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Abstract. We prove a generalization of the famous Ham Sandwich Theorem for the plane.

Given gn red points and gm blue points in the plane in general position, there exists an

equitable subdivision of the plane into g disjoint convex polygons, each of which contains

n red points and m blue points. For g = 2 this problem is equivalent to the Ham Sandwich

Theorem in the plane. We also present an efficient algorithm for constructing an equitable

subdivision.

1. Introduction

The planar case of the well-known discrete Ham Sandwich Theorem [18] states that, for

finite sets of red and blue points in the plane, there exists a line dividing both red and

blue points into sets of equal size. The Ham Sandwich problem is well studied from an

algorithmic point of view [2], [5]-[7], [12]-[14], [17], [19]. An optimal algorithm ofLo

et al. [13] finds a Ham Sandwich cut in linear time. Kaneko and Kano [11] considered

balanced partitions of two sets in the plane. They gave the following conjecture.

Conjecture 1. Let m 2: 2, n 2: 2, and g be positive integers. Let Rand B be two

disjoint sets of points in the plane such that no three points of RUB are collinear,

IRI = gn and IBI = gm. Then RUB can be partitioned into g subsets PI, ... , Pg

satisfying the following two conditions: (i) Pi and Pj are linearly separable for all

1 s i < j ~ g; and (ii) IPi n RI = nand IPi n BI = mfor aliI ~ i s g.

For g = 2 the conjecture is equivalent to the Ham Sandwich Theorem [18, p. 212].

Kaneko and Kano proved the conjecture in the case of n ~ 2. In this paper we prove their

* Support from NSERC is gratefully acknowledged.
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Fig. 1. An example of three red points '1, '2, and '3 and nine blue points bi, ... , b9 for g = 3. (a) There is

no equitable 2-cutting. (b) An equitable 3-cutting.

conjecture. Actually we prove a stronger theorem providing what we call an equitable

subdivision of the plane.

Note that, for g = 2k
, Conjecture 1 can be proved by applying the Ham Sandwich

Theorem in a divide-and-conquer fashion. For general g, such a strategy is not possible.

Specifically, Fig. 1 illustrates an example of three red and nine blue points that does

not admit an equitable 2-cutting, that is, a partition of the plane by a line such that the

ith halfplane contains gin red and gim blue points for some integers gl, g2 < g (in

other words, there is no halfplane with exactly one red and three blue points). However,

it is sufficient to apply an equitable 3-cutting. An equitable 3-cutting is a partition

of the plane by three rays with a common apex into three convex wedges, each of

which contains a proportional number of red and blue points. In other words, the ith

wedge contains gin red points and gim blue points, for some 0 ~ gl, g2, g3 < g with

gl+g2+g3=g.

Theorem 2 (3-Cutting). For any gn red points (g ~ 2) and gm blue points in the plane

in general position, there is equitable 3-cutting ofred and blue points.

When g = 2, Theorem 2 is equivalent to the Ham Sandwich Theorem. For g ~ 3, we

can apply Theorem 2 recursively for the wedges with gi ~ 2. This produces what we

refer to as an equitable subdivision of the plane. We present an algorithm1 for producing

such an equitable subdivision in O(N4
/
310g3 N log g) time where N = g(n +m) is the

total number of points. Note we need to use the fact that an equitable 3-cutting defines a

convex partition in order to preserve connectivity of the regions produced in the recursive

application of Theorem 2.

1 A Java demo is available at http://www.cs.ubc.ca/spider/besp/ham.htm.
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Very recently the conjecture of Kaneko and Kano has been independently proven

by Ito et al. [10] and Sakai [16]. Comparing our result with papers [10] and [16] we

can say that they prove essentially the same 3-cutting theorems but both use different

(and somewhat more complicated) techniques. Ito et al. [10] prove the existence of a

3-cutting with one ray passing through a fixed point on the convex hull of the union

of the red and blue points. Sakai [16] gives a direct proof of the continuous version of

the 3-Cutting Theorem using a partition of the plane into square cells of an appropriate

size. Paper [10] refers only to the discrete version. Neither of the papers present efficient

algorithms.

Barany and Matousek [3] consider partitions of the plane, k-fans, using k lines and

specified weights of k regions. They prove a weaker version of Theorem 2, namely the

existence of a 3-fan that defines a not necessarily convex subdivision.

2. Preliminaries

Let R be a set of gn red points and let B be a set of gm blue points in the plane in general

position, i.e., there are no three points lying on the same line. The integer g is the number

of groups into which the sets Rand B are to be divided. A 2-cutting is a partition of

the plane by the line into two halfplanes. A 2-cutting is equitable (or more specifically

(gI' g2)-equitable) if the ith open halfplane contains exactly gin red and g.m blue points

for some integers gI, g2 < g with gI + g2 = g.

If there is a (gI, g2)-equitable 2-cutting of the red and blue points, then the problem

can be reduced to the subproblems for the number of groups gI and g2. Otherwise, for

any gI E {I, ... , g - I}, a halfplane containing exactly gIn red points (we call it a

gI -halfplane) contains either less than or greater than gIm blue points. We assign to the

halfplane the sign -lor +1, respectively.

Lemma 3. If, for some gI E {I, ... , g - I}, there are two gI-halfplanes with opposite

signs, then there is a (gI' g2)-equitable 2-cutting.

Proof. Lemma 3 is the same as Lemma 2 of [11]. We prove the result using geometric

duality exploiting an interpretation in terms of k-Ievels of the dual arrangement associated

with the point set RUB. The dual of a point P = (PI, P2) is the line y = -PIX + P2,

and the dual of a line y = ax + b is the point (a, b).

Let 11 and 12 be the lines that define two gI-halfplanes with signs -1 and + 1. We can

rotate the plane so that the lines become nonvertical and the gI-halfplanes become lower

halfplanes. In the dual setting the red and blue points correspond to red and blue lines.

The k-level of an arrangement of lines is a polygonal line formed by all edges of level k,

where the level of an edge is the number of lines lying strictly below its interior point.

The point dual of an equitable 2-cutting lies between the gIn-level and (gIn + I)-level

of red lines and between the gIm-Ievel and (gIm + I)-level of blue lines. An equitable

2-cutting can be found if two levels of different colors cross, see Fig. 2. Otherwise the

entire (gIn + I)-level of red lines lies below the gIm-Ievel of blue lines or the gIn-level

of red lines lies above the (gim + I)-level of blue lines. In this case the points PI, P2

dual to 11, 12 lie below the gIm-Ievel of blue lines or above the (gIm + I)-level of blue
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Fig. 2. The point p is the dual of an equitable 2-cutting.

lines (the points PI, P2 lie between the gIn-level and (gIn + I)-level of red lines). It is

impossible because the point PI is below the glm-Ievel and the point P2 is above the

(glm + I)-level of blue lines. 0

Lemma 3 allows us to assume that, for any gl, all gl-halfplanes have the same sign.

However, in our algorithm we avoid the computation of all signs. Instead we use Lemma 3

to find an equitable 2-cutting if in the course of the algorithm it is discovered that two

gl-halfplanes have opposite signs for some gl. To begin we define signs for a canonical

set of halfplanes. Draw g - I vertical lines that divide red points into g sets of n points.

We assume that there are no two points lying on the same vertical line (otherwise we

can rotate the points). We define the sign of gl, S(gl), as the sign of the left halfplane

formed by the gIth vertical line.

A 3-cutting is a partition of the plane into three wedges WI, W2, and W3 by three rays

with a common point that is called the apex of the 3-cutting. A 3-cutting is convex if its

wedges are convex. A convex 3-cutting is equitable (or more specifically (gl' g2, g3)­

equitable) if the open wedge Wi contains exactly gin red and g.m blue points for some

integers 0 ::s gl, g2, g3 < g with gl + g2 + g3 = g. Note that an equitable 2-cutting is

an equitable 3-cutting for some gi = O.

We will find a 3-cutting with one ray going down, see Fig. 3. We call the wedges

adjacent to this ray left and right. The remaining wedge is upper. The rays are left, right,

and downward. (Note that at most one of the wedges can be nonconvex.)

Left
ray

ITpper wedge
Right
ray

Left wedge Right wedge

Downward ray

Fig. 3. The notation of a 3-cutting.
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Though our goal is to find 3-cutting whose rays do not pass through data points,

it is convenient to define a canonical red 3-cutting for a triple (gI, g2, g3) that vio­

lates this condition. Let p be a point in the plane and let PI, ••• , Pgn be a list of red

points in clockwise order starting from (but omitting) the downward ray from p. (If p

is red, then PI = p. For a red point q directly below p, Ps« = q.) The points Ps,«
and P(gl+g2)n define a red 3-cutting with apex p. A canonical blue 3-cutting is defined

similarly.

3. A 3-Cutting Exists

Note that any (gI, g2)-equitable 2-cutting can be viewed as a (gI' g2, O)-equitable 3­

cutting. Thus the Ham Sandwich Theorem implies that Theorem 2 is true for even g.

The case of odd g is more complicated.

3.1. Odd g ~ 3

We use the following topological lemma (a variant of one from [9]).

Lemma 4. Let R be any closed region in the plane. Let A be a finite arrangement

of curves in R, in which each face of A is labeled with a 1, 2, 3, or 4. Suppose that

there are points p and q, labeled 1 and 3, on the boundary 8R such that one compo­

nent of 8R-{p, q} uses labels 1, 2, 3 and the other component uses 1, 3, 4 (Fig. 4).

Then some point of R lies on the boundary between two faces whose labels differ by

two.

Proof Subtract the faces labeled 2 and 4 from R, and walk along the boundary of the

resulting region starting from p. We either reach q, in which case we have seen a 1-3

transition, or we return to p, in which case we have walked from one component of

8R - {p, q} to the other, and have seen a 2-4 transition. 0

The following theorem provides an equitable 3-cutting or 2-cutting for a given num­

bers of points in groups.

1,2,3

1

1,3,4

3

Fig. 4. 1-3 or 3-4 transition.



610 S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink

9271

<92m

highest position

91n 9371

91n red points

< 91m blue points
p

9311, red points

< 93m blue points

it, ,12, ,, ,

"92
n

"'>92m ,,, ,
, ,

91n 'I' lowest position
< 91rll 93n

< 93111

Fig. S. The region n for triple (gl, si.g3).

Theorem S. Let R be any set ofgn redpoints and let B be any set gm blue points in the

plane in generalposition. Let gl, g2,and g3 be positive integers with gl + g2+ g3 = g.

IfS(gl) = S(g2) = S(g3), then there exists either

• a (gl, g2, g3)-equitable 3-cutting, or

• a (gi, g - gi)-equitable 2-cuttingfor some i,

Proof We can assume the sign S(gl) = -1; if S(gl) = 1 we exchange the colors red

and blue. We define a region n and label each p e R:as follows: Let R:consist of those

points in which the canonical red 3-cutting for triple (gl, g2, g3) with apex p are convex

(Fig. 5). Recall that no vertical line contains more than one data point. Let Xl, ••• , xgnbe

a sorted list of x-coordinates of red points. Consider two vertical lines II and 12 passing

through the glnth and (gl + g2)nth coordinates, i.e., X = xg1n and x = x(gl+g2)n. The

closed halfplane left of II contains exactly gIn red points and less than gim blue points

since s (gl) = -1. Symmetrically, the open halfplane right of 12 contains exactly g3n

red points and less than g-m blue points since s(g3) = -1. For any point left of 11, the

left wedge of a canonical red 3-cutting is nonconvex. Symmetrically, for any point right

of 12, the right wedge of a canonical red 3-cutting is nonconvex. Hence the region n is

bounded by the lines II and 12. Note that an open strip between the lines II and 12contains

exactly g2n red points and greater than g2m blue points.

Consider any vertical line I between II and 12. For a point p on I, the angles of left

and right wedges of the canonical red 3-cutting are both less than n . Furthermore, each

such angle is a monotone function of the y-coordinate of the point p (the angles decrease

when p goes up). It follows that the angle of the upper wedge is monotone. If the point
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Fig. 6. The labels. The dashed rays are blue.

p has the y-coordinate less than the minimum of y-coordinates of data points, then both

the left and right rays go up and the upper wedge is convex. For a point p on 1above all

y-coordinates of red and blue points, the upper wedge of the canonical red 3-cutting has

an angle greater than n . Hence there is a point on the line 1such that the points below p

belong to R.
The lines passing through pairs of points of RUB and the vertical lines through the

points of RUB forman arrangement A. For any point p from theinteriorofaface f E A,

the left (right) rays of the two canonical cuttings are distinct. We are interested in the

clockwise order of left rays (RB or BR) and the clockwise order of the right rays of the

two canonical cuttings. We assign a label to p according to 1 = RB-RB, 2 = RB-BR,

3 = BR-BR, and 4 = BR-RB (Fig. 6). All points of the same face of the arrangement A

have the same label, which is taken to be the label of the face.

Consider the labels on the boundary of R. At y = -00 all labels are 2 = RB-BR

due to the signs of gI and g3. The faces forming the left boundary of R, all of which are

incident on and right of the line 11, have labels RBxx by the sign of gI, which implies

labels 1 or 2. Symmetrically, the faces of the right boundary of R have labels xxBR,

which implies labels 2 or 3. Along the remaining boundary of R, the red partition uses a

straight line at the top, so the sign of g2 rules out label 2 = RB-BR. The top face along

the line 11 has label 1 = RB-RB. The top face along the line 12 has label 3 = BR-BR.

By Lemma 4, therefore, we must have a 1-3 or 2-4 transition. This implies the existence

of an equitable 3-cutting by Lemma 6. 0

Lemma 6. Let p be a point ofthe region R that lies on the boundary between two faces

whose labels differ by two. One ofthe faces around p contains the apex ofan equitable

3-cutting.

Proof. First consider a special case where no data point lies below the apex p (Fig. 7).

Let q be a point in a face whose boundary contains the point p. Let rl and rzbe red points

that define canonical red 3-cutting at q, with o/i being the left ray. Similarly, let bi and

bi be blue points that define canonical blue 3-cutting at q. Actually these points define

canonical red and blue 3-cuttings for all points around p. If the line passing through

the points rl and b I does not contain p, then the order of rays o/i and ~ is still the

same when the point q is rotated around p. This implies that the faces around p use

only two consecutive labels (1 = RB-RB, 2 = RB-BR or 3 = BR-BR, 4 = BR-RB)

contradicting the assumptions. Hence the points rl and b I lie on a ray emanating from

p. Similarly, some ray emanating from p intersects the points r2 and b-, The required
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Fig. 7. Constructionof an equitable3-cutting(dashedrays) for a point p with a 2-transitionof labels. (a) No

point below p. (b) The red point q below p.

equitable 3-cutting can be obtained by rotating the rays ~ and -ph; by a sufficiently

small angle clockwise.

Now suppose some point q, say red, lies below p or coincides with p. Clearly, all

canonical blue 3-cuttings for points in a sufficiently small ball with center at p are defined

by the same blue points, say bi and b2• We prove that an equitable 3-cutting C can be

obtained by a translation of the blue 3-cutting at p downward by a sufficiently small

distance and a rotation of the left ray by a sufficiently small angle clockwise such that the
~

data points on the ray pb, (except p, if pER) remain in the left wedge. The 3-cutting

C divides the blue points into subsets of gsm, g2m, and g3m points.

Split the ball containing p by a vertical line passing through p. Let H be the left open

haltball. If the orders of left rays of red and blue 3-cuttings for some points in Hare

changed (in other words there are two points in H with labels RBxx and BRxx), then

there is a red point rl in the ray pb, that forms all left rays of the red 3-cuttings for points

in H. Therefore the left wedge of C consist of gIn red points. Otherwise the change

of the order of left rays for points whose labels differ by two is caused by inserting the

red point p into the left wedge of a red 3-cutting (with an apex in the right haltball). It

follows that the left wedge of C again consist of gi n red points.

Using a similar argument, we can show that the number of red points in the right

wedge of C is g3n. Note that the right wedge of C is convex because it is covered by

a convex right wedge of red 3-cutting for a point with a label xxRB. Hence C is an

equitable 3-cutting. 0

It remains to show how to construct an appropriate triple (gI' g2, g3).

To apply Theorem 5 we need a triple (gI' g2, g3) with gi + g2 + g3 = g, 0 ::s s. < g,

and signs S(gI) = S(g2) = S(g3). Recall that the signs are defined by vertical cuts. We
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can apply Lemma 3 if the ith vertical line cuts off less (greater) than im blue points and

the (g - i)th vertical line cuts off greater (less) than im blue points. In other words the

signs s(i) and s(g - i) are the same. To apply Theorem 5 we need a triple with the same

signs. The following theorem provides one of these conditions.

Theorem 7. For any sequence of signs s(I), ... , s(g - 1), there is a pair (gl' g2) or

a triple (gl, g2, g3) with sum g and the same signs.

Proof. If the pair (1, g - 1) has the same signs, we are done. Suppose s(l) =F s(g - 1).

Let k be the smallest index with s(k) =F s(l) and s(k - 1) = s(I). Then either s(k) =

s(g - k) or the triple (1, k - 1, g - k) has the same signs. 0

In fact one of the numbers in the triple can be specified.

Corollary 8. For any sequence ofsigns s(I), ... ,s(g - 1), there is a pair (gl' g2) or

a triple (gl' g2, 1) with sum g and the same signs.

Applying Theorem 7 directly adds extra factor g to the running time of constructing

a subdivision of the plane into g regions. The following theorem reduces this factor to

logg.

Theorem 9. For any sequence of signs s(I), ... ,s(g - 1), there is a pair (gl, g3) or

a triple (gl' g2, g3) with sum g and the same signs such that any gi :::: L2g/3J.

Proof. For even g the pair (g /2, g /2) has the same signs. Suppose that g = 2k + 1. We

can assume s (1) = -1; otherwise we exchange the colors red and blue. If s (k) = -1,

then triple (1, k, k) satisfies the theorem, so suppose s(k) = 1. If s(k + 1) = 1, then

the pair (k, k + 1) satisfies the theorem, so suppose s(k + 1) = -1. Let k1 :::: k

be the number such that s(j) = 1 for all j, k1 < j :::: k and s (k1) = -1. Denote

k2 = Lg/3J.

Suppose k1 2: k2. Then the triple (1, k1, g - k, - 1) has the same signs since s(g -

k1 - 1) = -s(k1 + 1) = -1. Note that g - k1 - 1 :::: g - Lg/3J - 1. One can prove

g - Lg/3J - 1 :::: L2g/3J by considering all residues of g modulo 3.

Alternatively k1 < k2. In this case g > 5 because k2 = 1 for g = 5. It follows that

g > 6 and k2+ 1 = Lg/3J + 1 :::: g/3 + 1 < (g + 1)/2 = k. Hence s(k2+ 1) = 1. The

final triple with the same signs depends on the residue of g modulo 3:

• If g = 3k2, then the triple (k2, k2, k2) has the same signs.

• If g = 3k2+ 1, then the triple (k2, k2, k2+ 1) has the same signs.

• If g = 3k2+ 2, then the triple (k2, k2 + 1, k2 + 1) has the same signs. 0

4. Subdivision Theorems

Applying Theorem 2 in a divide-and-conquer fashion we prove the main result of our

paper.
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Theorem 10 (Equitable Subdivision). Given gn red and gm blue points in the plane

in general position, there exists a subdivision ofthe plane into g convex regions each of

which contains n red and m blue points.

The 3-Cutting Theorem and the Equitable Subdivision Theorem are discrete. In the

rest of this section we prove continuous versions of these theorems.

Let PI and P2 be measurable functions R2 --+ [0, (0) with fR2 Pi dx = 1. A

convex 3-cutting of the plane into wedges WI, W2, and W3 is equitable (or more

specifically (gI' g2, g3)-equitable) if fw; PIdx = fw; P2 dx = gi/g for some integers

°~ gI, g2, g3 < g with gI + g2+ g3 = g.

Theorem 11 (3-Cutting, Continuous Version). Let PI and P2 be measurable functions

R2 --+ [0, (0) with fR2 Pidx = 1. For any integer g ~ 2, there exists an equitable

3-cutting.

Proof Note that, for g = 2, this is the continuous Ham Sandwich Theorem. Fix any

integer g ~ 3. The idea is to approximate functions Pi using a continuous version of the

Ham Sandwich Theorem. Consider the function Pl. For a region R, the weight of R is

fR PI(x) dx. The weight of the plane is 1. Draw any line 11 (for example, vertical) that

defines halfplanes HI and H2 of weight ~. Define functions ({JI and ({J2 on the plane by

if p E Hi,

otherwise.

Applying the continuous version of the Ham Sandwich Theorem we construct a line 12

that halves both HI and H2, producing four wedges of weight ~.

We partition each of the four wedges into four regions in the same fashion. The

number of convex regions after partitioning k times is 4k
• This subdivision S satisfies a

line property that any line properly intersects at most 3k regions. The line property can

be proved using the fact that a line cannot contain four interior points of wedges formed

by two lines.

Pick a red point in each region. We define 4k blue points in similar way using the

function P2. To apply Theorem 2 the number of red and blue points must be an integer

multiple of g. We remove any r = 4k
- g L4k

/ gJ red and blue points. By 3-cutting

Theorem 2, for any k, there exists an equitable 3-cutting of g L4k
/ gJred and blue points.

Let it be a (gI' g2, g3)-equitable 3-cutting of the plane into the wedges WI, W2, and W3.

By the line property, each ray of the 3-cutting crosses at most 3k convex regions of S.

The wedge Wi contains at least gi L4k
/ gJ- 2 . 3k

- r whole regions of S and intersects

at most gi L4k
/ gJ + 2 . 3k + r regions of S. Each region of S has weight 1/4k

• Hence

l4
k J k k { l4kJ kgj g - 2· 3 - r ~ 4 JWi PI dx ~ gj g + 2· 3 + r

or
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Using r = 4k
- g L4k

/ gJ we obtain

14k ( r gi) s. I k
) Wi Pi dx - g + r g s 2 · 3 + r

or

4k 11 d s. I k e. kPI X - - ~ 2·3 + r +r- ~ 2· 3 + 2r.
W; g g

Hence

615

I
r d gi 1 3 k 2 g

)Wi Pi X - g s 2ei) + 4k '

One can prove the same bound for P2:

I

r d gi 1 3 k 2 g
)Wi P2 x - g ~ 2(4) + 4k '

The triples (gI, g2, g3)can be different if we change k. We extract an infinite sequence

of numbers kI, ... , k., . . . that define the same triples (gI, g2, g3). Let Pi be an apex of

the 3-cutting constructed for k = ki. It is clear that Pi lies in the vertical slab defined by

the lines x = a and x = b such that

1 PI dx = 1 Pi dx = l-.
x-ca xs-b g

We can extract an infinite subsequence of apexes Pi;, Pi2 ' ••• that converges to some point

P E R2 or to an infinite point (x, ±oo). In the first case the wedges of corresponding

3-cuttings converge to some wedges WI, W2, and W3 that define a (gI' g2, g3)-equitable

3-cutting. In the remaining case some two rays of 3-cuttings converge to vertical lines

that define three slabs of weights gI, g2, and g3 (for both functions PI and P2). Each of

these lines defines a 2-cutting that is a special case of 3-cutting. 0

Applying Theorem 11 recursively for regions with a number of groups more than one

we can prove the following theorem.

Theorem 12 (Equitable Subdivision, Continuous Version). Let PI and P2 be measur­

able functions R2 ~ [0, 00) with JR2 Pi dx = 1. For any integer g > 0, there exists a

subdivision ofthe plane into g convex regions RI, ... , Rg such that

{ Pidx = l-, for i = 1,2 and j = 1, ... , g.
JRj g

5. Algorithm

We next describe an algorithm that finds discrete 3-cuttings recursively. The recursive

procedure has input g, n, m and two sets Rand B of points. If g is even we use the linear

time algorithm of Lo et al. for the Ham Sandwich Problem [13]. Otherwise provided

g > 1 we find a triple (gI' g2, g3) using Theorem 9, and find an equitable 3-cutting

by Theorem 5 (in fact, the algorithm may find 2-cutting instead of 3-cutting). For each

wedge with gin red and gim blue points, we continue recursively.
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We need a triple of integers 0 ~ gl, g2, g3 ~ g that sum to g and have the same signs

S(gl) = S(g2) = S(g3). To compute the signs s(I), ... ,s(g - 1) we construct g - 1

vertical lines separating red points into g sets of equal size. This can be done in linear

time if the red points are presorted. Presorting takes O(N log N) time. We can count

the number of blue points in the g strips in linear time if the blue points are presorted.

For each vertical line, we compute the number of blue points to the left of the line.

Comparing ith number with im gives sign s(i). If, for some i, the ith number coincides

with im, then the ith vertical line gives the equitable 2-cutting.

Now we can find the triple (gl' g2, g3) using Theorem 9.

5.2. One More Topological Lemma

The most difficult part of the algorithm is finding an equitable 3-cutting. Recall that our

proof that an equitable 3-cutting exists depends on the fact (Lemma 4) that in a certain

arrangement with faces labeled 1, 2, 3, or 4, there are adjacent faces whose labels differ

by two. Unfortunately, Lemma 4 does not give a way to compute two such faces except

to look through all faces. We give a general topological lemma for the existence of such

faces that supports binary search.

Let G be a dual graph of the arrangement A formed by the lines passing through pairs

of points of RUB and the vertical lines through the points of RUB. The vertices of G

correspond to the faces and two vertices are adjacent iff corresponding faces are adjacent.

The graph G is planar. We associate the points (1,0), (0, 1), (-1,0), and (0, -1) with

the labels 1,2,3, and 4, respectively. Let S be the square with these vertices. We label the

vertices of the graph G by the points associated with labels of corresponding faces. Note

that the labels of two vertices corresponding to faces whose labels differ by two form a

diagonal of the square S. If two such vertices are adjacent, we call an edge connecting

them a diagonal.

If the exterior face of the graph G contains a diagonal edge we are done. Consider

a nondiagonal directed edge e = (u, v) of G. It corresponds to a directed side of the

square S. We assign a directed length to the edge e to be 1 (resp. -1) if the corresponding

directed side of the square S has clockwise (resp. counterclockwise) direction. A directed

length of a path P without diagonal edges is the sum of directed lengths of edges of P.

Recall the labels of the boundary of the region R. The top has labels 1, 2, or 4, the

bottom has 2, the left side has 1,2, and the right side has 2, 3. This means that any closed

path along the boundary of G clockwise has the directed length 4.

Observation 13. The length of any closed path without diagonal edges is an integer

multiple offour.

Proof. The length of a path P does not change if we remove two consecutive edges

with opposite directed lengths. After all deletions the path P consists of edges with the

same directed length 1 or -1. The length of a path P modulo 4 does not change if we

remove any four consecutive edges. Now the path P contains only one point. D
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We define a number ofturns of a closed path P to be the directed length of P divided

by four. So the clockwise boundary of G has one tum. Now we can formulate the

topological lemma.

Lemma 14. Let G be a connected graph embedded to the plane and the vertices of G

are labeled by the vertices of the square S. If the boundary of G has an odd number of

turns, then there are two vertices of the same face of G whose labels form a diagonal

ofS.

Proof The proof is constructive and can be used in a binary search. If the graph G is

not a cycle, we can find a cutting path P with only two vertices in the boundary of G

that are ends of P. The path P divides G into two subgraphs Gland G2 (both graphs

contain P). The clockwise directed length of G is equal to the sum of clockwise directed

lengths of subgraphs because each edge of P is included twice in the sum with opposite

signs. It follows that the number of turns of the boundary of G is the sum of the number

of turns of the boundaries of the subgraphs. One of the subgraphs has an odd number of

turns because its sum is odd, so we have reduced the graph.

If the graph G cannot be reduced, then G is a cycle with one bounded face. The

vertices of G use all labels (otherwise the directed length of a cycle is zero). Hence there

are two vertices that form a diagonal. 0

5.3. Binary Search

Given a triple (gl, g2, g3) from Theorem 9. The algorithm finds an equitable 3-cutting.

First we determine the location of an apex of 3-cutting among the vertical lines passing

through red and blue points. We apply the binary search on x-coordinates of data points.

Actually, each data point p gives two vertical cuts of the region R, left and right of p,

say x = Px + e and x = Px - e for a sufficiently small e (blue point from the line

1;, i = 1, 2, gives only one cut).

The input of the binary search procedure is a strip between two vertical lines, a cutting

line 1, two directed lengths d1 and d2 of the left and right boundary of the region in the

strip in clockwise order and labels tl and tz of the top faces. The boundary of a graph

corresponding to the region has an odd numbers of turns. The algorithm computes a top

label t and a directed length d of 1 (in the down-up direction) induced by the faces.

The cutting line 1makes two subgraphs whose boundary lengths can be computed using

lengths d1, d2, and d and top labels tl, ti. and t (note that all top paths do not use label 2).

One of the subgraphs has an odd number of turns. The binary search proceeds to this

subgraph.

The main problem is to compute the length d. A vertical cut of the region R intersects

Q (N 2
) faces of the arrangement A. Fortunately, the faces form sequences with the same

labels and the number of such sequences is at most 0 (N 4
/
3

) . Consider a set of red points

to the left of the cutting line 1. The left ray of any red 3-cutting with an apex on the line

1cuts off a fixed number gl n of red points.

In this way the problem of computing the length of a cutting line is reduced to a

well-studied k-level problem in a dual setting, see [1] for a recent survey, Suppose we
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p

91n red points

Fig. 8. Convex hulls.

are given an arrangement of N lines in the dual plane in general position. A point p from

on one of the lines of the arrangement has level k if exactly k other lines pass below p.

The k-level is the union of all such points of level k, a piecewise-linear curve. Recall

that the k-Ievel problem is to find 1/Ik(N), the maximum possible number of segments

that can be on the k-Ievel of an arrangement of N lines. Let 1/I(N) be the maximum of

the 1/Ik(N) problem over all k. Dey [4] recently showed that 1/Ik(N) = O(NkI/3
) , so

1/I(N) = O(N4
/
3

) . The k-level reporting problem is to describe the vertices that form

the k-Ievel, in order of x-coordinate.

The points of the (gIn - Ij-level correspond to the lines cutting off gIn red points

(Fig. 8). Each segment of the (gIn - Ij-level corresponds to the set of lines that cut

off gin red points and pass through the same red point. In this way the (gIn - I)-level

induces a partition of I into segments. The number of such segments is O(1/I(N)). The

blue points also generate a partition of the line I into 0 (1/1 (N)) segments. (If the halfplane

left of I contains less than gl m blue points, all left wedges of blue canonical 3-cuttings

are nonconvex and the order of left rays is RB.) Combining both partitions we divide the

line I into 0 (1/1 (N)) segments such that, for all apexes from the same segment, the left

rays of red and blue 3-cuttings pass through the same pair of red and blue points Prand

Ph. Hence the order of the left rays can change at most one time along a segment, if it

is crossed by the line passing through Pr and Ph. Symmetrically, the points to the right

of I generate O(1/I(N)) segments with an unchangeable order of right rays. Combining

all segments we obtain O(1/I(N)) segments such that the points from the same segment

have the same labels.

The algorithm uses four current segments in one offour combining sets. For a segment,

we maintain two convex hulls of subsets that are divided by a corresponding ray. We use

the dynamic algorithm by Overmars and van Leeuwen [15] that maintains a convex hull

in o (log2 N) time per update (see [8], for example). Thus we obtain an o (1/I(N) log2 N)

algorithm to compute a directed length d. Therefore we proved the following theorem.

Theorem 15. Let T (N) be the running time of an algorithm for reporting a k-level.

The binary search can be implemented in 0 (T (N) log N) time.

Corollary 16. The binary search can be implemented in 0 (N4
/
3 log'' N) using the

algorithm ofOvermars and van Leeuwen [15].
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The binary search can be interrupted if one of the vertical cuts contains a diagonal. We

find an equitable 3-cutting in linear time using Lemma 6. Otherwise the binary search

outputs a vertical strip s with at most one data point in the interior of s. If s contains one

data point, then there are two neighbor segments whose labels differ by two. We again

apply the construction of Lemma 6.

Consider the case of the empty strip s. Of course our technique would allow us to

continue the binary search among all crossing points of the arrangement A. However,

locating the appropriate vertical cuts seems difficult. Actually the final strip s defines

the set of left and right rays and we can find two rays with a crossing point inside s. The

strip s contains an apex of the solution but no data points. We look through the sides of

the strip but we change their roles. We use the partition of the line 11 generated by the

points to the right of the strip. Similarly the line 12 is partitioned by the points to the left

of the strip. The difference is that we use two pointers for each color. For the line 12, one

colored pointer indicates the glnth point of the same color, the second pointer indicates

the (gIn + l)th point. So, for a point of the line 12 , we know the range of left red rays.

The total number of the segments into which the line 12 is divided is still 0 (1/1 (N)). We

also define the blue range and two ranges for the line 11. Note that the ranges of each

segment are defined by four points (two red and two blue). We exclude the intersection

of the lines passing through these points and the segment by dividing the segment.

Now we are ready to start a climb. We pass segments from a side of the strip if

the red and blue ranges do not intersect. Otherwise all rays emanating from a point

of a segment lie between the rays emanating from the endpoints of the segment and

form a trapezoid in the strip s, for example, the trapezoid ABeD in Fig. 9. Suppose both

segments from 11 and 12 form trapezoids. If two trapezoids intersect, then any point of the

intersection gives an equitable 3-cutting, as in the dashed lines of Fig. 9. Otherwise one

of the trapezoids lies below the other. The lower trapezoid does not contain an apex of

11

A
D

Fig. 9. Searching in the strip. Two extreme rays AD and BC form a trapezoid ABCD. Two intersecting

trapezoids ABCD and A' B' C' D' give an equitable 3-cutting (dashed rays).
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an equitable 3-cutting by invariant. We pass the segment corresponding to this trapezoid.

Climbing will eventually stop because the strip contains a solution.

5.5. Running Time Analysis

The running time for the searching in the strip is O(N4
/
3 10g2 N). The total running

time of the 3-cutting algorithm is O(N4
/
3 10g3 N). To obtain a planar subdivision we use

Theorem 9, which gives extra factor log g. Therefore we proved the following theorem.

Theorem 17. Given gn red points and gm blue points in the plane in general position.

A subdivision ofthe plane into g convex polygonal regions each ofwhich contains n red

and m blue points can be computed in O(N4
/
3 10g3 N log g) time where N = g(n +m).

6. Discussion

Recall that the conjecture of Kaneko and Kano asserts the existence of disjoint con­

vex polygons. Such polygons do not guarantee a subdivision of the plane into convex

polygonal regions. Figure 10(a) shows an example of such polygons. There is no convex

subdivision of the plane into three polygonal regions such that each region contains one

of these polygons. Actually our 3-cutting theorem induces a more restricted class of

subdivisions. Figure 1O(b)gives an example of a subdivision of the plane that cannot be

constructed by 3-cuttings.

7. Conclusion

We proved the existence of an equitable subdivision of the plane (Theorem 10). The

special case of n = m = 1 corresponds to the classical result that, for g red points and

g blue points in general position, there is a perfect matching, i.e., g disjoint segments

connecting red and blue points.

(a) (b)

Fig. 10. (a) Three polygons that cannot be extended to a subdivision of the plane into three convex regions.

(b) Polygonal subdivision that cannot be obtained by 3-cuttings.
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The presented method can be used to derive the following subdivision result for an

arbitrary number of red and blue points in an arbitrary position.

Theorem 18. Let Rand B be finite sets of red and blue points in the plane. For any

g > 0, there exists a subdivision of the plane into g convex polygonal regions so that

the interior ofeach region contains at most LIRI/gJ red points and at most LIBI/gJ blue

points.

Actually the proof of Theorem 5 allows us to restrict the 3-cuttings to be found. If gn

red and gm blue points in general position do not admit 2-cutting, then there exists an

equitable 3-cutting with a prescribed direction of one of the rays and the order of groups

around apex. It is interesting that the sequence of signs s (1), ... , s (g - 1) is the source

of various triples for the equitable 3-cuttings, for example, Theorems 7 and 9.

Finally it should be mentioned that our proof of the continuous version of 3-cutting

(Theorem 11) can be used to produce an approximate algorithm for finding an equitable

subdivision of two mass distributions in the plane using the 3-cutting algorithm (discrete

version) and an approximate algorithm for 2-cutting.
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