
GENERALIZING LOGIC CIRCUIT DESIGNS BY 
ANALYZING PROOFS OF CORRECTNESS* 

Thomas Ell man 
Department of Computer Science 

Columbia University 
New York, New York 10027 

Abst rac t 

This paper presents a method of learning to solve design 
problems by generalizing examples. The technique has been 
developed in the domain of logic circuit design. It involves 
the use of domain knowledge to analyze examples and 
produce generalized circuit designs. The method utilizes 
proofs of design correctness to guide the process of 
generalization. Our approach is illustrated by showing it 
can generalize a rotational shift register into a schema 
describing devices capable of computing arbitrary 
permutations. 

I n t roduc t i on 

Research in machine learning has identified two 
contrasting approaches to the problem of learning from 
examples. The traditional "empirical" approach is based on 
the idea that an intelligent system can learn from examples 
without having much prior knowledge of the domain of 
application. This approach has involved looking at a large 
number of examples in order to identify similar features. It 
usually relies on syntactic methods of matching instances 
and correlating the common features. Examples of this 
approach include [Winston 72]; [Michalski 80], among others. 
The alternative "analytical" approach takes a different point 
of view. It assumes that generalization requires a great deal 
of background knowledge of the domain under study. It 
typically relies on intensive analysis of a single example in 
order to generalize. The work reported in this paper takes 
the analytical approach. It has been applied to the problem 
of learning to design logic circuits. The method involves 
analyzing single examples of circuit designs and producing 
generalized designs. 

In order to illustrate the technique, consider the circular 
shift register circuit shown in Figure 1. This device is 
capable of four operations, rotate right, rotate left, load and 
no-operation. The operations are controlled by the two bit 
"select" line (Figure 2). The circuit has been designed using 
d-type flip-flops, labeled "DFF", and multiplexers, labeled 
"MUX". A human novice would be capable of generalizing 
from this example provided he understands the principle of 
operation behind the circuit. For example, he must know 
that a d-flip-flop can store one bit of information and that 
its output is equal to its input delayed by one time unit. 
The multiplexers are used to route one of four inputs to an 
output determined by values on their select lines. A novice 
who understands the operation of this circuit could probably 
produce similar designs which compute any permutation of 

*This research was supported in part by the Defense 
Advanced Research Projects Agency under contract 
N00039-84-C-0165. 

four bits. This merely requires connecting the d-flip-flop 
outputs to the multiplexer inputs in a manner consistent 
with the chosen permutation. Generalization from the single 
example is possible because all the other permutations can 
be implemented using the same principle of operation. 

Figure 2: Control Codes for Circular Shift Register 

This paper will describe a program that attempts to 
model the behavior of the human novice. The program is 
able to successfully generalize the shift register into a circuit 
schema capable of implementing any permutation. The 
system is given enough background knowledge about the 
operation of devices like multiplexers and d-flop-flops so that 
it can understand the operation of the shift register. This 
knowledge takes the form of rules which can be used to 
prove that the example design is correct. The original 
example is generalized into a schema describing all circuits 
that can be verified using the same proof of correctness. 

This research is similar in spirit to previous work on 
analytical methods of generalization. These analytical 
approaches include "goal-directed learning" [Mitchell 83a], 
"explanatory schema acquisition" [DeJong 83], "derivational 
analogy" [Carbonell 83] and "learning from precedents" 
[Winston 83]. The research reported here is also related to 

the work on "circuit redesign" reported in [Mitchell 83b]. 



644 T. Ellman 

The approach taken there involves designing a new circus 
by analogy with a previously designed circuit. Our work is 
different mainly in that it focuses on generalization, rather 
than analogy. The technique of explanatory schema 
acquisition reported in [DeJong 83] is similar to ours, 
although the domain of application is quite different. Our 
work also differs by focusing on design problems and 
generalising both designs and specifications. Other related 
work includes [Minton 84; Mostow 83a; Mostow 83b; 
Salzberg 83; Silver 83]. 

The Learning Task 

Our learning program is envisioned as a component of a 
complete system for designing circuits according to explicit 
specifications. The problem solving module for such a system 
would take circuit specifications as input and produce circuit 
designs as output. The learning module deals with both 
specifications and designs. It is intended to take as input a 
pair (S,D) consisting of specifications and a design which 
correctly implements the specifications. The goal of the 
learning process is to produce a generalized design schema 
(S*,D*) consisting of generalized specifications and a 
generalized design. The learning system must generalize the 
original pair subject to the constraint that the general 
design correctly implements the general specifications. The 
entire process has the following four steps. 

1. A sample specification and design is input by a teacher. 
2. A correctness proof is built to verify the design. 
3. The proof is used to guide generalization of tne example. 
4. The generalized schema is used to solve new problems. 

We have chosen to focus on the third step which involves 
using the proof to facilitate generalization. There are 
several reasons for concentrating on the generalization step. 
A great deal remains unknown about precisely how causal 
reasoning may be used to enable generalization. 
Furthermore, correctness proofs may take a variety of forms 
and the choice may impact on the extent to which the 
proofs are a useful aid for generalization. This reasoning 
suggests investigating the generalization process first and 
letting the proofs be designed to fit the requirements of 
generalization. Our generalization program uses proofs built 
by hand as input. The task of automatically building 
explanations has not yet been implemented. The task of 
building proofs is similar to other understanding problems, 
and has been studied before. The CRITTER system [Kelly 
82], is an example. 

The Circular Shift Register Example 

The generalization program works by analyzing three 
pieces of information (S,D,PJ. Two of the inputs are the 
specifications S and the design D as described above. The 
third input " P " is a proof tree which verifies that the 
design correctly implements the specification. The 
specifications for the circular shift register are shown in 
Figure 3. These specifications contain a list of inputs and 
outputs, as well as clauses describing the behavior of each of 
the four output lines. Each clause specifies the value of an 
output line at time " T " as a function of the values on the 
input lines at an earlier time, "T - 1" . The "Case" 
statement is used to specify the circuit's behavior for each 
of four control states of the SELECT lines. The design of 

the circular shift register is represented by the data in 
Figure 4. This representation describes the electrical 
components and the wire connections between their ports. 

Proofs of correctness are represented as trees. Figure 
5 shows a proof tree that verifies a clause describing the 
behavior of one stage of the shift register. The leaves 
represent facts about the design and the root contains the 
specification to be verified. Hence the tree represents a 
derivation of the specification taking the design statements 
as assumptions. This proof tree uses four derivation rules. 
Two of them, the "Dff-Rule", and the "Mux-Rule" describe 
the behavior of components. The Dff-Rule asserts that a d-
flip-flop output signal at time " T " is equal to the d-flip-flop 
input signal at time "T - 1" . The Mux-Rule describes how a 
multiplexer can be used to implement a case statement. The 
"Connect-Rule" asserts that two connected wires have the 
same signal values at all times. (Ignoring propagation delay.) 
Finally, the "Replace-Rule" allows equal quantities to be 
substituted for each other in expressions. 

Using the Proof to Generalize 

Our generalization procedure is intended to produce a 
schema (S*,D*) describing all circuit designs that can be 
proven correct using the original correctness proof. The 



T. Ellman 645 

F i g u r e 5: A Portion of the Correctness Proof Tree 

proof tree contains information which may be used to 
identify constraints that must be preserved as the example 
is generalized. For this purpose, the proof was designed to 
be processed in both " fo rward " and "reverse" directions. 
Running in the forward direction, the tree takes a design at 
the leaves and produces a specification at the root. In the 
reverse direction, the proof starts wi th a specification and 
produces a design. This suggests that the proof tree could 
be used to do circuit design by analogy, although that is 
not the direction taken here. (See [Carbonell 83].) There are 
four major steps involved in this method of generalization: 

Generalization Procedure 

1. Generalize the specification. 
2. Propagate the generalized specification through the tree. 
3. Obtain constraints on the design at the leaves. 
4. Apply problem independent constraints to the design. 

The f irst step involves systematically removing information 
from the specification. This is done by changing constants 
appearing in the specification into variables. The result is 
shown in Figure 6. The specification now has three types of 
free parameters. The indices associated wi th the output 
wires have been generalized. The boolean control codes and 
the time values have also been changed into variables. Only 
on the right hand side of the equality have constants been 
generalized. The left side was left alone due to a 
requirement that all output lines have their behavior 
specified by some clause. After all four clauses have been 
generalized, the specifications can express arbi trary 

permutations of four bits. In fact, the specifications can 
express movement of data other than permutations. They 
can also express arbitrary time delays. 

Some plausible generalizations have not been made. For 
example, it might be desirable to generalize the length of 
the shift register or the number of different operations the 
device can perform. These quantities do not appear explicit ly 
in the specifications. They cannot be generalized using the 
technique of changing constants to variables. Generalizing 
these quantities would require a more complex representation 
for the specifications as well as a more sophisticated 
procedure for generalizing the specifications. 

F i g u r e 8: Generalized Specifications 

Once the specifications have been generalized, they can 
be propagated down through the proof tree. This is achieved 
by having a procedure for each rule which computes the 
"pre-condit ions" for that rule. Given a "post-condit ion" on 
the result of a proof rule, the procedure finds "pre­
condit ions" on the antecedents of the rule which guarantee 
that the post-condition wi l l be true. Each of the proof 
rules must be wri t ten in forward and backward versions. 
For example, the "Replace Rule" involves eliminating 
variables when running in the forward direction, and 
introducing variables when running in the backward 
direction. This method of backward constraint propagation 
has been applied in other learning systems such as [Utgoff 
83; Minton 84], and the method is formalized in [Di jkstra 
76]. Af ter the specifications have propagated through the 
tree, constraints on the circuit design are obtained at each 
of the leaves. 

The final step involves applying some problem-
independent constraints to the design statements generated 
at the leaves of the proof tree. These constraints require 
that the circuit design meet some general requirements that 
apply to all designs. For instance, one constraint requires 
that no input wire be connected to more than one output 
f rom another device. 

The General ized Design 

A port ion of the final design schema is shown in Figure 
7. One part of this schema is a list of constraints on the 
parameters of the generalized specifications. The schema in 
Figure 7 lists constraints on the time variables "?T ime-01" , 
"?Time-02", "?Time-03", etc. These constraints assert that 
the general design can only implement a one uni t t ime 
delay. When these variables were first introduced, they 
allowed the specifications to express arbi trary t ime delays. 
Now it turns out that the original specifications were over 
generalized. The time values were constrained as they 
propagated through the proof tree. This is a consequence of 



646 T. Ellman 

the fact that the proof tree does not represent a reasoning 
process sufficiently general for implementing arbitrary delays. 

The schema in Figure 7 also lists statements describing 
connections between inputs of a multiplexer and outputs of 
d-flip-flops. These connections are not specified exactly. 
They depend on the parameters "?Index-01", "?Index-02", 
"?Index-03", "?Value-01", "?Value-02", and "?Value-03" 
which appear in the generalised specifications. (The 
expression "(Number ?Value-01)" represents the integer 
corresponding to the two bit vector "?Value-01".) These 
variables fell through the proof tree without having their 
values constrained. Therefore, the multiplexer inputs may 
be connected to any of the d-flip-flop outputs. These degrees 
of freedom allow the schema to implement an arbitrary 
permutation of the four bits, and an arbitrary choice of 
control codes. The "Index" parameters determine which 
permutations can be computed. The "Value" parameters 
determine the corresponding control codes. This design 
schema can also be used to implement data rearrangement 
operations other than permutations. 

Figure 7: A Portion of the Generalized Design 

Conclus ion 

It has been shown that domain knowledge can be used to 
enable an intelligent system to generalize from a single 
example. In the area of design problems, a proof of 
correctness is a useful vehicle for applying domain knowledge 
to the task of generalization. The proof enables the 
generalizer to capture a chain of reasoning used to 
understand the original design. The resulting generalization 
represents all designs which can be verified using the same 
proof of correctness. 

Acknowledgement 

This paper and the work it reports have benefited 
greatly from numerous discussions with Michael Lebowitz. 

References 
[Carbonell 83] Carbonell, J. G. Derivational analogy in 
problem solving and knowledge acquisition. Proceedings of 
the International Machine Learning Workshop, Champaign-
Urbana, Illinois, 1983, pp. 12 - 18. 

[DeJong 83] DeJong, G. F. Acquiring schemata through 
understanding and generalizing plans. Proceedings of the 
Eighth International Joint Conference on Artificial 
Intelligence, Karlsruhe, West Germany, 1983. 

[Di jkst ra 76] Dijkstra, E., W. A Discipline of 
Programming. Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey, 1976. 

[Kel ly 82] Kelly, V., Steinberg, L., The CRITTER 
System: Analyzing Digital Circuits by Propogating Behaviors 
and Specifications. Proceedings of the Second National 
Conference on Artificial Intelligence, Pittsburgh, PA, 1982. 

[Michalak! 80] Michalski, R. S. "Pattern recognition as 
rule-guided inductive inference." IEEE Transactions on 
Pattern Analysis and Machine Intelligence S, 4 (1980), 349 
- 361. 

[Minton 84] Minton, S. Constraint-Based Generalization. 
Proceedings of the Fourth National Conference on Artificial 
Intelligence, Austin, Texas, 1984. 

[Mitchel l 83a] Mitchell. T. M. Learning and problem 
solving. Proceedings of the Eighth International Joint 
Conference on Artificial Intelligence, Karlsruhe, West 
Germany, 1983. 

[Mitchel l 83bl Mitchell, T. M., et al. An Intelligent Aid 
for Circuit Reaesign. Proceedings of the Third National 
Conference on Artificial Intelligence, Washington, DC, 1983. 

[Mostow 83a] Mostow, J. Operationalizing advice: A 
problem-solving model. Proceedings of the International 
Machine Learning Workshop, Champaign-Urbana, Illinois, 
1983, pp. 110 - 116. 

[Mostow 83b] Mostow, J. Program Transformation for 
VLSI. Proceedings of the Eighth International Joint 
Conference on Artificial Intelligence, Karlsruhe, West 
Germany, 1983. 

[Salsberg 83] Salzberg, S. Generating Hypotheses to 
Explain Prediction Failures. Proceedings of the Third 

National Conference on Artificial Intelligence, Washington, 
DC, 1983. 

(Silver 83] Silver, B., Learning Equation Solving Methods 
rom Worked Examples. Proceedings of the International 

Machine Learning Workshop, Champaign-Urbana, Illinois, 
1983, pp. 99 - 104. 

[Winston 72] Winston, P. H. Learning structural 
descriptions from examples. In P. H. Winston, Ed., The 
Psychology of Computer Vision, McGraw-Hill, New York, 
1972. 

[Winston 83] Winston, P. H, Binford, T. O., Katz, B., 
wry, M. Learning Physical Descriptions from Functional 

Definitions, Examples, and Precedents. Proceedings of the 
Third National Conference on Artificial Intelligence, 
Washington, DC, 1983. 

[Utgoff 83] Utgoff, P. E. Adjusting Bias in Concept 
earning. Proceedings of the International Machine Learning 

Workshop, Champaign-Urbana, Illinois, 1983. 


