
Generalizing Pooling Functions in Convolutional Neural Networks:
Mixed, Gated, and Tree

Chen-Yu Lee Patrick W. Gallagher Zhuowen Tu

UCSD ECE UCSD Cognitive Science UCSD Cognitive Science
chl260@ucsd.edu patrick.w.gallagher@gmail.com ztu@ucsd.edu

Abstract

We seek to improve deep neural networks by

generalizing the pooling operations that play a

central role in current architectures. We pursue a

careful exploration of approaches to allow pool-

ing to learn and to adapt to complex and vari-

able patterns. The two primary directions lie in

(1) learning a pooling function via (two strate-

gies of) combining of max and average pooling,

and (2) learning a pooling function in the form

of a tree-structured fusion of pooling filters that

are themselves learned. In our experiments ev-

ery generalized pooling operation we explore im-

proves performance when used in place of aver-

age or max pooling. We experimentally demon-

strate that the proposed pooling operations pro-

vide a boost in invariance properties relative to

conventional pooling and set the state of the art

on several widely adopted benchmark datasets;

they are also easy to implement, and can be ap-

plied within various deep neural network archi-

tectures. These benefits come with only a light

increase in computational overhead during train-

ing and a very modest increase in the number of

model parameters.

1 Introduction

The recent resurgence of neurally-inspired systems such

as deep belief nets (DBN) [10], convolutional neural net-

works (CNNs) [18], and the sum-and-max infrastructure

[32] has derived significant benefit from building more so-

phisticated network structures [38, 33] and from bringing

learning to non-linear activations [6, 24]. The pooling op-

eration has also played a central role, contributing to in-

variance to data variation and perturbation. However, pool-

ing operations have been little revised beyond the current

primary options of average, max, and stochastic pooling

Appearing in Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics (AISTATS) 2016, Cadiz,
Spain. JMLR: W&CP volume 51. Copyright 2016 by the authors.

[3, 40]; this despite indications that e.g. choosing from

more than just one type of pooling operation can benefit

performance [31].

In this paper, we desire to bring learning and “responsive-

ness” (i.e., to characteristics of the region being pooled)

into the pooling operation. Various approaches are possi-

ble, but here we pursue two in particular. In the first ap-

proach, we consider combining typical pooling operations

(specifically, max pooling and average pooling); within this

approach we further investigate two strategies by which to

combine these operations. One of the strategies is “unre-

sponsive”; for reasons discussed later, we call this strat-

egy mixed max-average pooling. The other strategy is “re-

sponsive”; we call this strategy gated max-average pooling,

where the ability to be responsive is provided by a “gate”

in analogy to the usage of gates elsewhere in deep learning.

Another natural generalization of pooling operations is to

allow the pooling operations that are being combined to

themselves be learned. Hence in the second approach, we

learn to combine pooling filters that are themselves learned.

Specifically, the learning is performed within a binary tree

(with number of levels that is pre-specified rather than

“grown” as in traditional decision trees) in which each leaf

is associated with a learned pooling filter. As we consider

internal nodes of the tree, each parent node is associated

with an output value that is the mixture of the child node

output values, until we finally reach the root node. The

root node corresponds to the overall output produced by the

tree. We refer to this strategy as tree pooling. Tree pool-

ing is intended (1) to learn pooling filters directly from the

data; (2) to learn how to combine leaf node pooling filters

in a differentiable fashion; (3) to bring together these other

characteristics within a hierarchical tree structure.

When the mixing of the node outputs is allowed to be “re-

sponsive”, the resulting tree pooling operation becomes an

integrated method for learning pooling filters and combi-

nations of those filters that are able to display a range of

different behaviors depending on the characteristics of the

region being pooled.

We pursue experimental validation and find that: In the ar-

464



Generalizing Pooling Functions in CNNs: Mixed, Gated, and Tree

chitectures we investigate, replacing standard pooling oper-

ations with any of our proposed generalized pooling meth-

ods boosts performance on each of the standard bench-

mark datasets, as well as on the larger and more com-

plex ImageNet dataset. We attain state-of-the-art results

on MNIST, CIFAR10 (with and without data augmenta-

tion), and SVHN. Our proposed pooling operations can be

used as drop-in replacements for standard pooling opera-

tions in various current architectures and can be used in

tandem with other performance-boosting approaches such

as learning activation functions, training with data augmen-

tation, or modifying other aspects of network architecture

— we confirm improvements when used in a DSN-style

architecture, as well as in AlexNet and GoogLeNet. Our

proposed pooling operations are also simple to implement,

computationally undemanding (ranging from 5% to 15%
additional overhead in timing experiments), differentiable,

and use only a modest number of additional parameters.

2 Related Work

In the current deep learning literature, popular pooling

functions include max, average, and stochastic pooling

[3, 2, 40]. A recent effort using more complex pooling op-

erations, spatial pyramid pooling [9], is mainly designed

to deal with images of varying size, rather than delving

in to different pooling functions or incorporating learning.

Learning pooling functions is analogous to receptive field

learning [8, 11, 5, 15]. However methods like [15] lead

to a more difficult learning procedure that in turn leads to

a less competitive result, e.g. an error rate of 16.89% on

unaugmented CIFAR10.

Since our tree pooling approach involves a tree structure

in its learning, we observe an analogy to “logic-type” ap-

proaches such as decision trees [27] or “logical operators”

[25]. Such approaches have played a central role in artifi-

cial intelligence for applications that require “discrete” rea-

soning, and are often intuitively appealing. Unfortunately,

despite the appeal of such logic-type approaches, there is

a disconnect between the functioning of decision trees and

the functioning of CNNs — the output of a standard de-

cision tree is non-continuous with respect to its input (and

thus nondifferentiable). This means that a standard deci-

sion tree is not able to be used in CNNs, whose learning

process is performed by back propagation using gradients

of differentiable functions. Part of what allows us to pur-

sue our approaches is that we ensure the resulting pooling

operation is differentiable and thus usable within network

backpropagation.

A recent work, referred to as auto-encoder trees [13], also

pays attention to a differentiable use of tree structures in

deep learning, but is distinct from our method as it focuses

on learning encoding and decoding methods (rather than

pooling methods) using a “soft” decision tree for a genera-

tive model. In the supervised setting, [4] incorporates mul-

tilayer perceptrons within decision trees, but simply uses

trained perceptrons as splitting nodes in a decision forest;

not only does this result in training processes that are sep-

arate (and thus more difficult to train than an integrated

training process), this training process does not involve the

learning of any pooling filters.

3 Generalizing Pooling Operations

A typical convolutional neural network is structured as a

series of convolutional layers and pooling layers. Each con-

volutional layer is intended to produce representations (in

the form of activation values) that reflect aspects of local

spatial structures, and to consider multiple channels when

doing so. More specifically, a convolution layer computes

“feature response maps” that involve multiple channels

within some localized spatial region. On the other hand, a

pooling layer is restricted to act within just one channel at a

time, “condensing” the activation values in each spatially-

local region in the currently considered channel. An early

reference related to pooling operations (although not ex-

plicitly using the term “pooling”) can be found in [11].

In modern visual recognition systems, pooling operations

play a role in producing “downstream” representations that

are more robust to the effects of variations in data while

still preserving important motifs. The specific choices of

average pooling [18, 19] and max pooling [28] have been

widely used in many CNN-like architectures; [3] includes

a theoretical analysis (albeit one based on assumptions that

do not hold here).

Our goal is to bring learning and “responsiveness” into

the pooling operation. We focus on two approaches in

particular. In the first approach, we begin with the (con-

ventional, non-learned) pooling operations of max pooling

and average pooling and learn to combine them. Within

this approach, we further consider two strategies by which

to combine these fixed pooling operations. One of these

strategies is “unresponsive” to the characteristics of the re-

gion being pooled; the learning process in this strategy will

result in an effective pooling operation that is some spe-

cific, unchanging “mixture” of max and average. To em-

phasize this unchanging mixture, we refer to this strategy

as mixed max-average pooling.

The other strategy is “responsive” to the characteristics of

the region being pooled; the learning process in this strat-

egy results in a “gating mask”. This learned gating mask

is then used to determine a “responsive” mix of max pool-

ing and average pooling; specifically, the value of the inner

product between the gating mask and the current region be-

ing pooled is fed through a sigmoid, the output of which is

used as the mixing proportion between max and average.

To emphasize the role of the gating mask in determining

the “responsive” mixing proportion, we refer to this strat-

egy as gated max-average pooling.

Both the mixed strategy and the gated strategy involve com-

binations of fixed pooling operations; a complementary

465



Chen-Yu Lee, Patrick W. Gallagher, Zhuowen Tu

generalization to these strategies is to learn the pooling op-

erations themselves. From this, we are in turn led to con-

sider learning pooling operations and also learning to com-

bine those pooling operations. Since these combinations

can be considered within the context of a binary tree struc-

ture, we refer to this approach as tree pooling. We pursue

further details in the following sections.

3.1 Combining max and average pooling functions

3.1.1 “Mixed” max-average pooling

The conventional pooling operation is fixed to be either a

simple average fave(x) =
1
N

PN
i=1 xi or a maximum oper-

ation fmax(x) = maxi xi, where the vector x contains the

activation values from a local pooling region of N pixels

(typical pooling region dimensions are 2×2 or 3×3) in an

image or a channel.

At present, max pooling is often used as the default in

CNNs. We touch on the relative performance of max pool-

ing and, e.g., average pooling as part of a collection of

exploratory experiments to test the invariance properties

of pooling functions under common image transformations

(including rotation, translation, and scaling); see Figure 2.

The results indicate that, on the evaluation dataset, there

are regimes in which either max pooling or average pool-

ing demonstrates better performance than the other (al-

though we observe that both of these choices are outper-

formed by our proposed pooling operations). In the light

of observation that neither max pooling nor average pool-

ing dominates the other, a first natural generalization is the

strategy we call “mixed” max-average pooling, in which

we learn specific mixing proportion parameters from the

data. When learning such mixing proportion parameters

one has several options (listed in order of increasing num-

ber of parameters): learning one mixing proportion param-

eter (a) per net, (b) per layer, (c) per layer/region being

pooled (but used for all channels across that region), (d)

per layer/channel (but used for all regions in each channel)

(e) per layer/region/channel combination.

The form for each “mixed” pooling operation (written here
for the “one per layer” option; the expression for other op-
tions differs only in the subscript of the mixing proportion
a) is:

fmix(x) = a` · fmax(x) + (1− a`) · favg(x) (1)

where a` 2 [0, 1] is a scalar mixing proportion specify-
ing the specific combination of max and average; the sub-
script ` is used to indicate that this equation is for the “one
per layer” option. Once the output loss function E is de-
fined, we can automatically learn each mixing proportion
a (where we now suppress any subscript specifying which
of the options we choose). Vanilla backpropagation for this
learning is given by

@E

@a
=

@E

@fmix(x)

@fmix(x)

@a
= δ (max

i
xi −

1

N

N
X

i=1

xi), (2)

where δ = @E/@fmix(x) is the error backpropagated from
the following layer. Since pooling operations are typically
placed in the midst of a deep neural network, we also need

(a) (b) 

(c) 

Figure 1: Illustration of proposed pooling operations: (a)

mixed max-average pooling, (b) gated max-average pool-

ing, and (c) Tree pooling (3 levels in this figure). We indi-

cate the region being pooled by x, gating masks by ω, and

pooling filters by v (subscripted as appropriate).

to compute the error signal to be propagated back to the
previous layer:

@E

@xi

=
@E

@fmix(xi)

@fmix(xi)

@xi

(3)

= δ

[

a · 1[xi = max
i

xi] + (1− a) ·
1

N

]

, (4)

where 1[·] denotes the 0/1 indicator function. In the ex-

periment section, we report results for the “one parameter

per pooling layer” option; the network for this experiment

has 2 pooling layers and so has 2 more parameters than

a network using standard pooling operations. We found

that even this simple option yielded a surprisingly large

performance boost. We also obtain results for a simple

50/50 mix of max and average, as well as for the option

with the largest number of parameters: one parameter for

each combination of layer/channel/region, or pc×ph×pw
parameters for each “mixed” pooling layer using this op-

tion (where pc is the number of channels being pooled by

the pooling layer, and the number of spatial regions be-

ing pooled in each channel is ph × pw). We observe that

the increase in the number of parameters is not met with a

corresponding boost in performance, and so we pursue the

“one per layer” option.

3.1.2 “Gated” max-average pooling

In the previous section we considered a strategy that we

referred to as “mixed” max-average pooling; in that strat-

466



Generalizing Pooling Functions in CNNs: Mixed, Gated, and Tree

egy we learned a mixing proportion to be used in combin-

ing max pooling and average pooling. As mentioned ear-

lier, once learned, each mixing proportion a remains fixed

— it is “nonresponsive” insofar as it remains the same no

matter what characteristics are present in the region being

pooled. We now consider a “responsive” strategy that we

call “gated” max-average pooling. In this strategy, rather

than directly learning a mixing proportion that will be fixed

after learning, we instead learn a “gating mask” (with spa-

tial dimensions matching that of the regions being pooled).

The scalar result of the inner product between the gating

mask and the region being pooled is fed through a sigmoid

to produce the value that we use as the mixing proportion.

This strategy means that the actual mixing proportion can

vary during use depending on characteristics present in the

region being pooled. To be more specific, suppose we use

x to denote the values in the region being pooled and ω

to denote the values in a “gating mask”. The “respon-

sive” mixing proportion is then given by σ(ω|
x), where

σ(ω|
x) = 1/(1+exp{−ω

|
x}) 2 [0, 1] is a sigmoid func-

tion.

Analogously to the strategy of learning mixing proportion

parameter, when learning gating masks one has several op-

tions (listed in order of increasing number of parameters):

learning one gating mask (a) per net, (b) per layer, (c)

per layer/region being pooled (but used for all channels

across that region), (d) per layer/channel (but used for all

regions in each channel) (e) per layer/region/channel com-

bination. We suppress the subscript denoting the specific

option, since the equations are otherwise identical for each

option.

The resulting pooling operation for this “gated” max-
average pooling is:

fgate(x) = σ(ω|
x)fmax(x) + (1− σ(ω|

x))favg(x) (5)

We can compute the gradient with respect to the internal
“gating mask” ω using the same procedure considered pre-
viously, yielding

@E

@ω
=

@E

@fgate(x)

@fgate(x)

@ω
(6)

= δ σ(ω
|
x)(1 − σ(ω

|
x)) x (max

i
xi −

1

N

N
X

i=1

xi), (7)

and

@E

@xi

=
@E

@fgate(xi)

@fgate(xi)

@xi

(8)

= δ

[

σ(ω
|
x)(1 − σ(ω

|
x)) ωi (max

i
xi −

1

N

N
X

i=1

xi) (9)

+ σ(ω
|
x) · 1[xi = max

i
xi] + (1 − σ(ω

|
x))

1

N

]

.

In a head-to-head parameter count, every single mixing

proportion parameter a in the “mixed” max-average pool-

ing strategy corresponds to a gating mask ω in the “gated”

strategy (assuming they use the same parameter count op-

tion). To take a specific example, suppose that we con-

sider a network with 2 pooling layers and pooling regions

that are 3 × 3. If we use the “mixed” strategy and the

per-layer option, we would have a total of 2 = 2 × 1
extra parameters relative to standard pooling. If we use

the “gated” strategy and the per-layer option, we would

have a total of 18 = 2 × 9 extra parameters, where 9
is the number of parameters in each gating mask. The

“mixed” strategy detailed immediately above uses fewer

parameters and is “nonresponsive”; the “gated” strategy in-

volves more parameters and is “responsive”. In our exper-

iments, we find that “mixed” (with one mix per pooling

layer) is outperformed by “gated” with one gate per pool-

ing layer. Interestingly, an 18 parameter “gated” network

with only one gate per pooling layer also outperforms a

“mixed” option with far more parameters (40,960 with one

mix per layer/channel/region) — except on the relatively

large SVHN dataset. We touch on this below; Section 5

contains details.

3.1.3 Quick comparison: mixed and gated pooling

The results in Table 1 indicate the benefit of learning pool-

ing operations over not learning. Within learned pooling

operations, we see that when the number of parameters

in the mixed strategy is increased, performance improves;

however, parameter count is not the entire story. We see

that the “responsive” gated max-avg strategy consistently

yields better performance (using 18 extra parameters) than

is achieved with the >40k extra parameters in the 1 per

layer/rg/ch “non-responsive” mixed max-avg strategy. The

relatively larger SVHN dataset provides the sole excep-

tion (SVHN has ≈600k training images versus ≈50k for

MNIST, CIFAR10, and CIFAR100) — we found baseline

1.91%, 50/50 mix 1.84%, mixed (1 per lyr) 1.76%, mixed

(1 per lyr/ch/rg) 1.64%, and gated (1 per lyr) 1.74%.

Table 1: Classification error (in %) comparison between

baseline model (trained with conventional max pooling)

and corresponding networks in which max pooling is re-

placed by the pooling operation listed. A superscripted +

indicates the standard data augmentation as in [24, 21, 34].

We report means and standard deviations over 3 separate

trials without model averaging.

Method MNIST CIFAR10 CIFAR10+ CIFAR100

Baseline 0.39 9.10 7.32 34.21
w/ Stochastic

no learning

0.38
± 0.04

8.50
± 0.05

7.30
± 0.07

33.48
± 0.27

w/ 50/50 mix
no learning

0.34
± 0.012

8.11
± 0.10

6.78
± 0.17

33.53
± 0.16

w/ Mixed
1 per pool layer

2 extra params

0.33
± 0.018

8.09
± 0.19

6.62
± 0.21

33.51
± 0.11

w/ Mixed
1 per layer/ch/rg

>40k extra params

0.30
± 0.012

8.05
± 0.16

6.58
± 0.30

33.35
± 0.19

w/ Gated
1 per pool layer

18 extra params

0.29
± 0.016

7.90
± 0.07

6.36
± 0.28

33.22
± 0.16

3.2 Tree pooling

The strategies described above each involve combinations

of fixed pooling operations; another natural generalization

467



Chen-Yu Lee, Patrick W. Gallagher, Zhuowen Tu

of pooling operations is to allow the pooling operations that

are being combined to themselves be learned. These pool-

ing layers remain distinct from convolution layers since

pooling is performed separately within each channel; this

channel isolation also means that even the option that intro-

duces the largest number of parameters still introduces far

fewer parameters than a convolution layer would introduce.

The most basic version of this approach would not involve

combining learned pooling operations, but simply learning

pooling operations in the form of the values in pooling fil-

ters. One step further brings us to what we refer to as tree

pooling, in which we learn pooling filters and also learn to

responsively combine those learned filters.

Both aspects of this learning are performed within a binary

tree (with number of levels that is pre-specified rather than

“grown” as in traditional decision trees) in which each leaf

is associated with a pooling filter learned during training.

As we consider internal nodes of the tree, each parent node

is associated with an output value that is the mixture of

the child node output values, until we finally reach the root

node. The root node corresponds to the overall output pro-

duced by the tree and each of the mixtures (by which child

outputs are “fused” into a parent output) is responsively

learned. Tree pooling is intended (1) to learn pooling filters

directly from the data; (2) to learn how to “mix” leaf node

pooling filters in a differentiable fashion; (3) to bring to-

gether these other characteristics within a hierarchical tree

structure.

Each leaf node in our tree is associated with a “pooling
filter” that will be learned; for a node with index m, we
denote the pooling filter by vm 2 R

N . If we had a “degen-
erate tree” consisting of only a single (leaf) node, pooling

a region x 2 R
N would result in the scalar value v

|

mx.
For (internal) nodes (at which two child values are com-
bined into a single parent value), we proceed in a fashion
analogous to the case of gated max-average pooling, with
learned “gating masks” denoted (for an internal node m)

by ωm 2 R
N . The “pooling result” at any arbitrary node

m is thus

fm(x) =

(

v
|

mx if leaf node

σ(ω|

mx)fm,left(x) + (1 − σ(ω|

mx))fm,right(x) if internal node

(10)

The overall pooling operation would thus be the result of

evaluating froot node(x). The appeal of this tree pooling

approach would be limited if one could not train the pro-

posed layer in a fashion that was integrated within the net-

work as a whole. This would be the case if we attempted

to directly use a traditional decision tree, since its output

presents points of discontinuity with respect to its inputs.

The reason for the discontinuity (with respect to input) of

traditional decision tree output is that a decision tree makes

“hard” decisions; in the terminology we have used above,

a “hard” decision node corresponds to a mixing propor-

tion that can only take on the value 0 or 1. The conse-

quence is that this type of “hard” function is not differen-

tiable (nor even continuous with respect to its inputs), and

this in turn interferes with any ability to use it in iterative

parameter updates during backpropagation. This motivates

us to instead use the internal node sigmoid “gate” func-

tion σ(ω|

mx) 2 [0, 1] so that the tree pooling function as a

whole will be differentiable with respect to its parameters

and its inputs.

For the specific case of a “2 level” tree (with leaf nodes “1”
and “2” and internal node “3”) pooling function ftree(x) =
σ(ω|

3x)v
|

1x+(1−σ(ω|

3x))v
|

2x, we can use the chain rule
to compute the gradients with respect to the leaf node pool-
ing filters v1,v2 and the internal node gating mask ω3:

@E

@v1

=
@E

@ftree(x)

@ftree(x)

@v1

= δ σ(ω
|

3
x)x (11)

@E

@v2

=
@E

@ftree(x)

@ftree(x)

@v2

= δ (1 − σ(ω
|

3
x))x (12)

@E

@ω3

=
@E

@ftree(x)

@ftree(x)

@ω3

= δ σ(ω
|

3
x)(1 − σ(ω

|

3
x)) x (v

|

1
− v

|

2
)x (13)

The error signal to be propagated back to the previous layer
is

@E

@x
=

@E

@ftree(x)

@ftree(x)

@x
(14)

= δ [σ(ω
|

3x)(1 − σ(ω
|

3x))ω3(v
|

1 − v
|

2 )x (15)

+ σ(ω
|

3x)v1 + (1 − σ(ω
|

3x))v2]

3.2.1 Quick comparison: tree pooling

Table 2 collects results related to tree pooling. We observe

that on all datasets but the comparatively simple MNIST,

adding a level to the tree pooling operation improves per-

formance. However, even further benefit is obtained from

the use of tree pooling in the first pooling layer and gated

max-avg in the second.

Table 2: Classification error (in %) comparison between

our baseline model (trained with conventional max pool-

ing) and proposed methods involving tree pooling. A su-

perscripted + indicates the standard data augmentation as

in [24, 21, 34].

Method MNIST CIFAR10 CIFAR10+ CIFAR100 SVHN

Our baseline 0.39 9.10 7.32 34.21 1.91
Tree

2 level; 1 per pool layer 0.35 8.25 6.88 33.53 1.80
Tree

3 level; 1 per pool layer 0.37 8.22 6.67 33.13 1.70
Tree+Max-Avg

1 per pool layer 0.31 7.62 6.05 32.37 1.69

Comparison with making the network deeper using

conv layers To further investigate whether simply adding

depth to our baseline network gives a performance boost

comparable to that observed for our proposed pooling op-

erations, we report in Table 3 below some additional ex-

periments on CIFAR10 (error rate in percent; no data aug-

mentation). If we count depth by counting any layer with

learned parameters as an extra layer of depth (even if there

is only 1 parameter), the number of parameter layers in

a baseline network with 2 additional standard convolution

layers matches the number of parameter layers in our best

performing net (although the convolution layers contain

many more parameters).

468



Generalizing Pooling Functions in CNNs: Mixed, Gated, and Tree

−40 −20 0 20 40

50

62.5

75

87.5

Rotation angle (degrees)

A
c
c
u
ra

c
y
 (

%
)

Max−Ave pooling (ours)

Tree pooling (ours)

Max pooling

Average pooling

−8 −4 0 4 8
70

76.25

82.5

88.75

95

Translation (pixels)

A
c
c
u

ra
c
y
 (

%
)

Max−Ave pooling (ours)

Tree pooling (ours)

Max pooling

Average pooling

0.6 0.8 1 1.2 1.4
40

55

70

85

Scale multiplier

A
c
c
u

ra
c
y
 (

%
)

Max−Ave pooling (ours)

Tree pooling (ours)

Max pooling

Average pooling

Figure 2: Controlled experiment on CIFAR10 investigating the relative benefit of selected pooling operations in terms of robustness

to three types of data variation. The three kinds of variations we choose to investigate are rotation, translation, and scale. With each

kind of variation, we modify the CIFAR10 test images according to the listed amount. We observe that, across all types and amounts

of variation (except extreme down-scaling) the proposed pooling operations investigated here (gated max-avg and 2 level tree pooling)

provide improved robustness to these transformations, relative to the standard choices of maxpool or avgpool.

Our method requires only 72 extra parameters and obtains

state-of-the-art 7.62% error. On the other hand, making

networks deeper with conv layers adds many more param-

eters but yields test error that does not drop below 9.08%
in the configuration explored. Since we follow each ad-

ditional conv layer with a ReLU, these networks corre-

spond to increasing nonlinearity as well as adding depth

and adding (many) parameters. These experiments in-

dicate that the performance of our proposed pooling is

not accounted for as a simple effect of the addition of

depth/parameters/nonlinearity.

Table 3: Classification error (%) on CIFAR10 (without

data augmentation) comparison between networks made

deeper with standard convolution layers and proposed

Tree+(gated) Max-Avg pooling.

Method % Error
Extra

parameters

Baseline 9.10 0
w/ 1 extra conv layer (+ReLU) 9.08 0.6M
w/ 2 extra conv layers (+ReLU) 9.17 1.2M
w/ Tree+(gated) Max-Avg 7.62 72

Comparison with alternative pooling layers To see

whether we might find similar performance boosts by re-

placing the max pooling in the baseline network configu-

ration with alternative pooling operations such as stochas-

tic pooling, “pooling” using a stride 2 convolution layer as

pooling (cf All-CNN), or a simple fixed 50/50 proportion in

max-avg pooling, we performed another set of experiments

on unaugmented CIFAR10. From the baseline error rate

of 9.10%, replacing each of the 2 max pooling layers with

stacked stride 2 conv:ReLU (as in [34]) lowers the error to

8.77%, but adds 0.5M extra parameters. Using stochastic

pooling [40] adds computational overhead but no parame-

ters and results in 8.50% error. A simple 50/50 mix of max

and average is computationally light and yields 8.07% er-

ror with no additional parameters. Finally, our tree+gated

max-avg configuration adds 72 parameters and achieves a

state-of-the-art 7.62% error.

4 Quick Performance Overview

For ease of discussion, we collect here observations from

subsequent experiments with a view to highlighting aspects

that shed light on the performance characteristics of our

proposed pooling functions.

First, as seen in the experiment shown in Figure 2 replac-

ing standard pooling operations with either gated max-avg

or (2 level) tree pooling (each using the “one per layer”

option) yielded a boost (relative to max or avg pooling)

in CIFAR10 test accuracy as the test images underwent

three different kinds of transformations. This boost was

observed across the entire range of transformation amounts

for each of the transformations (with the exception of ex-

treme downscaling). We already observe improved ro-

bustness in this initial experiment and intend to investigate

more instances of our proposed pooling operations as time

permits.

Second, the performance that we attain in the experiments

reported in Figure 2, Table 1, Table 2, Table 4, and Table 5

is achieved with very modest additional numbers of param-

eters — e.g. on CIFAR10, our best performance (obtained

with the tree+gated max-avg configuration) only uses an

additional 72 parameters (above the 1.8M of our baseline

network) and yet reduces test error from 9.10% to 7.62%;

see the CIFAR10 Section for details. In our AlexNet ex-

periment, replacing the maxpool layers with our proposed

pooling operations gave a 6% relative reduction in test er-

ror (top-5, single-view) with only 45 additional parame-

ters (above the >50M of standard AlexNet); see the Im-

ageNet 2012 Section for details. We also investigate the

additional time incurred when using our proposed pooling

operations; in the experiments reported in the Timing sec-

tion, this overhead ranges from 5% to 15%.

Testing invariance properties Before going to the overall

classification results, we investigate the invariance proper-

ties of networks utilizing either standard pooling operations

(max and average) or two instances of our proposed pool-

ing operations (gated max-avg and 2 level tree, each using

469



Chen-Yu Lee, Patrick W. Gallagher, Zhuowen Tu

the “1 per pool layer” option) that we find to yield best per-

formance (see Sec. 5 for architecture details used across

each network). We begin by training four different net-

works on the CIFAR10 training set, one for each of the

four pooling operations selected for consideration; train-

ing details are found in Sec. 5. We seek to determine the

respective invariance properties of these networks by eval-

uating their accuracy on various transformed versions of

the CIFAR10 test set. Figure 2 illustrates the test accuracy

attained in the presence of image rotation, (vertical) trans-

lation, and scaling of the CIFAR10 test set.

Timing In order to evaluate how much additional time is

incurred by the use of our proposed learned pooling oper-

ations, we measured the average forward+backward time

per CIFAR10 image. In each case, the one per layer op-

tion is used. We find that the additional computation time

incurred ranges from 5% to 15%. More specifically, the

baseline network took 3.90 ms; baseline with mixed max-

avg took 4.10 ms; baseline with gated max-avg took 4.16

ms; baseline with 2 level tree pooling took 4.25 ms; finally,

baseline with tree+gated max-avg took 4.46 ms.

5 Experiments

We evaluate the proposed max-average pooling and tree

pooling approaches on five standard benchmark datasets:

MNIST [20], CIFAR10 [16], CIFAR100 [16], SVHN [26]

and ImageNet [30]. To control for the effect of differences

in data or data preparation, we match our data and data

preparation to that used in [21]. Please refer to [21] for the

detailed description.

We now describe the basic network architecture and then

will specify the various hyperparameter choices. The basic

experiment architecture contains six 3 × 3 standard con-

volutional layers (named conv1 to conv6) and three mlp-

conv layers (named mlpconv1 to mlpconv3) [24], placed

after conv2, conv4, and conv6, respectively. We chose the

number of channels at each layer to be analogous to the

choices in [24, 21]; the specific numbers are provided in

the sections for each dataset. We follow every one of these

conv-type layers with ReLU activation functions. One final

mlpconv layer (mlpconv4) is used to reduce the dimension

of the last layer to match the total number of classes for

each different dataset, as in [24]. The overall model has

parameter count analogous to [24, 21]. The proposed max-

average pooling and tree pooling layers with 3× 3 pooling

regions are used after mlpconv1 and mlpconv2 layers 1. We

provide a detailed listing of the network configurations in

Table A1 in the Supplementary Materials.

Moving on to the hyperparameter settings, dropout with

rate 0.5 is used after each pooling layer. We also use

hidden layer supervision to ease the training process as

1There is one exception: on the very small images of the
MNIST dataset, the second pooling layer uses 2 × 2 pooling re-
gions.

in [21]. The learning rate is decreased whenever the

validation error stops decreasing; we use the schedule

{0.025, 0.0125, 0.0001} for all experiments. The momen-

tum of 0.9 and weight decay of 0.0005 are fixed for all

datasets as another regularizer besides dropout. All the ini-

tial pooling filters and pooling masks have values sampled

from a Gaussian distribution with zero mean and standard

deviation 0.5. We use these hyperparameter settings for all

experiments reported in Tables 1, 2, and 3. No model aver-

aging is done at test time.

5.1 Classification results

Tables 1 and 2 show our overall experimental results. Our

baseline is a network trained with conventional max pool-

ing. Mixed refers to the same network but with a max-avg

pooling strategy in both the first and second pooling layers

(both using the mixed strategy); Gated has a correspond-

ing meaning. Tree (with specific number of levels noted

below) refers to the same again, but with our tree pooling

in the first pooling layer only; we do not see further im-

provement when tree pooling is used for both pooling lay-

ers. This observation motivated us to consider following

a tree pooling layer with a gated max-avg pooling layer:

Tree+Max-Average refers to a network configuration with

(2 level) tree pooling for the first pooling layer and gated

max-average pooling for the second pooling layer. All re-

sults are produced from the same network structure and hy-

perparameter settings — the only difference is in the choice

of pooling function. See Table A1 for details.

MNIST Our MNIST model has {128, 128, 192, 192, 256,
256} channels for conv1 to conv6 and {128, 192, 256}
channels for mlpconv1 to mlpconv3, respectively. Our only

preprocessing is mean subtraction. Tables 4,1, and 2 show

previous best results and those for our proposed pooling

methods.

CIFAR10 Our CIFAR10 model has {128, 128, 192, 192,
256, 256} channels for conv1 to conv6 and {128, 192, 256}
channels for mlpconv1 to mlpconv3, respectively. We also

performed an experiment in which we learned a single

pooling filter without the tree structure (i.e., a singleton leaf

node containing 9 parameters; one such singleton leaf node

per pooling layer) and obtained 0.3% improvement over

the baseline model. Our results indicate that performance

improves when the pooling filter is learned, and further im-

proves when we also learn how to combine learned pooling

filters.

The All-CNN method in [34] uses convolutional layers

in place of pooling layers in a CNN-type network archi-

tecture. However, a standard convolutional layer requires

many more parameters than a gated max-average pooling

layer (only 9 parameters for a 3 × 3 pooling region ker-

nel size in the 1 per pooling layer option) or a tree-pooling

layer (27 parameters for a 2 level tree and 3 × 3 pooling

region kernel size, again in the 1 per pooling layer option).

The pooling operations in our tree+max-avg network con-

470



Generalizing Pooling Functions in CNNs: Mixed, Gated, and Tree

Table 4: Classification error (in %) reported by recent com-

parable publications on four benchmark datasets with a sin-

gle model and no data augmentation, unless otherwise in-

dicated. A superscripted + indicates the standard data aug-

mentation as in [24, 21, 34]. A “-” indicates that the cited

work did not report results for that dataset. A fixed network

configuration using the proposed tree+max-avg pooling (1

per pool layer option) yields state-of-the-art performance

on all datasets (with the exception of CIFAR100).

Method MNIST CIFAR10 CIFAR10+ CIFAR100 SVHN

CNN [14] 0.53 - - - -
Stoch. Pooling [40] 0.47 15.13 - 42.51 2.80
Maxout Networks [6] 0.45 11.68 9.38 38.57 2.47
Prob. Maxout [35] - 11.35 9.39 38.14 2.39
Tree Priors [36] - - - 36.85 -
DropConnect [22] 0.57 9.41 9.32 - 1.94
FitNet [29] 0.51 - 8.39 35.04 2.42
NiN [24] 0.47 10.41 8.81 35.68 2.35
DSN [21] 0.39 9.69 7.97 34.57 1.92
NiN + LA units [1] - 9.59 7.51 34.40 -
dasNet [37] - 9.22 - 33.78 -
All-CNN [34] - 9.08 7.25 33.71 -
R-CNN [23] 0.31 8.69 7.09 31.75 1.77

Our baseline 0.39 9.10 7.32 34.21 1.91

Our Tree+Max-Avg 0.31 7.62 6.05 32.37 1.69

figuration use 7× 9 = 63 parameters for the (first, 3 level)

tree-pooling layer — 4 leaf nodes and 3 internal nodes —

and 9 parameters in the gating mask used for the (second)

gated max-average pooling layer, while the best result in

[34] contains a total of nearly 500, 000 parameters in lay-

ers performing “pooling like” operations; the relative CI-

FAR10 accuracies are 7.62% (ours) and 9.08% (All-CNN).

For the data augmentation experiment, we followed the

standard data augmentation procedure [24, 21, 34]. When

training with augmented data, we observe the same trends

seen in the “no data augmentation” experiments. We

note that [7] reports a 4.5% error rate with extensive data

augmentation (including translations, rotations, reflections,

stretching, and shearing operations) in a much wider and

deeper 50 million parameter network — 28 times more than

are in our networks.

CIFAR100 Our CIFAR100 model has 192 channels for all

convolutional layers and {96, 192, 192} channels for mlp-

conv1 to mlpconv3, respectively.

Street view house numbers Our SVHN model has {128,
128, 320, 320, 384, 384} channels for conv1 to conv6 and

{96, 256, 256} channels for mlpconv1 to mlpconv3, re-

spectively. In terms of amount of data, SVHN has

a larger training data set (>600k versus the ≈50k of

most of the other benchmark datasets). The much larger

amount of training data motivated us to explore what per-

formance we might observe if we pursued the one per

layer/channel/region option, which even for the simple

mixed max-avg strategy results in a huge increase in total

the number of parameters to learn in our proposed pooling

layers: specifically, from a total of 2 in the mixed max-avg

strategy, 1 parameter per pooling layer option, we increase

to 40,960.

Using this one per layer/channel/region option for the

mixed max-avg strategy, we observe test error (in %) of

0.30 on MNIST, 8.02 on CIFAR10, 6.61 on CIFAR10+,

33.27 on CIFAR100, and 1.64 on SVHN. Interestingly, for

MNIST, CIFAR10+, and CIFAR100 this mixed max-avg

(1 per layer/channel/region) performance is between mixed

max-avg (1 per layer) and gated max-avg (1 per layer);

on CIFAR10 mixed max-avg (1 per layer/channel/region)

is worse than either of the 1 per layer max-avg strate-

gies. The SVHN result using mixed max-avg (1 per

layer/channel/region) sets a new state of the art.

ImageNet 2012 In this experiment we do not directly com-

pete with the best performing result in the challenge (since

the winning methods [38] involve many additional aspects

beyond pooling operations), but rather to provide an il-

lustrative comparison of the relative benefit of the pro-

posed pooling methods versus conventional max pooling

on this dataset. We use the same network structure and

parameter setup as in [17] (no hidden layer supervision)

but simply replace the first max pooling with the (pro-

posed 2 level) tree pooling (2 leaf nodes and 1 internal

node for 27 = 3 × 9 parameters) and replace the second

and third max pooling with gated max-average pooling (2

gating masks for 18 = 2 × 9 parameters). Relative to the

original AlexNet, this adds 45 more parameters (over the

>50M in the original) and achieves relative error reduction

of 6% (for top-5, single-view) and 5% (for top-5, multi-

view). Our GoogLeNet configuration uses 4 gated max-avg

pooling layers, for a total of 36 extra parameters over the

6.8 million in standard GoogLeNet. Table 5 shows a di-

rect comparison (in each case we use single net predictions

rather than ensemble).

Table 5: ImageNet 2012 test error (in %). BN denotes

Batch Normalization [12].

Method

top-1

s-view

top-5

s-view

top-1

m-view

top-5

m-view

AlexNet [17] 43.1 19.9 40.7 18.2
AlexNet w/ ours 41.4 18.7 39.3 17.3

GoogLeNet [38] - 10.07 - 9.15
GoogLeNet w/ BN 28.68 9.53 27.81 9.09
GoogLeNet w/ BN + ours 28.02 9.16 27.60 8.93

6 Observations from Experiments

In each experiment, using any of our proposed pooling

operations boosted performance. A fixed network con-

figuration using the proposed tree+max-avg pooling (1

per pool layer option) yields state-of-the-art performance

on MNIST, CIFAR10 (with and without data augmenta-

tion), and SVHN. We observed boosts in tandem with

data augmentation, multi-view predictions, batch normal-

ization, and several different architectures — NiN-style,

DSN-style, the >50M parameter AlexNet, and the 22-layer

GoogLeNet.

471



Chen-Yu Lee, Patrick W. Gallagher, Zhuowen Tu

Acknowledgment This work is supported by NSF

awards IIS-1216528 (IIS-1360566) and IIS-0844566(IIS-

1360568), and a Northrop Grumman Contextual Robotics

grant. We are grateful for the generous donation of the

GPUs by NVIDIA.

References

[1] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi.
Learning activation functions to improve deep neural net-
works. In ICLR, 2015.

[2] Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun.
Ask the locals: multi-way local pooling for image recogni-
tion. In ICCV, 2011.

[3] Y. Boureau, J. Ponce, and Y. LeCun. A Theoretical Analysis
of Feature Pooling in Visual Recognition. In ICML, 2010.

[4] S. R. Bulo and P. Kontschieder. Neural Decision Forests for
Semantic Image Labelling. In CVPR, 2014.

[5] A. Coates and A. Y. Ng. Selecting receptive fields in deep
networks. In NIPS, 2011.

[6] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C.
Courville, and Y. Bengio. Maxout Networks. In ICML,
2013.

[7] B. Graham. Fractional Max-Pooling. arXiv preprint
arXiv:1412.6071, 2014.

[8] C. Gulcehre, K. Cho, R. Pascanu, and Y. Bengio. Learned-
norm pooling for deep feedforward and recurrent neural net-
works. In MLKDD. 2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pool-
ing in deep convolutional networks for visual recognition.
In ECCV, 2014.

[10] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning al-
gorithm for deep belief nets. Neural Computation, 2006.

[11] D. H. Hubel and T. N. Wiesel. Receptive fields, binocu-
lar interaction and functional architecture in the cat’s visual
cortex. Journal of Physiology, 1962.

[12] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[13] O. Irsoy and E. Alpaydin. Autoencoder Trees. In NIPS Deep
Learning Workshop, 2014.

[14] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun.
What is the best multi-stage architecture for object recog-
nition? In ICCV, 2009.

[15] Y. Jia, C. Huang, and T. Darrell. Beyond spatial pyramids.
In CVPR, 2012.

[16] A. Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. CS Dept., U Toronto, Tech. Rep., 2009.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In
NIPS, 2012.

[18] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. Howard,
W. Hubbard, and L. Jackel. Backpropagation applied to
handwritten zip code recognition. Neural Computation,
1989.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. In Proceed-
ings of the IEEE, 1998.

[20] Y. LeCun and C. Cortes. The MNIST database of handwrit-
ten digits, 1998.

[21] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-
Supervised Nets. In AISTATS, 2015.

[22] W. Li, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regu-
larization of NNs using DropConnect. In ICML, 2013.

[23] M. Liang and X. Hu. Recurrent CNNs for Object Recogni-
tion. In CVPR, 2015.

[24] M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR,
2013.

[25] J. Minker. Logic-Based Artificial Intelligence. Springer Sci-
ence & Business Media, 2000.

[26] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and
A. Y. Ng. Reading Digits in Natural Images with Unsuper-
vised Feature Learning. In NIPS Workshop on Deep Learn-
ing and Unsupervised Feature Learning, 2011.

[27] J. R. Quinlan. C4.5: Programming for machine learning.
1993.

[28] M. Ranzato, Y.-L. Boureau, and Y. LeCun. Sparse Feature
Learning for Deep Belief Networks. In NIPS, 2007.

[29] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,
and Y. Bengio. FitNets: Hints for Thin Deep Nets. In ICLR,
2015.

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, 2014.

[31] D. Scherer, A. Müller, and S. Behnke. Evaluation of pooling
operations in convolutional architectures for object recogni-
tion. In ICANN. 2010.

[32] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Pog-
gio. Robust object recognition with cortex-like mechanisms.
IEEE TPAMI, 2007.

[33] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[34] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-
miller. Striving for Simplicity. In ICLR, 2015.

[35] J. T. Springenberg and M. Riedmiller. Improving deep neu-
ral networks with probabilistic maxout units. In ICLR, 2014.

[36] N. Srivastava and R. R. Salakhutdinov. Discriminative trans-
fer learning with tree-based priors. In NIPS, 2013.

[37] M. Stollenga, J. Masci, F. J. Gomez, and J. Schmidhuber.
Deep Networks with Internal Selective Attention through
Feedback Connections. In NIPS, 2014.

[38] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going Deeper with Convolutions. arXiv preprint
arXiv:1409.4842, 2014.

[39] L. Van der Maaten and G. Hinton. Visualizing data using
t-SNE. JMLR, 2008.

[40] M. D. Zeiler and R. Fergus. Stochastic Pooling for Regu-
larization of Deep Convolutional Neural Networks. arXiv
preprint arXiv:1301.3557, 2013.

472


