
Generalizing Partial Order and Dynamic Backtracking

Christian Bliek

Artificial Intelligence Laboratory
Swiss Federal Institute of Technology

IN-EcublensF 1015 LausanneFSwitzerland
cbliek@lia.di.epfl.ch

Abstract

RecentlyFtwo new backtracking algorithmsF dynamic
backtracking (DB) and partial order dynamic backtrack-
ing (PDB) have been presented. These algorithms have
the property to be additive on disjoint subproblems and
yet use only polynomial space. Unlike DBFPDB only im-
poses a partial search order and therefore appears to
have more freedom than DB to explore the search space.
HoweverFboth algorithms are not directly comparable
in terms of flexibility. In this paper we present new
backtracking algorithms that are obtained by relaxing
the ordering conditions of PDB. This gives them addi-
tional flexibility while still being additive on disjoint
subproblems. In particularF we show that our algo-
rithms generalize both DB and PDB.

Introduction
Most sound and complete algorithms for solving con-
straint satisfaction problems are based on backtrack-
ing. Intelligent backtrackers record information regard-
ing dead ends to avoid encountering them again. This
approach was first used in dependency directed back-
tracking (DDB) where the subset of the current assign-
ments that caused the dead end are recorded in a no-
good (Stallman & Sussman 1977). By avoiding this
subset of assignmentsPthe efficiency of the subsequent
search can be increased. UnfortunatelyFsince the num-
ber of accumulated nogoods increases monotonically[’
DDB has an exponential space complexity.

To address this problemFrecent backtrackers elimi-
nate nogoods that are no longer relevant to the current
assignments. By doing soFthe space complexity remains
polynomial. One of the standard techniques that has
adopted this approach is conflict based backjumping1

(CBJ) (Prosser 1993). When a dead end is encountered
CBJ jumps back to the variable that participated in the
dead end and was instantiated last. HoweverFby doing
so CBJ erases all assignments and nogoods that were
obtained since. The search effort to solve disjoint sub-
problems is therefore multiplicativeFnot additive.

1This algorithm also appears in (Ginsberg 1993) where
it is called backjumping.

Copyright © 1998FAmerican Association of Artificial Intel-
ligence (www.aaai.org). All rights reserved.

To overcome this drawbazkF dynamic backtracking
(DB) reutilizes intermediate search information (Gins-
berg 1993). Upon backtrackingFit only removes the
assignment of the backtrack variable and the nogoods
that depend on it. This gives DB the property to be
additive on disjoint subproblems. HoweverFthe forced
reordering undoes the choices performed by variable se-
lection heuristics. Experiments indicate that this neg-
ative effect often outweighs the benefits (Baker 1994).

eBJ and DB can be considered as classical backtrack
search algorithms. The search consists in extending a
consistent partial set of assignments until a solution is
found. An alternative approach is to consider a com-
plete set of assignments that is incrementally modified
until M1 constraints are satisfied. During the searchP
a partial order on the variables is imposed to guaran-
tee termination. This approach was first introduced by
partial order backtracking (POB) (McAllester 1993).
(Ginsberg f~ McAllester 1994) this algorithm is slightly
generalized and is referred to as PDB. Like DBPPDB has
the property to be additive on disjoint subproblems.

The advantage of PDB with respect to DB is that it
allows to reorder all variables and not just the "future"
variables. It therefore appears to be much more flexible
in terms of exploration of the search space. Neverthe-
lessFDB and PDB are not directly comparable in terms of
flexibility. In factPin (McAllester 1993)Pit was raised
as an open question whether a more general algorithm
could be devised. In this paper we present two new in-
telligent backtrackers that are obtained by relaxing the
ordering conditions of PDB. This gives them additional
flexibility while still being additive on disjoint subprob-
lems. In particularFwe show that our algorithms gen-
eralize both DB and PDB.

Background
To avoid redundant searchP intelligent backtrackers
record nogoods. A nogood 7 is a subset of assignments
of values vj to variables xj which are incompatible:

(xl = vl ^... ^ xk = vk) (1)
DDB accumulates all nogoods it encounters and hence
suffers from an exponential space complexity. To keep
the space complexity polynomial~ome nogoods need to
be removed during the search. In this paper we will fol-
low the approach used by PDB which is outlined below.

From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Xl X2
We refer the reader to (McAllester 1993) and (Ginsberg

McAllester 1994) for a more detailed presentation.
At all times a complete set of assignments of the vari-

ables is considered. These assignments are incremen-
tally modified until all constraints are satisfied. This
search process is driven by the addition of new nogoods.
New nogoods are added when the current assignments
violate a constraint or when backtracking occurs. To
satisfy a new nogoodi,one of its variable assignmentsr
say xkFneeds to be changed. This is represented explic-
itly by rewriting expression (1) for 7 as:

Xl : Vl A " " A Xk_1 : Vk-1 ~ Xk 7£ ?)k

We will refer to this expression as the ordered nogood
"~. Here Xl = vl through xk-1 = vk-1 are called the
antecedent and xk 7£ vk the conclusion of-~. As soon
as the value of xk changesF all nogoods that have zk
as antecedent variable are removed. This means that
the current assignments match all the antecedents of
each nogood. Note that some assignments do not ap-
pear in any nogood antecedent. If desiredI’these as-
signments may be changed in addition to the one of x~.
We therefore say that an assignment is acceptable for a
set of nogoods if all the antecedents are matched and
none of the conclusions are violated. Observe that with
this approachra variable assignment can be ruled out
by at most one nogood. There are therefore at most
nd nogoodsFwhere n is the number of variables and d
the maximum domain size. Since each nogood requires
O(n) spaceFthe overall space complexity is O(n2d).

Backtracking occurs when for a given variablePsay
yP all values vl through Vd are ruled out by nogoods
~i -~ Y ~ vi. In this case a new nogood is generated
by the following inference rule:

P’d --+ Y 7t Vd (2)

(r,1 ̂ ... A Ea)

New nogoods either correspond to constraint viola-
tions or are obtained by the above inference rule. This
means that all steps in the inference process are valid.
So when the empty nogood is obtained it can safely be
concluded that the problem has no solution. It must be
emphasized that this is true regardless of any consider-
ations concerning variable ordering or nogood removal.

Each nogood eliminates a new section of the search
space. Since DDB accumulates nogoods and the size of
the search space is boundedI’DDB will terminate. How-
everFwhen nogoods are removed during the searchFter-
mination is no longer guaranteed. CBJ and DB therefore
impose a total order on the assigned variables. By do-
ing sol’the portion of the search space ruled out by the
new nogood includes the portions that were ruled out
by the nogoods that are removed. As a result the size
of the eliminated search space increases monotonically
which ensures termination.

x2=2--~x152
x3 -- 2-+ x2 7~ 2
xl = l --+ xz ¢ 2
x2 = 1 --+ Xl -~ 1
x3 = l-+ x2 7~ l
xl = 2--+ x3 7t 1

2 2
1 2
1 1
1 1
2 1
2 2
2 2

xz F
2
2 {x2=2~xl¢2}
2 {x3=2-+x2¢2}
1 {xl =l--+xz~2}
1 {x2=l--+xl ¢1}
1 {x3=l~x2¢l}
2 {x1=2~x3~l}

Table 1: Search states of a simple search algorithm.

The inference made by an ordered nogood is directed.
The value of the conclusion variable y is ruled out based
on the assignments of the antecedent variables xj. In a
traditional backtrack tree search xj will therefore pre-
cede y in the variable ordering. This relative ordering
condition will be denoted by xj < y. One may wonder
itTto ensure terminationFit is not sufficient to elimi-
nate the possibility for cyclic inferences. This can be
done by requiring that the set of conditions ~j < y is
acyclic. We hereby impose only a partial search order.
UnfortunatelyFthe answer is no. Consider the problem
with three variables xlFx2 and x3 each with values 1
and 2 and with constraints as depicted in figure 1. Ta-
ble 1 shows the states of the search. The first column
shows the nogood "~ added at each stepF the second
column shows the current assignments and the third
column F contains the current set of nogoods. Observe

X Incompatibilities

~
Solutlon

x2

Figure 1: Example problem.

that the search process wilt cycle indefinitelyFalthough
xl = 2, x~ = 1 and x3 = 2 is a solution. The problem
is that search information is deleted when nogoods are
removed. As the example showsFthis makes it possible
for the search process to "chase its tail".

The relative ordering conditions corresponding to the
ordered nogoods are consequently not sufficient to en-
sure termination. PDB therefore imposes additional rel-
ative ordering conditionsFcalled safety conditions. The
idea is to retain some of the ordering conditions of the
nogoods that have been removed. The order selected
for new nogoods is now required to respect both types
of ordering conditions. That isFthe resulting set of con-
ditions may not be cyclic.

In the example aboveFwhen x~ = 2 --+ Xl ¢ 2 is
deletedFPDB imposes the safety condition x2 < Xl. Now
we can no longer add Xl = 1 --+ x3 ¢ 2 as it would cause
a cycle. InsteadFwe rewrite it as x3 = 2 --+ Xl ¢ 1. This
now prompts us to change the value of xl to 2Fhereby
obtaining a solution.

General Partial Order Backtracking

While DB imposes a total variable orderFonly a partial
variable order is required by PDB. NeverthelessFPDB is
not a generalization of DB. We illustrate this point with
an example. Consider a problem where each variable
has three values. SupposeFas illustrated on top in fig-
ure 2Fthat the values (shown as *) for xlFx~ and x3

DB

X1 /~oo

Xl °~x~e°
Nogood

X2 o o Safety Condition

X3

PDB GPB

Xl~oo

xj oo

X3 xeo

Figure 2: Backtracking with DBFPDB and GPB.

are not ruled out (shown as x) by any nogood. Sup-
pose further that xl and x2 rule out all values of a fourth
variable x4 (not shown). At this pointFwe need to back-
track. So we use inference rule (2) to generate a new
nogood involving xl and x2. Let us select x2 as conclu-
sion and remove the nogood based on it. The first value
of x2 is now eliminated. As depicted on the bottom of
figure 2FDB will hereby be forced to change the relative
order of x2 and x3Fwhereas PDB has no choice but to
keep the same order. In terms of flexibility both algo-
rithms are therefore not comparable. HoweverFit turns
out that the safety condition x2 < x3 can be relaxed.
Below we describe a new algorithm called general par-
tial order backtracking or GPB that exploits this fact. As
illustrated on the bottom of figure 2Fin this case GPB
only requires that xl < x3. Observe that for GPB both
the order of DB and the one of PDB are admissible.

PDB specifies explicitly how the set of safety condi-
tions changes with the addition of each nogood. How-
everFit is not needed to do so explicitly. We can ab-
stract from the details on how safety conditions actually
change and instead describe general conditionsFcalled
transition conditionsFthat need to be respected. We
will do so in the following way. By transitivityFa set
of safety conditions S implies a set of ordering condi-
tions that will be denoted by <s. Instead of specifying
which safety conditions < have to be presentFwe specify
which ordering conditions <s have to be verified. We

then do not need to concern ourselves with how safety
conditions actually imply these ordering conditions.

We consider the addition of a single nogood. Let
S and S’ be the set of safety conditionsFbefore and
after the addition of this nogood. SimilarlyFlet F and
F’ be the set of ordered nogoods before and after the
nogood is added. Let the conclusion variable of the
added nogood be y and let Z = {z]y <s z}. The
transition conditions we require are:

1. only ordering conditions of the type q <s z with
z 6 Z may disappearF

2. for every variable x for which x <s, yFwe have for
all z E ZFx <s’ z and

3. for every ordered nogood in F’ with antecedent vari-
ables xj and conclusion variable yFwe have xj <s, Y.

Aside from the generalization of the formulationFthe
main difference with respect to PDB is that we no longer
require that y <s, z for all z E Z.

GPB has a main search loop and a backtrack procedure
similar to PDB. The difference between the two resides
in the conditions imposed on S. We use X to denote a
complete set of assignments.

Algorithm GPB

Until X is a solution or the empty nogood is derived;
select a nogood 7 corresponding to a constraint

violationF
Backtrack 7P
change X to be acceptable for F.

Backtrack 3’
Select a conclusion variable y of 3’ respecting S.
Add "~ to F and remove from F all nogoods

which have y as antecedent variable.
Modify S so that the transition conditions are

satisfied.
If the live domain2of y is empty

infer a new nogood p and
Backtrack p.

In the next section we prove that the properties of
GDB concerning termination and systematicity still hold
for GPB. In the subsequent sectionPwe demonstrate that
GPB is a generalization of both DB and PDB.

Properties of GPB
GPB goes through a sequence of statesFcalled partial or-
der statesFeach of which is described by a set of safety
conditions S and a set of nogoods F. The transition
between two subsequent states is performed by a top
level call to the procedure BacktrackFincluding recur-
sive calls if any. A state described by a total order and
a complete set of assignments will be called a total or-
der state. A total order state is an instance of a partial
order state if its total order respects the safety condi-
tions S and if its set of assignments is acceptable for

:The live domain of a variable is the set of values of its
domain that is not ruled out by a conclusion of a nogood.

the set of nogoods P of the partial order state. We can
now present the main result of this section:

Theorem 1 For every sequence of partial order states
kge there exists a sequence of total order states gj so

that ~r~ is an instance of ~rk and so that the sequence cr~
is visited during the execution of a systematic backtrack
algorithm.

Note that this is a stronger property than what was pre-
viously shown for GDB in (Ginsberg & McAllester 1994).
In factFtheir result is a consequence of this theorem and
is presented in corollary 1.

We first present three lemmas that allow us to prove
theorem 1. In the lemmas we will consider the addi-
tion of a single nogood. That isFrecursive calls of the
procedure Backtrack are treated individually. The first
lemma is adapted from (Ginsberg & McAllester 1994F
lemma 5.5)Fthe two remaining ones appear to be new.

Let a be the situation beforeFand /3 the situation
after the addition of a single nogood. Take any total
order that respects the ordering conditions in/3. In this
orderFlet s be the last variable before any variable in
Z U {y}FS1 be the set of variables up to and including
sFand let $2 be the remaining variables. FurthermoreF
let S~ be the ordering of $1 according to the chosen
order in/3Fand S~ an ordering of $2 that respects the
ordering conditions in ~. The first two lemmas allow us
to construct an order in a for any order in/3. In partic-
ularFlemma 2 shows that this order can be constructed
as depicted in figure 3.

¯ i}i} s

.}
¯ ̄ (S2. (y})~ ¯¯ y s2
¯ ¯ ~

Figure 3: Orders before and after backtracking

Lemma 1 The order S~ ; S~ respects the ordering con-
ditions in (~.
Proof: Transition condition 1 ensures that only order-
ing conditions of the type q <s z with z E Z disappear.
Since by construction Z __C_ S2Fwe know that only or-
dering conditions of the type q <s s2 with s2 C $2
are removed. Based on this we can verify that all or-
dering conditions in ~ are satisfied by P$1;$2. Let us
distinguish 4 types of ordering conditions:

1. s~ <s s~~ with s~ E $1 and s~~ E $1. No ordering
conditions of the type q <s Sl with sl E $1 have been
removed between o~ and/3. So the ordering conditions

between elements in $1 are the same in a as in ft.
They are therefore satisfied by S~.

2. s~ <s s~ with s~ E $2 and s~~ E $2. For the elements
of $2 an order S~ is used. This order respects the
ordering conditions of a by definition.

3. sl <s s2 with sl E $1 and s2 E $2. In S~;S~F
the elements sl precede the elements s~ by construc-
tion. All ordering conditions of the type sl <s s2 are
therefore satisfied by the proposed order.

4. s2 <s sl with sl E S1 and s2 E $2. This type of
ordering conditions is not present in flFand was not
removed when going from oe to/3. This means that
it could not be present in oe.

[]

Lemma 2 The order S~; y ; ($2 - {y})~ respects the
ordering conditions in or.

Proof: By lemma 1 we know that St~" Sa respects the
ordering conditions in a. So it suffices to show that y
can be taken as first element in S~. We prove this by
contradiction. Suppose y could not be taken as first
element in S~. This would mean that there exists an
ordering condition of the type z <s Y with x E S2-{y}.
By transition condition 1Fthis ordering condition could
not have been removed when going from a to/3. Now
by transition condition 2Fin/3 we will also have x <s z
with z E Z. But this would mean that x precedes both
y and z. If this were the caseFx would have been part
of S1Fwhich is a contradiction. []

Theorem 1 and its proof refer to a systematic back-
track algorithm. For this purpose let us consider a back-
track search algorithm with dynamic variable reorder-
ing. The elementary step of the algorithm is to process
a single nogood. Consider the addition of a new nogood
with conclusion y. FirstFall nogoods are removed that
have y or subsequent variable as antecedent variable.
Then the search tree is further explored to find a next
set of assignments. If the live domain of y is not emptyF
a complete set of assignments that satisfies all nogoods
will be found. OtherwiseFthe partial set of assignments
up to and excluding y is used. Lemma 3 shows that this
algorithm is systematic in the sense that any total set of
assignments can at most be visited once. FurthermoreF
when a value of a variable y is ruled out by a nogood
we can choose to instantiate any future variable next3.

As beforeFlet o~ and /3 be the situation before and
after the addition of a single nogood. In lemma 3 and
in the proof of theorem 1 assignments will be denoted
as follows. X~ and X~ are the assignments in/3 for the
variables in $1 and S~ respectivelyFand (X2-{y = v})~
are the assignments for the variables in $2 - {y} in o~.

Lemma 3 The transition from the partial set of as-
signments X~,y = v with search order S~ ; y ; ($2

3This is in fact the modification that was applied to DBI
in (Ginsberg 1993Fpage 32).

{y})a to the partial set of assignments X~ with search
order ~S1 ;S2 is systematic.

Proof." The set of nogoods with conclusion variable in
$1 has not been changed. X~ is therefore a consistent
partial set of assignments for $1 in a. Now the variables
in S1 are ordered according to S~ and precede y. The
addition of the nogood ~7 therefore rules out the portion
X~, y = v of the search space. The nogoods that will
be dropped by the addition of-~ have y -- v or subse-
quent assignments as antecedent. Since the conclusion
variable of these nogoods is in $2 - {y}Fthe portion
they ruled out is therefore a strict subset of the portion
X~, y = v ruled out by "~. As a result the set of possi-
ble assignments is a strict subset of the one before the
addition of the nogood. []

Proof of Theorem 1: Let a and fl now denote two
subsequent partial order states of GPB. We first show
that for any total order state flj in/? we can construct
a total order state ~i in aFso that flj can be reached
from a~ by a systematic transition. This construction is
illustrated in figure 4. Consider first the case where only

Figure 4: Transitions between instances of subsequent
states.

one nogood is added in the transition between a and ft.
By lemma 2 we know that for each order S~; $2# in fl we
can construct the order S~;y; (S~ - {y})~ in a. Now
by lemma 3 the transition between X~, y = v ordered
according to S~;y;(S2- {y})~ and ~l, X ~2 ordered

Paccording to S1 ; S2 is systematic. This means that for
ai we can take as assignments X~, y = v, (X2 - {y
v})~ and as order S~; y;(S2 - {y})a. If more than one
nogood is added between a and flFthis reasoning can
be applied recursively.

We can now repeat this constructive argument for
any sequence of partial order states (r k visited by 6PB.
By doing so we obtain sequence of total order states ~

..... .J
which are visited during the executmn of a systemat:c
backtrack algorithm (see figure 5).

Corollary 1 GPB terminates and visits at most

I-[in=l di states, where di is the domain size of variable
Xi.

Let us illustrate the level of systematicity implied by
theorem 1. Consider for example the problem of finding
all solutions to a given CSP. In this case the algorithm
needs to be modified in the following way. Instead of

GPB :"

Traditional
Backtracking

Figure 5: Sequence of instances visited by a systematic
backtrack algorithm.

aborting the search when a solution is foundFthe solu-
tion is stored and a new nogood is generated that rules
out exactly this set of assignments. NowFby theorem 1
this nogood will also be encountered in the execution
of an underlying traditional backtrack algorithm. Since
this Mgorithm is systematic it will not revisit this set of
assignments. Hence it is not possible to encounter this
nogood more than once. As a resultFGPB will enumerate
every solution to the CSP exactly once.

NeverthelessFGPB can revisit the same set of assign-
ments. SoFlike PDBFit is not systematic in the tradi-
tional sense. To see thisF consider the problem with
three variables xiFz2 and x3 each with values 1 and 2.
Table 2 shows a possible sequence of states in which the
same set of assignments is revisited twice.

x2 ---- 1--> x3 -fi 1

x: ----2--+x2 ¢ 1

x1~2

Xl X2

1 1
2 1

2 2

1 1

x3 S
1
2

2 {x, < ~}

1

F

{x2 = 1
x~ # :}

{xl ---- 2 --+
x~ ~ i}

Ix, # 2}

Table 2: GPB is not systematic in the traditional sense.

HoweverFwe can make it systematic. All we need to
do is to restrict 4 6PB to change only assignments in Z.
Let us call this algorithm 6PB ’.

Theorem 2 GPB’ is systematic.

Proof: Consider the proof of theorem 1. Now with
GPB’ only the assignments in Z are allowed to be mod-
ified. The assignments in $1 will therefore remain un-
changed. As a resultFthe assignments constructed for
the proof of theorem 1 will be the ones which are ac-
tually visited by GPB’. Since the traditional backtrack
algorithm visiting these assignments is systematicFGPB ’
is systematic as well. []

GPB is additive on disjoint subproblems for the same
reason as PDB is. The variables appearing in the same
nogood are connected. This is the case for nogoods that
are generated by constraint violations and is inductively

4The difference between P0B and PDB is that in P0B only
the value of the conclusion variable is changed. P0B therefore
satisfies the proposed restriction and is systematic.

true for the nogoods generated by inference rule (2).
Nogoods are only removed when their antecedents are
ruled out by the conclusion of some other nogood. We
consequently have no interaction between nogoods of
disjoint subproblems.

Observe that lemma 3 would allow us to also remove
the nogoods with antecedent variables in Z. By doing
so we would obtain a new algorithm for which theo-
rem 1 holds. Note that an ordering relation can only
exist between variables that have been connected by a
nogood. This modified algorithm therefore still enjoys
the additivity property.

Instances of GPB

In this section we demonstrate that GPB is more general
than DB and PDB in two ways. We first show that both
algorithms are instances of GPB in the sense that they
correspond with a specific choice for representing and
manipulating S. Then we present an instance of GPBF
called GPBt I’from which DB and GDB can be obtained by
making heuristic choices.

DB5 distinguishes instantiated variables i from unin-
stantiated variables u. All possible ordering condi-
tions of the type i <s u are therefore implied. Fur-
thermorePDB assumes a total order on instantiated
variables. This means that for every pair of variables
ik and itFwe have a condition of the type ik <S ilFif
it follows ik in the total order. When a new nogood is
added with conclusion variable yFDB effectively unin-
stantiates y. By doing soPall ordering conditions of
the type y <s z are removedFwhich is in accordance
with transition condition 1. NowPlet x be an instan-
tiated variable that precedes y in the total order and
let z be a variable that follows y. With DBPx will still
precede z after the reorderingFwhether z was an in-
stantiated variable or a future variable. As required
by transition condition 2Fthe ordering conditions of
the type z <s, z are therefore satisfied. Transition
condition 3 is verified since all nogoods either respect
the ordering conditions ik <S ilPor the ordering con-
ditions i <s u.

PDB manipulates safety conditions directly. When a
nogood is added with conclusion variable yP it re-
moves safety conditions of the type q < z for each
z E ZI’where Z = {z [y <s z}. By doing soPonly or-
dering conditions of the type q’ <s z can disappear.
Transition condition 1 is therefore verified. Then it
adds the safety condition y < z for every z E Z.
This means that for each z for which x <s, y we
have y < z and hence x <s, z. So that transition
condition 2 is satisfied as well. Since PDB explicitly
respects the set of ordering conditions corresponding
to the ordered nogoodsI’transition condition 3 is sat-
isfied.

5Since all nogoods with antecedents in Z may safely be
removedFthe same reasoning can be used to show that GDB
(McAllester 1993) is an instance of GPB.

There are many other ways to guarantee that transi-
tion conditions are verified. Consider the two following
instances:

GPBs The transition conditions can be coded explic-
itly by modifying PDB in the following way. Instead of
adding the safety condition y < z for every z E ZFwe
can add the safety condition x < z for every z < y.
This means that no relative ordering between y and
z is imposed (see figure 2).

GPBt A different way of representing safety condi-
tions is to associate with every nogood a set of vari-
ables called a trail. For a given nogood let the an-
tecedent variables be ziI’the conclusion variable be c
and the trail variables be tj. We now associate two
sets of safety conditions S and S with the nogoods.
In S a nogood defines for each xi the safety condi-
tions; xi < c and z~ < tj for every tj. In S a nogood
defines for each zi; x~ < c and for each t j; c < tj.
Algorithm GPBt proceeds as follows. When a new
nogood is addedl"a conclusion variable y is selected
that respects S. As beforeFthe new set of nogoods
F’ is obtained by removing from F all nogoods which
have y as antecedent variables. Now let Z = {z [y <s
z} as obtained from the set of nogoods P. Each z E Z
is removed from the trail of all nogoods. FinallyFeach
z E Z is added to the trail of those nogoods who
either have y in their trail or as conclusion variable.
Observe that if Z was defined by SFwe obtain algo-
rithm GPBs. HoweverFwe are free to use S to define
ZPsince lemma 1 and lemma 2 wilt still hold. IndeedI’
referring to their prooWthis eliminates some orders
in fl but not in a.

GPBt generalizes both DB and PDB in the sense that
these algorithms can obtained by defining a specific
heuristic. Let us see why this is the case. In GPBt we
can choose to extend a consistent partial assignment.
The corresponding variables are the instantiated vari-
ables of DB. Now when a new nogood is added we may
effectively uninstantiate its conclusion y and place it
in the set of future variables. IndeedFsubsequent no-
goods need only to respect SFnot S. This means that
DB can be obtained by making specific heuristic choices
in GPBt . SimilarlyI’we can also make heuristic choices
in GPBt so that it behaves as PDB. In particularFsince
S is less restrictive than _SFwe can always order new
nogoods as is done in PDB. If we do soPS of GPBt will
be the same as S of GDB and Z will be the same as in
GDB.

Flexible Partial Order Backtracking

It turns out that the transition conditions of GPB can
be further relaxed. By doing so we obtain an algorithm
that enjoys even more freedom than GPB to explore the
search space. We therefore call this algorithm flexible
partial order backtracking or FPB. FPB is almost identical
to GPB. The only difference is that transition condition 2
is now replaced by:

2. For every antecedent variable aj in "~Fwe have
aj <s z for all z E Z.

The added flexibility of FPB comes at a price. Although
we are able to show that the algorithm terminatesI’it no
longer enjoys the properties concerning systematicity.

To prove that FPB terminates we will show that
monotonic progress is made according to some mea-
sure. The flexibility of FPB requires us to introduce a
new measure called the maximum space size tuple. The
space size of a variable xj with respect to a set of no-
goods F and a given order Xl;...;x,, is defined to be
~ = 1-I~<k Dk(r,j) where Dk(r,j) is the live domain
of xk with respect to the nogoods in F whose antecedent
variables x~ have i < j. The space size tuple with re-
spect to a given order and set of nogoods F is the tuple
(ch, ̄ ¯., ~r,~). The maximum space size tuple is the tuple
which is lexicographically the largest over all admissible
orderings.

As beforeFlet a and fl be the situations before and
after a nogood ~7 is added. Take any total order that
respects the ordering conditions in ft. Now in this orderF
let a be the last antecedent variable of "y.

Lemma 4 For any order in/3 there exists an order in
a that agrees with it up to and including a.

Proof: Since transition condition 1 still holdsFlemma 1
applies. FurthermoreFwe know that a E S1 since a <s Y
and a <s z. Hence the order S~I;S~ respects the or-
dering conditions in a and agrees with the order J" S;~

up to and including a. t::]

Theorem 3 FPB terminates.

Proof" To prove termination we show that the max-
imum space size tuple decreases with each backtrack.
No nogoods with antecedent variables before or includ-
ing a were deleted. Ignoring the effect of ~ on the space
size tuplesFby lemma 4 we would have that for every
space size tuple in fl there exists a space size tuple in c~
whose entries agree up to and including ~a. But now we
added a nogood ~TFwhose conclusion variable is y and
whose last antecedent variable is a. This will reduce
Dr(F, a) by oneFand hence reduce ~a. The maximum
space size tuple of/3 therefore has to be smaller than
the maximum space size tuple of a. o

As shown in theorem 3I’ the algorithm terminates.
HoweverFit is not systematic in that a set of assign-
ments can be visited more than once. This is true even
we if we restrict FPB to change only assignments in Z.
In factFif we use the same modification as with GPB to
find all solutionsFFPB may enumerate solutions more
than once.

Summary and Future Work
The main goal of this paper is to show that polynomial
space backtrackers can yet be made more flexible. We
have presented an algorithmFcalled GPBFthat general-
izes both PDB and DB. We have proven that GPB enjoys
the same properties as PDB concerning termination and

systematicity. Then we presented an algorithmFcalled
FPBFwhich is even more flexible than GPB. HoweverFin
this caseFthe extra flexibility came at a price. Although
we showed that FPB terminatesFthe algorithm can visit
more states than GPB.

The next step is to investigate how heuristics can
translate this added flexibility into increased efficiency.
On the one handFthe performance of existing heuristics
may improve. For exampleFwe would expect that using
GPB we can adhere to the local gradient heuristic of
GSAT more often than with PDB (Ginsberg ~ McAllester
1994). On the other handFnew heuristics will need to
be developed. For exampleFit is not clear how to best
order new nogoodsFor how the next constraint violation
should be selected.

The overhead of GPB is similar to the one of PDB.
HoweverFto date little has been done to devise efficient
representations and algorithms for maintaining nogoods
and ordering conditions during the search. In our opin-
ion this technical aspect also deserves some attention.

Acknowledgments
I would like to thank David McAllester for pointing out
that PDB can be viewed as lifted classical backtracking.
Thanks also to Gilles Trombettoni for his constructive
comments on a draft of this paper.

This research work is supported through the ERCIM
Fellowship Programme. It was performed in part at
IIIA-CSIC in BellaterraFSpainFsponsored by the Eu-
ropean Commission and in part at LIA-EPFL in Lau-
sanneFSwitzerland sponsored by the Swiss National Sci-
ence Foundation under project number 21-50237.97.

References
BakerFA. 1994. The hazards of fancy backtracking.
In AAAI’94: Proceedings of the Twelfth National Con-
ference on Artificial IntelligenceF288-293.
GinsbergI’M.Fand McAllesterFD. 1994. GSAT and dy-
namic backtracking. In DoyleFJ.; SandewallFE.; and
TorassoF P.Feds.F KR’94: Proceedings of the Fourth
International Conference on Principles of Knowledge
Representation and ReasoningF226-237.
GinsbergFM. 1993. Dynamic backtracking. Journal
of Artificial Intelligence Research 1:25-46.
McAllesterFD. 1993. Partial order backtracking. Re-
search NoteFArtificial Intelligence LaboratoryFMIT.
ftp://ftp.ai.mit.edu/people/dam/dynamic.ps.
ProsserF P. 1993. Hybrid algorithms for the con-
straint satisfaction problem. Computational Intelli-
gence 9(3):268-299.
StallmanFR.Fand SussmanFG. 1977. Forward reason-
ing and dependency directed backtracking in a system
for computer-aided circuit analysis. Artificial Intelli-
gence 9:135-196.

