafor VariousS; and S,

For the case when
(S1,52) = (Sm, Sw),

if we follow the analysis in Section 3.1 literally, it appsdhat we would have to includank(Sy;) £ k—1
columns ofX in G. However, using the relation (2), the generalized eigere/problem

Smxi = NMiSwx;
can be rewritten as
Spx; = ()\l — 1)5[/{/:131', where A >1 for 1 <1< m.

In this case, the eigenvector matrix is the same as for theafds1, S2) = (S, Sw), but the eigenvalue
matrix isA — I. Since the same permutation can be used ta\putl in nonincreasing order as was used for
A, x; corresponds to théh largest eigenvalue cﬂ‘;VISB. Therefore, wher$yy is nonsingular, the solution
is the same as fdiS, S2) = (SB, Sw)-



Whenm > n, the scatter matri$yy is singular. For a generalized right singular vectpe null(Sy ),
Syxi = Spzi. Hence, we include the same columnsdras we did in the case @51, S2) = (SB, Sw).
Alternatively, we can show that the solutions are the samiebying a GSVD of the matrix pa{iH 1,, H,)
that has the same generalized right singular vectofgids Hi;). To do this, we establish the following
two properties ofHi g and Hyy .

PROPERTY1 Hy HJ} = 0.

Proof. From
Hy = Hw + Hp,
we have
Su = HuHj = (Hw + Hp)(Hw + Hp)"
= HwHL + HgHL + HgHL, + Hy HY
= Suw+ HpgHjy + Hy HE,
which implies
HpH}, + HyHE = 0.
In fact, each of these products is zero, since

k
HyHL = (aj — D) (¥ — )T
i=1 jEN;
k
= (nic(i)c(i)T — el — pic®e® 4 nicel) = 0. 0
i=1

PROPERTY2 For K = (Hp, Hy)T € R?"*™ t = rank(K) < n.
Proof. For K™ = (Hp, Hy) € R™*?" we have
rank(KT) + dim(null(K7)) = 2n, or dim(null(K7)) = 2n —t.
Hencet < n if and only if dim(null(K 7)) > n. Supposer; € null(Hg) andzy € null(Hy ). Then

z 0
' = (Hp, Hy) =0.

(Hp, Hw) 0 2

This shows that
dim(null(Hg, Hw)) > dim(null(Hp)) + dim(null(Hwy)).

Property 1 implies

dim(null(Hy)) > rank(HE).

10



Combining this with
dim(null(Hpg)) = n — rank(Hp),

we have
dim(null(Hp, Hy)) > n — rank(Hp) + rank(H%) = n. 0

Now we proceed with the GSVD derivation. For the cas€sif S2) = (Sg, Sw), consider the GSVD
of the pair(H%, H), which is given by

UTHLX = (2p,0) and VTHl X = (Zw,0),
where

Yp and Ty e R, 2Ivp 4+ ¥l Yy =1, and t=rank gf/
Then we have

HL, =U(Ep,00X '+ V(EW,0X ' =UEp+UTVEy, 00X L

In addition,
ET
HyHLF=XT o VIU(25,00X ! =0,
implies
»LvTusy =0,
Hence
s+ UTve) T +UTVEy) = 2L+ 2L, (vivvTvisy + 2L vIivsg + 2LZuTvsy

= yhsp+3ley =1,

which meanstg + UV Xy has orthonormal columns. This can only be tru&j + ULV Ey, has no
more columns than rows, i.e.if< n as shown above in Property 2.

There existd/, such tha(Sg + UT VS, Us) € R**™ is orthogonal. Hence

Iy 0

-1
OOX’

HY = U +UTVEw, Us)

and we can write

U'TH]’]\;X = (EMa O)a

11



where

I

U=UEp+UTVEw,Us) isorthogonal and £, = 0

Together with
VI Hy X = (Sw,0),

this forms a GSVD of the matrix pa{H i, H%,), which has the same generalized right singular vectors as
(HL, HVTV). As expected, each of thenontrivial generalized singular values is infinite, finitedagreater
than one, or equal to one. Note that this form of GSVD (&k!,, H{;,) does not satisfy the condition
EEEM + EQEW = I of the Paige and Saunders [PS81] formulation because)gaehl. However, the
invariance property and nonunigueness of the right simyaetor matrixX can be used to convert it to the
Paige and Saunders form.

Note that if Sy is nonsingular, in then-dimensional space,
trace(Sy,; Sar) = trace(Syy (Sw + SB)) = m + trace(Sy, Sg), 17)
and in thel-dimensional space,
trace((Syy) ' S}y) = trace((Syy) ' (SYy + SE)) = I+ trace((Sy) ' SE). (18)

This confirms that the solutions are the same for lHéth S2) = (Sg, Sw) and(S1, S2) = (Sum, Sw).
From Section 3.1, wherr includes the eigenvectors 6&;}53 corresponding to thé > k£ — 1 largest
eigenvalues, then

trace(S,,' Sg) = trace((Sy) 1SE).
By subtracting (18) from (17) for any> k& — 1, we get
trace((Sky) 1 Sy) + (m — 1) = trace(Sy' Swm). (19)

In other words, each additional eigenvector beyond thenlestk — 1 will add one totrace((SY,) SY,).
This shows that we do not preserve the cluster structure wieasured byrace(S;V] S ), although we do
preservetrace(S;VISB). According to Egn. (19)1;race(S;V15M) will be preserved only if we include ath
eigenvectors oS;VlsM. This, together with Section 3.1, show indirectly thaik(Sy;) = m. That is,Sy,
is nonsingular whenevesyy is.

For the case
(S1,82) = (Sw, Sm),
we want to minimizetrace(SﬁSW). Once again, the relation (2) can be used to rewrite the gbped
eigenvalue problemSyyxz; = \; Sy x; becomes

1
Spx; = (f - 1)Swai,

2

12



for \; # 0. The eigenvector matrix is the same, but the eigenvaluexngth—! — I. When\; > --- > \,,,.
we have

—1<..-< —1,

1
Am
so the same permutation can be used to/put — I in nondecreasing order as pAitin nonincreasing
order. After permutingg; corresponds to both thgh smallest eigenvalue cﬂ‘;j Sw and to theith largest
eigenvalue ofS‘I;,lSB. Therefore, for a given value @f we use the first eigenvectors, just as we did for
(S1,82) = (SB, Sw).

Again we consider a generalized right singular veatoe null(Sw ). For thatz;, Syz; = Spzi, SO
the same reasoning applies regarding the effectrace(G* Sy, G) andtrace(GT Sw G). Therefore, the
solution is the same as @51, S2) = (S, Sw), even in the singular case. The GSVD of the matrix
pair (Hi,, H1;) can be derived from that ¢ff %, H{,) in the same way as shown above {éf1,, H,).
However, since we are minimizing in this case, the genardlgingular values are in nondecreasing order,
taking on reciprocal values of those @ 1,, Hy,).

Having shown the equivalence of thg criteria for varioug Sy, S2), we conclude that
(Sla 52) = (SBa SW)

should be used for the sake of computational efficiency. ThA/GSVD algorithm reduces computational
complexity further by using a lower dimensional form@k rather than that presented in Eqgn. (12), and it
avoids a potential loss of information [GVL96, page 239, Epé&e 5.3.2] by not explicitly forming'g and
Sw as cross-products d g andHyy .

3.4 Generalization of J, = In(det(S,'S;)) Criteriafor Singular S,

Consider
Jo(G) = In(det((GT S2G) " 1GT S1G)) = In(det(G1 S51G)) — In(det(GT $»G)),
where the scatter matricé§ and.S, are nonsingular. It can be shown [Fuk90] that

0J2(G)
oG
and setting this to zero yields

=25,G(GT5,G) ™! —285,G(GTS,G) !,

S, 181G = G(GT$,G) " 1(GT8,G) = G((S3 )~ 'SY). (20)
If we simultaneously diagonaliz&!” andSyY , we get

zZTSYZ = A = diag(\r...\) and Z7S8YZ =1,
whereZ € R'*! is nonsingular. Hence

(8Y) 'Sy =zAz ™!
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and Egn. (20) becomeS;, 'S1GZ = GZA, whereGZ ¢ R™*! consists of eigenvectors of, 'S;. By
the same argument we made far, Jo(G) = J2(GZ), and so

Jo(G) = In(det((GZ)TS1(GZ))) — In(det((GZ)T S5(GZ)))
= In(det(((G2)TS2(GZ)) 1 (GZ)T S2(GZ)A))
= In(det(A)) =InA; +---+1nA;.

This shows that an optimur¥ satisfies the same generalized eigenvalue problem a# fand that we
should choose the eigenvectors that correspond td kagest (smallest) eigenvalues@{lsl if we are
maximizing (minimizing)Js.

We now extend the optimization ok to singular matrices for the case whéi®, S2) = (Sp, Sw).
Consider a generalized right singular vectgr € null(Sg). If z; is included inG, then GTSEG has
a zero column which forces its determinant to zero. Since aetwo maximizeln(det(GTSpG)), we
restrictG to thel = rank(Sg) generalized right singular vectors that correspond todrgelst generalized
singular values. However, these leftmasik(Sg) vectors may include a vectef € null(Sy ) —null(Sp).
Including thisz; will force In(det(G” Sy G)), which we want to minimize, te-co. Therefore, in the
singular case, we include the leftmesihk(Sp) generalized right singular vectors, just as we did for trace
optimization of J;.

4 Alternative Approaches

4.1 Orthogonal Centroid Method

Simpler criteria for preserving cluster structure, suchis trace(G? SyG) and max trace(GT SgG),
involve only one of the scatter matrices. A straightforwanigimization oftrace(G” Sy G) seems mean-
ingless since the optimum always reduces the dimension ¢o @ren when the solution is restricted to
the case whefr has orthonormal columns. On the other hand, with the santectésn, maximization of
trace(G? SpG) produces an equivalent solution to the Orthogonal Centraéthod, which is introduced
and shown to give promising reduced dimensional classificaesults in [PJR], and is summarized in
Algorithm 2.

Let
J3(G) = trace(GT SQ).

If we let G € R™*! be any matrix with full column rank, then essentially thesend upper bound and
maximization is also meaningless. Now, let us restrict thlat®on to the case whe& has orthonormal
columns. Then there exis@s € R™*(m~ such that(G, &) is an orthogonal matrix. In addition, since
Sp is positive semidefinite, we have

trace(GT Sp@) < trace(GT SpQ) + trace(GT Sp@G) = trace(Sp).

If the SVD of Hp is given byHp = USVT, thenSpU = USXT. Hence the columns df form an
orthonormal set of eigenvectors 8§ corresponding to the nonincreasing eigenvalues on thevdagf

14



Algorithm 2 Orthogonal Centroid Method

Given a data matrixd € R™*" with k clusters and an input vectare R™*!, compute &-dimensional
representatiog of a.

1. Compute the centroid? of theith clusterl < i < k.
. SetC — (c(l) 0(2) . c(k))

2
3. Compute the matrig); in the reduced QR decompositiGh= QR.
4

T
LY =Qpa.

A = ©X7. Letting U}, denote the firsk columns of and A, = diag(\; ... \x), we have

trace(U; SpUy) = trace(U] UpAy)
= M+ F+ M1 +0
= trace(Sp),

recalling thatank(Sg) < k — 1. This means that we preseruece(Sp) if we takeUy asG.

Now we show that this solution is equivalent to the solutibthe Orthogonal Centroid method, which
does not involve the computation of eigenvectors. Definirggdentroid matrix

C= (V) @ ... )

as in Algorithm 2, and assuming the centroids are lineadgpendent’ has the reduced QR decomposition
C = QR, where the columns @, € R™** are an orthonormal basis feange(C) and R is nonsingular
[GVL96]. Suppose: is an eigenvector afz. Then

k
Spr = ni(cV —¢)(c) — )Tz = Az
i=1

This means: € span{c(® — ¢|1 < i < k}, and hence: € span{c()|1 < i < k}. Accordingly,
range(Uy) = range(C) = range(Qy),

which implies that
Qr = UpW

for some orthogonal matrik/ € R¥**. Since.Js is invariant under any orthogonal transformation in the
same space),. plays the same role d§,. In other words, instead of computing the eigenvectors,imely
need to computé),, which is much cheaper. Therefore, by computing a reduced€@@mposition of the
centroid matrix, we obtain a solution that maximizesce(G* SgG) over allG with orthonormal columns.
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4.2 Two-stage Approach

As mentioned in the Introduction, another approach foridgakith the singularity ofSy,y whenm > n
uses LSI/SVD as a first stage, followed by the discriminaialysis stage. The goal of the first stage is to
reduce the dimension of the data matrix enough so that theSpevg nonsingular, and classical LDA can be
performed. LSI/SVD uses the truncated SVD to find a raagproximation ofd. That is, ifl < rank(A),
then

A~UY VT

where the columns df; are the firsi left singular vectorsy, is a diagonal matrix with thelargest singular
values in nonincreasing order along its diagonal, and thewas ofV; are the first right singular vectors.
LSI/SVD typically useleVlT as the reduced dimensional representatiod aér equivalently, it computes
thel-dimensional representation efe R™*! asy = U/ a.

It is well known that the truncated SVD provides the closggiraximation toA in Frobenius orLs
norm. However, unless performed locally on each clustendblil94, SHP95], LSI ignores the cluster
structure while reducing the dimensionitoSince there is no theoretical optimum valuel opotentially
expensive testing may be required to determine the inteateededuced dimensional representatioriof
that will be the input for the LDA stage.

5 Experimental Results

In this section, we demonstrate the effectiveness of the /%D and Orthogonal Centroid algorithms,
which use theJ; criterion with (S1, S2) = (Sg, Sw) and theJs criterion withG? G = I, respectively. For
LDA/GSVD, we confirm its mathematical equivalencefousing an alternative choice @81, S3), and we
illustrate the discriminatory power of via two-dimensional projections. Just as important, wédledé our
extension of/; to the singular case. For Orthogonal Centroid, its presemvaf trace(Sp) is shown to
be a very effective compromise for the simultaneous opation of two traces approximated by. Our
final tests show the sensitivity of the two-stage approacineoreduced dimension in its first stage, thus
strengthening our contention that the single-stage LDA/B$ a more effective approach.

5.1 Equivalenceof J; for (Sg, Sw) and (S, Sw)

In Table 1, we use clustered data that are artificially gegedrhy an algorithm adapted from [JD88, Ap-
pendix H]. The data consist of 2000 vectors in a space of déioerl50, withk = 7 clusters. LDA/GSVD
reduces the dimension from 15046- 1 = 6. We compare the LDA/GSVD criteriony = trace(SI;}SB),
with the alternative/; criterion,trace(Sﬁ}SM). The trace values confirm our theoretical findings, namely
that the generalized eigenvectors that optimize the altsen/; also optimize LDA/GSVD’sJy, and in-
cluding an additional eigenvector increasme(S;VISM) by one.

We also report misclassification rates for a centroid-batsssification method [HIP] and the k nearest
neighbor (knn) classification method [TK99], which are susmized in Algorithms 3 and 4. (Note that the
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Table 1: Traces and Misclassification Rates (in %) wWithnorm similarity

Method Full trace S, Si) trace S, Su)
Dim 150 x 2000 6 x 2000 6 x 2000 ‘ 7 x 2000
tracd Sw) 299700 1.97 1.48 1.98
tracg.Sp) 22925 4.03 3.04 3.04
tracd Syr) 322630 6.00 4.52 5.02
trac€Sy,' Sg) 12.6 12.6 12.6 12.6
trace Sy’ Swr) 162.6 18.6 18.6 19.6
centroid 26 % 22% 2.0% 2.0%
5nn 18.7 % 22% 22% 24 %
15nn 10.1 % 1.8% 1.9% 2.1%

Algorithm 3 Centroid-based Classification

Given a data matri¥l with % clusters and: corresponding centroids(?) for 1 < i < k, find the index;j of
the cluster to which a vectarbelongs.

e find the index;j such thatsim(q,c®), 1 < i < k, is minimum (or maximum), whereim(q, c) is
the similarity measure betwegrandc(®.

(For examplesim(g, c¥) = ||g — ¢||5 using theL, norm, and we take the index with the minimum
value. Using the cosine measusén(q, ¢()) = cos(q, c?) = m, and we take the index with
the maximum value.)

classification parameter of knn differs from the number oétdrst.) These are obtained using the norm,
or Euclidean distance, similarity measure. While thesesrdiffer slightly with the choice of g or Sy, and
the reduction to six or seven rows using the latter, theyblistano advantage of usingy, over Sg, even
when we include an additional eigenvector to bring us cltséhne preservation dfrace(S;VISM). These
results bolster our argument that the correct choicé @$ optimized in our LDA/GSVD algorithm, since it
limits the GSVD computation to a composite matrix with- n rows, rather than one withw rows.

5.2 Discriminatory Power of J;

To further illustrate the power of th& criterion, we apply it to the same 2000 data vectors as in&@ebt1,
this time reducing the dimension from 150 to two. Even thothgh optimal reduced dimension is six,
J1 does surprisingly well at discriminating among seven @asss seen in Figure 1. As expected, the
alternativeJ; does equally well in Figure 2. In contrast, Figure 3 shows tiva truncated SVD, as used in
LS, is not the best discriminator.
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Algorithm 4 k Nearest Neighbor (knn) Classification
Given adatamatrid = [a1 ... a,] with k clusters, find the cluster to which a vectdbelongs.

1. From the similarity measut€m(q, a;) for 1 < j < n, find the k nearest neighbors @f (We use k
to distinguish the algorithm parameter from the number o$tdrsk.)

2. Among these k vectors, count the number belonging to dastec.

3. Assigng to the cluster with the greatest count in the previous step.

5.3 Comparison to Orthogonal Centroid Method in Singular Case

Another set of experiments validates our extensiowofo the singular case. For this purpose, we use
five categories of abstracts from the MEDLINEatabase (see Table 2). Each category has 40 documents.
There are 7519 terms after preprocessing with stemmingemdval of stop words [Kow97]. Since 7519
exceeds the number of documents (20%); is singular and classical discriminant analysis breaksrmdow
However, our LDA/GSVD method circumvents this singulaptpblem.

The LDA/GSVD algorithm dramatically reduces the dimensi&i9 to four, or one less than the num-
ber of clusters. The Orthogonal Centroid method reducedithension to five. Table 3 shows classification
results using thds norm similarity measure. LDA/GSVD produces the lowest faissification rate using
both centroid-based and nearest neighbor classificatidhads. Because thé; criterion is not defined
in this case, we compute the ratitace(Sg)/trace(Sy/) as a rough optimality measure. We observe that
the ratio is strikingly higher for LDA/GSVD reduction thaarfthe other methods. These experimental re-
sults confirm that the LDA/GSVD algorithm effectively extesthe applicability of the/; criterion to cases
that classical discriminant analysis cannot handle. Intauig the Orthogonal Centroid algorithm preserves
trace(Sp) from the full dimension without the expense of computingeeigectors. Taken together, the re-
sults for these two methods demonstrate the potential &ondtic and efficient dimension reduction without
compromising cluster structure.

5.4 Comparison to Two-stage Approach in Singular Case

A final set of experiments also uses the MEDLINE database bfeTa. The results are summarized in
Tables 4 and 5. Table 4 compares our LDA/GSVD method with stegie approaches whose LSI stage
reduces the data dimensiomia= 200. Although the data matrix is square after the LSI staffyg,remains
singular. We first note that if the second stage uses the G3w, the final trace values are identical
to those of the single stage of LDA/GSVD, and the misclas#ifin rates are almost identical. However,
if MATLAB's eig function is used for the second stage, thectavalues are scaled quite differently, and
the classification results are slightly better for centradl 1nn classification and considerably worse for
3nn classification. Clearly, the intermediate reductiom guare matrix produces widely varying results
depending on which LDA algorithm is used in the second stage.

http://www.ncbi.nim.nih.gov/PubMed
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Figure 3: Two-dimensional representation usityy/;’ from truncated SVD.

Table 2: MEDLINE Data Set

class|| category | no. of documents
1 heart attack 40
2 colon cancer 40
3 diabetes 40
4 oral cancer 40
5 tooth decay 40
dimension 7519 x 200

Table 3: Traces and Misclassification Rate withnorm similarity

Method Full Orthogonal| LDA/GSVD
Centroid
Dim 7519 x 200 5 x 200 4 x 200

trace trace(Sw) 73048 4210 0.05

values trace(Sp) 6229 6229 3.95
pe s 0.09 15 79
misclassification centroid 5 5 1
rate in % 1nn 40 3 1
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Table 4: Traces and Misclassification Rate (in %) withnorm similarity

Method Full LDA/GSVD | LSI— 200 LSI— 200
LDA/GSVD | LDA/EIG
Dim 7519 x 200 4 x 200 4 x 200 4 x 200
trace(Sw) 73048 0.05 0.05 3.17 x 10~
trace(Sp) 6229 3.95 3.95 6.11 x 10-2°
Lrace 22 0.09 79 79 1.92 x 10%
race(Sw
centroid 5% 1% 1% 0%
1nn 40% 1% 0% 0%
3nn 51% 1.5% 1.5% 19%

Table 5: Traces and Misclassification Rate (in %) withnorm similarity

Method LSlI— 195 | LSI— 150 | LSI— 50 | LSI— 20 | LSI— 4

LDA/EIG | LDA/EIG | LDA/EIG | LDAJ/EIG | LDA/EIG

Dim 4 x 200 4 x 200 4 x 200 4 x 200 4 x 200
trace(Sw) 14.07 313 1446 2963 6962
trace(Sg) | 850.60 2903 4555 5124 3473
pracel22) 60.42 9.27 3.15 1.73 0.50

race(Sw)

centroid 1% 5% 6% 8% 34.5%
1nn 2% 3.5% 4% 8% 24%
3nn 1% 2.5% 3.5% 7.5% 33.5%

In Table 5, the dimension reduction methods vary only in titerimediate dimension after the LSI
stage. Sinceank(Sw ) = 195, we include it in our range of LS| dimensions, and concludéwi$l to the
LDA/GSVD optimum dimension of 4. Our rough optimality meesurace(Sg)/trace(Swy ), declines as
the LSI dimension decreases, and misclassification ratesare over the same range. These tests clearly
show the sensitivity of the two-stage approach to the dimearshosen in the LSI stage.

These tests of the two-stage approach also bring up segetas in its usage. First of all, what LSI
dimension will result in nonsingula$y,? Second, when choosing the generalized eigenvectorsltaec
as columns of th& matrix in the LDA stage, what is the meaning of negative galierd eigenvalues?
This is in contrast to the GSVD approach, for which we havanitd] finite and positive, zero, and arbitrary
generalized singular values, and a rationale for the immtugr exclusion of the corresponding generalized
singular vectors in the solution matr&. Third, which algorithm should be used for the LDA stage - par
ticularly when the LSI dimension is close toso that the LSI representation is square 8t is singular.
These issues will be explored in [HP].
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6 Conclusion

Our experimental results verify that thie criterion, when applicable, effectively optimizes cldissition

in the reduced dimensional space, while our LDA/GSVD exsetied applicability to cases that classical
discriminant analysis cannot handle. In addition, our LGSNVD algorithm avoids the numerical problems
inherent in explicitly forming the scatter matrices.

A disadvantage of methods that involve the GSVD is that itematation is costly. Computationally,
the most expensive part of Algorithm LDA/GSVD is Step 2, wharcomplete orthogonal decomposition
is needed. Assuming < n, t < m, andt = O(n), the complete orthogonal decompositionffcosts
O(nmt) whenm < n, and O(m?t) whenm > n [GVL96]. Therefore, a fast algorithm needs to be
developed for step 2.

For Orthogonal Centroid, the most expensive step is thecesi@R decomposition @¥, which costs
O(mk?) [GVL96]. By solving a simpler eigenvalue problem and avoglthe computation of eigenvec-
tors, Orthogonal Centroid is significantly cheaper than IG8VD. Our experiments show it to be a very
reasonable compromise.

Compared to the two-stage approach of LSI followed by LDA;, one-stage LDA/GSVD avoids the
potentially costly experimentation involved in determigithe dimension for LSI. Short of experimenting
with various LSI dimensions, one could reduce the data teedsionn so that the matrix is square, but
classification results after the LDA stage may vary widelpetaling on the LDA method chosen. Our
preliminary results show that use of the GSVD may have nwakadvantages in this context as well.

Finally, it bears repeating that dimension reduction isyanpreprocessing stage. Since classification
and document retrieval will be the dominating parts comipanally, the expense of dimension reduction
should be weighed against its effectiveness in reducingaleinvolved in those processes.
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