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Abstract—Using surrogate models in evolutionary search pro-
vides an efficient means of handling today’s complex applica-
tions plagued with increasing high-computational needs. Recent
surrogate-assisted evolutionary frameworks have relied on the
use of a variety of different modeling approaches to approximate
the complex problem landscape. From these recent studies, one
main research issue is with the choice of modeling scheme used,
which has been found to affect the performance of evolutionary
search significantly. Given that theoretical knowledge available
for making a decision on an approximation model a priori is very
much limited, this paper describes a generalization of surrogate-
assisted evolutionary frameworks for optimization of problems
with objectives and constraints that are computationally expen-
sive to evaluate. The generalized evolutionary framework unifies
diverse surrogate models synergistically in the evolutionary
search. In particular, it focuses on attaining reliable search
performance in the surrogate-assisted evolutionary framework
by working on two major issues: 1) to mitigate the ‘curse
of uncertainty’ robustly, and 2) to benefit from the ‘bless of
uncertainty.’ The backbone of the generalized framework is
a surrogate-assisted memetic algorithm that conducts simulta-
neous local searches using ensemble and smoothing surrogate
models, with the aims of generating reliable fitness prediction
and search improvements simultaneously. Empirical study on
commonly used optimization benchmark problems indicates that
the generalized framework is capable of attaining reliable, high
quality, and efficient performance under a limited computational
budget.

Index Terms—Approximation models, computationally expen-
sive problems, memetic algorithms, metamodels, surrogate mod-
els, surrogate-assisted evolutionary algorithms.

I. Introduction

O
VER the years, evolutionary algorithms (EAs) have

become one of the well-established optimization tech-

niques, especially in the fields of art and design, business and
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finance, science and engineering. Many successful applications

of EAs have been reported, ranging from music composi-

tion [1] to financial forecasting [2], aircraft design [3], job-

shop scheduling [4], and drug design [5]. Although well estab-

lished as credible and powerful optimization tools, researchers

in this area are now facing new challenges of increasing

computational needs by today’s applications. For instance,

a continuing trend in science and engineering is the use of

increasingly high-fidelity accurate analysis codes in the de-

sign and simulation process. Modern computational structural

mechanics (CSM), computational electro-magnetics (CEM),

computational fluid dynamics (CFD) and first principle sim-

ulations have been shown to be reasonably accurate. Such

analysis codes play a central role in the design process since

they aid designers and scientists in validating new designs

and studying the effect of altering key parameters on prod-

uct and/or system performance. However, such moves may

prove to be cost-prohibitive or impractical in the evolutionary

design optimization process, leading to intractable design

cycle times.

An intuitive way to reduce the search time of evolutionary

optimization algorithms when dealing with computationally

expensive solver, is the use of high-performance comput-

ing technologies and/or computationally efficient surrogate

models. In recent years, there have been increasing research

activities in the design of surrogate-assisted evolutionary

frameworks for handling complex optimization problems with

computationally expensive objective functions and constraints.

In particular, since the modeling and design optimization

cycle time is roughly proportional to the number of calls

to the computationally expensive solver, many evolutionary

frameworks have turned to the deployment of computationally

cheap approximation models in the search to replace in part

the original solvers [6]– [8]. Using approximation models

also known as surrogates or metamodels, the computational

burden can be greatly reduced since the efforts required to

build the surrogates and to use them are much lower than

those in the standard approach that directly couples the EA

with the expensive solvers. Among the approximation models,

polynomial regression (PR), also known as response surface

methodology (RSM), support vector machine (SVM), artificial

neural networks (ANNs), radial basis function (RBF), and

Gaussian process (GP), also referred to as Kriging or design

and analysis of computer experiment (DACE) models, are the

most prominent and commonly used [9]–[11].
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In the context of EA, various approaches for working with

computationally expensive problems using surrogate models

have been reported. Early techniques include the use of fitness

inheritance or imitation [12], [13], where the fitness of an

individual is defined by either the parents or other individuals

previously encountered along the search. Another common

approach is to preselect a subset of individuals that would

undergo exact function evaluations, while all others are pre-

dicted based on surrogate models. Some of the simple schemes

introduced are based on random individual selection [14] or

selecting the best/most promising individuals based on the

predictions made by the surrogate models [7], [11], [15],

[16]. Other schemes include identifying some cluster cen-

ters [17], [18], or uncertain individuals that are predicted

to have poor estimates [19] as representatives that will un-

dergo exact function evaluations subsequently. Such forms of

model management schemes are termed as ‘evolution control’

in [7] and [20]. An alternative approach adopted in [21]

involves the refinement of the surrogate used from coarse-

to-fine grained models as the search evolves. Online localized

surrogate models are also deployed within the local search

phase of memetic algorithms (MAs) [8], [22]. The synergy of

online global and local surrogate in the memetic search was

also investigated in [11]. To enhance the prediction accuracy

of fitness predictions based on surrogates, the inclusion of

gradient information in surrogate building was also studied

in [23] and [24], independently. More recently, Schmidt and

Lipson [25] proposed the use of coevolution technique to

address issues such as level of approximation and accuracy

of fitness predictors.

More recently, the idea of using surrogate to speed up

evolutionary search process has found its way into the field

of evolutionary multiobjective optimization (MOO). Many

of the schemes introduced in the context of single-objective

optimization (SOO) have been extended to their corresponding

MOO variants. The Kriging-based surrogate-assisted evolu-

tionary multiobjective algorithm in [26] represents an ex-

tension of the efficient global optimization framework [27]

introduced for handling SOO problems, whereas [28] and [29]

extended the coarse-to-fine grained approximation and prese-

lection schemes to its MOO variants, respectively. The co-

evolution of genetic algorithms (GAs) for multiple objectives

based on online surrogates was introduced in [30]. After some

fixed search intervals, the surrogates produced that represent

the different objectives are then exchanged and shared among

multiple GAs. In [31], a multiobjective EA is run for a

number of iterations on a surrogate model before the model

is updated using exact evaluation from some selected points.

For greater details on surrogate-assisted EAs for handling

optimization problems with computationally expensive ob-

jective/constraint functions, the readers are referred to [9]

and [32].

In spite of the extensive research efforts on this topic,

existing surrogate-assisted evolutionary frameworks remains

open for further improvement. Jin et al. [14] have shown that

existing surrogate-assisted evolutionary frameworks proposed

are often flawed by introduction of false optima since the

parametric approximation technique used may not be capable

of modeling the problem landscapes accurately, thus producing

unreliable search. Generally, the ‘curse of dimensionality’

creates significant difficulties in the construction of accurate

surrogate models for fitness prediction. Further, recent studies

have shown that the choice of approximation technique used

affects the performance of evolutionary searches [33]. On

the other hand, it is worth keeping in mind that approxi-

mation error in the surrogate model does not always harm.

A surrogate model capable of smoothing the multimodal or

noisy landscape of the complex problem may contribute more

beneficially to the evolutionary search than one that models

the original fitness function accurately. For instance, the study

in [44] has emphasized the importance of predicting search

improvement as opposed to the usual practice of improving

only the quality of the surrogate in the context of evolution-

ary optimization. Based on these recent studies, it is worth

highlighting the influence of the approximation method used

on the performance of any surrogate-assisted evolutionary

search. The greatest barrier to further progress is that, with

so many approximation techniques available in the literature,

it is almost impossible to know which is most relevant for

modeling the problem landscape or generating reliable fitness

predictions when one has only limited knowledge of its

fitness space before the search starts. Moreover, approximation

techniques by themselves may model differently on different

problem landscapes. Depending on the complexity of a design

problem, a single approximation model that may have proven

to be successful in an instance might not work so well, or

at all, on others. In the field of multidisciplinary optimiza-

tion, such observations have also been reported [34]–[41]. In

those studies, this issue is commonly handled by performing

multiple optimization runs, each on different surrogate model

or ensemble model. In [34], [35] and [39], a set of surrogate

models consisting Kriging, PR, RBF, and weighted average

ensemble is used to demonstrate that multiple surrogates can

improve robustness of optimization at minimal cost. Similarly,

[36] uses PR and RBF surrogate models in the context of

multiobjective optimization and shows that each of the models

performs better at different region of the Pareto front. Others

in [37], [38], [40] and [41] resolve this issue by introducing

various ensemble model building techniques. It is shown from

these studies that ensemble models generally outperform most

of the individual surrogates.

This paper introduces a generalized framework for unifying

diverse surrogate models synergistically in the evolutionary

search. In contrast to existing efforts, we focus on predicting

search improvement in the context of optimization as opposed

to solely on improving the prediction quality of the approx-

imation. In particular, we generalize the problem to attain

reliable search improvement in surrogate-assisted evolutionary

framework as two major goals: 1) to mitigate the ‘curse of

uncertainty’; 2) to benefit from the ‘bless of uncertainty’. The

‘curse of uncertainty’1 refers to the negative consequences

introduced by the approximation error of the surrogate models

1In the present context, the definition of ‘uncertainty’ refers to the approxi-
mation errors in the fitness function due to the use of surrogate models based
on the definitions given in [45].
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Fig. 1. Curse and bless of uncertainty in single-objective EA using surrogates. (a) ‘Curse of uncertainty’ in single-objective EA using surrogates. Approximated
function in the figure is obtained using spline interpolation technique. (b) ‘Bless of uncertainty’ in single-objective EA using surrogates. Approximated function
in the figure is obtained using a low order polynomial regression.

used. On the other hand, ‘bless of uncertainty’ refers to the

benefits attained by the use of surrogate models. Particularly,

we seek for surrogate models that are capable of generating

reliable fitness predictions on diverse problems of different

landscapes to mitigate the ‘curse of uncertainty’ on one hand,

and on the other hand surrogate models that are capable of

smoothing rugged fitness landscapes to prevent the search

from getting stuck in local optima [44]. Previous studies

by Yao et al. [42], [43] have also confirmed that smoothed

landscape of rugged fitness landscape can lead the search

to optimum solutions easier than using the exact fitness

landscape.

The rest of this paper is organized as follows. Section II

discusses the impacts of uncertainty due to approximation

errors in evolutionary frameworks that employ surrogates.

Based on the discussion, Section III provides a generaliza-

tion of surrogate-assisted evolutionary search for both SOO

and MOO subsequently. We summarize the empirical studies

on some popular SOO and MOO benchmark problems in

Section IV. Finally, Section V concludes this paper.

II. Impacts of Approximation Errors in

Surrogate-Assisted Evolutionary Algorithms

In this section, we briefly discuss the effects of uncertainty

introduced by inaccurate approximation models on surrogate-

assisted evolutionary algorithms (SAEA) search performance.

Without loss of generality, here we consider computationally

expensive minimization problems under limited computational

budget with bound constraints of the following form:

minimize: f1(x), f2(x), . . . , fr(x)

subject to: xl
i ≤ xi ≤ xu

i (1)

where i = 1, 2, . . . , d, d is the dimensionality of the search

problem, r is the number of objective functions, and xl
i, xu

i are

the lower and upper bounds of the ith dimension of vector x,

respectively.

Note that when more than one objective is involved for

approximation, there are two commonly adopted strategies,

i.e., 1) one approximation model per objective function; 2) one

approximation model for an aggregated (linear or nonlinear

combination) objective function, faggr(x). In this paper, we

consider the second strategy. Since in single-objective context,

faggr(x) = f (x) = f1(x), the term f (x) might be used

interchangeably to faggr(x) for brevity purposes when only

single-objective context is considered.

If faggr(x) denotes the original fitness function and the

approximated function is f̂aggr(x), the approximation errors at

any solution vector x is e(x), i.e., the uncertainty introduced

by the surrogate at x, may then be defined as

e(x) = |faggr(x) − f̂aggr(x)|. (2)

Here, we highlight the negative and positive impacts in-

troduced by the approximation inaccuracies of the surrogates

on SAEA search [44]. The negative impact or otherwise

known as the ‘curse of uncertainty’ on SAEA search can

be briefly defined as the phenomenon where the inaccura-

cies of the surrogates used results in the SAEA search to

stall or converge to false optimum. To illustrate the ‘curse’

effect, we refer to Fig. 1(a), where the SAEA is likely to

converge to the false optimum of the spline interpolation

model due to inaccuracy. On the other hand, the positive

impact, i.e., the ‘bless of uncertainty’ in SAEA materializes

when the use of surrogate(s) brings about greater search

improvements over the use of original exact objective/fitness

function. For instance, the surrogate can help to traverse the

search across valleys and hills of local optima by smoothing

the ruggedness/multimodality of the problem landscape. To

illustrate the blessing effect, we refer to the example in

Fig. 1(b), where a low-order polynomial regression scheme

is used to approximate the exact objective function. Due to
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Fig. 2. Curse and bless of uncertainty in multiobjective EA using surrogates. (a) ‘Curse of uncertainty’ in multiobjective EA using surrogates. (b) ‘Bless of

uncertainty’ in multiobjective EA using surrogates.

the smoothing effect of the polynomial surrogate, the search

leads to an improved solution that is unlikely to be attained

even if the exact objective function is used. Hence, the ‘bless of

uncertainty’ brings about possible acceleration in the search.

Besides a faster convergence, recent study in [32] revealed

that the ‘bless of uncertainty’ in SAEA also exists in the form

of improving evolutionary search diversity through the use of

surrogate model.

Next, to illustrate ‘curse and bless of uncertainty’ in the

context of multiobjective optimization, we refer to the exam-

ples in Fig. 2(a) and (b). Fig. 2(a) depicts the effect of ‘curse of

uncertainty’ in MOEA search due to the presence of inaccurate

surrogate models. In Fig. 2(a), the surrogate-assisted MOEA

search is observed to be evolving toward poor nondominated

solutions in comparison to that based on exact fitness func-

tions. Moreover, those labeled as x1 and x2 in Fig. 2(a) suggest

that some solutions might stall, while others fail to converge

optimally. On the other hand, Fig. 2(b) illustrates the presence

of ‘bless of uncertainty’ where the errors in the surrogate

used is observed to improve the MO evolutionary search in

both convergence and diversity measures. Particularly, some

improved solutions of the surrogate-assisted search is shown

to dominate at least one of its initial solutions, while others

such as x3 and x4 are newly found nondominated solutions.

III. Generalizing Surrogate-Assisted

Evolutionary Search

In this section, we present a generalization of surrogate-

assisted evolutionary frameworks for optimization of problems

with objective(s) and constraint(s) that are computationally

expensive to evaluate. The generalized framework illustrated

here for unifying diverse approximation concept synergisti-

cally is a surrogate-assisted memetic algorithm that conducts

simultaneous local searches on separate ensemble and smooth-

ing surrogate models. MAs are population-based metaheuristic

search methods that are inspired by Darwinian principles of

natural evolution and Dawkins notion of a meme defined as a

Algorithm 1 Memetic Algorithm (for SOO)

1: Initialization: Generate and evaluate a population of

design vectors.

2: while computational budget is not exhausted do

3: Apply evolutionary operators (selection, crossover, mu-

tation) to create a new population.

4:

5: / ∗ ∗ ∗ ∗ Local Search Phase ∗ ∗ ∗ ∗ /

6:

7: for each individual x in current population do

8: • Apply local search to find an improved solution,

xopt.

9: • Perform replacement using Lamarckian learning,

i.e.,

10: if f (xopt) < f (x) then

11: x = xopt

12: end if

13: end for

14:

15: / ∗ ∗ End of Local Search Phase ∗ ∗ /

16:

17: end while

unit of cultural evolution capable of local refinements [46].2

For example, the brief outline of a traditional MA is provided

in Algorithm 1.

In the generalized framework, we introduce first the idea of

employing online local ensemble surrogate models constructed

from diverse approximation concepts using data points that lie

in the vicinity of an initial guess. The surrogate or approxi-

2Note that the rationale behind using a memetic framework over a traditional
evolutionary framework is multifold [46], [50]. First, we aim to exploit
MAs’ capability of locating the local and global optima efficiently. Second,
a memetic model of adaptation exhibits the plasticity of individuals that a
pure genetic model fails to capture. Further, by limiting the use of surrogate
models within the local search procedures, the global convergence property
of EAs can be ensured. For a greater exposition of local metaheuristics in
optimization, the reader is referred to [47]–[49].
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mation models are then used to replace the expensive function

evaluations performed in the local search phase. The improved

solution generated by the local search procedure then replaces

the genotype and/or fitness of the original individual.3

A. Ensemble Model

To mitigate the ‘curse of uncertainty’ caused by the effect

of using imperfect surrogate models, we seek for surrogate

models that are capable of generating reliable fitness predic-

tions on diverse problems. In particular, since it is almost

impossible to know in advance which approximation technique

best suits the optimization problem at hand, we consider a

synergy of diverse approximation methods through the use

of ensemble models to generate reliable accurate predictions

across problems of differing problem landscapes [18], [37],

[51], as opposed to single surrogate models created by specific

approximation scheme that may not be appropriate for the

problem at hand. In what follows, we consider online local

weighted average ensembles. For instance, in the single-

objective context, the predicted ensemble output of f (x) is

formulated as

f̂ens(x) =

n
∑

i=1

cif̂i(x)

n
∑

i=1

ci = 1 (3)

where f̂ens(x) and f̂i(x) are the fitness prediction made by the

ensemble and ith surrogate model, respectively. The same for-

mulation applies in the multiobjective context where faggr(x) is

considered. ci is the weight coefficient associated with the ith

surrogate model. A model can be assigned a larger weight if it

is found or deemed to be more accurate. Hence, the weighting

function becomes

ci =

∑n
j=1,j �=i εj

(n − 1)
∑n

j=1 εj

(4)

where εj is the error measurement for the jth surrogate model.

Here, the root mean square error (RMSE) is used as the error

measurement. The RMSE of each surrogate model is then of

the form

RMSE =

√

∑m
i=1 e2(xi)

m
(5)

where m is the number of data samples compared, e(xi) is

the error of prediction for data point xi, as shown in (2). For

greater details on other ensemble model building techniques,

interested readers are referred to [37], [38], [40], [41] and [51].

3There are two basic replacement strategies in MAs [50].

1) Lamarckian learning forces the genotype to reflect the result of
improvement in local search by placing the locally improved individual
back into the population to compete for reproductive opportunities.

2) Baldwinian learning only alters the fitness of the individuals and the
improved genotype is not encoded back into the population.

For the sake of brevity, we consider Lamarckian learning in this paper.

B. Landscape Smoothing Model

Meanwhile, to benefit from the ‘bless of uncertainty,’

smoothing techniques including global convex underestima-

tion, tunneling and filling methods are some appropriate alter-

natives [52] that may be used. Given a problem landscape,

smoothing methods transform the function into one with

noticeably fewer minima, thus speeding up the evolutionary

search. In the generalized framework, global convex under-

estimation is used for successive smoothing of the problem

landscape within the local search phase which is realized

through low-order polynomial regression (PR). Besides the

generalization property of PR models on rugged landscape, the

low-computational costs incurred makes them very efficient as

online surrogate models. Note that the PR model may be used

in both ensemble and the smoothing models, hence only a

one-time model building cost is involved.

C. GSM Framework for Single-Objective Optimization

In this subsection, we describe the generalized surrogate

memetic framework for single-objective optimization. A brief

outline of the generalized surrogate single-objective memetic

algorithm (GS-SOMA) is presented in Algorithm 2. Note that

the difference between the GS-SOMA and a traditional MA

lies in the local search phase of the algorithms.

GS-SOMA begins with the initialization of a population

of design points. During the database building phase, the

search operates like a traditional evolutionary algorithm based

on the original exact fitness function for some initial Gdb

generations. Up to this stage, no form of surrogates are

used, and all exact fitness function evaluations made are

archived in a central database. Subsequently, the algorithm

proceeds into the local search phase. For each individual

x, n online surrogates that model the fitness function are

created dynamically using m training data points, which lie

in the vicinity of x, extracted from the archived database of

previously evaluated design points. From the n surrogates,

an ensemble model is built. From here, two separate local

searches are conducted on: 1) M1, the ensemble of n surrogate

models, and 2) M2, a low-order PR model. If improved so-

lutions are achieved, GS-SOMA proceeds with the individual

replacement scheme. Since we adopt the Lamarckian scheme

here, the genotype/phenotype of the initial individual is then

replaced by the higher quality solutions among the two that

are locally improved based on M1 and M2, i.e., x1
opt or x2

opt.

The search cycle is then repeated until the allowed maximum

computational budget is exhausted.

D. GSM Framework for Multiobjective Optimization

Next, we describe the generalized surrogate memetic frame-

work in the context of multiobjective optimization (MOO). In

MOO, a solution x(1) is said to dominate solution x(2) in the

objective space, i.e., x(1) � x(2) if the following two conditions

hold:

1) x(1) is no worse than x(2) on all objectives or fj(x(1)) ≤
fj(x(2)) for all j = 1, 2, . . . , r;

2) x(1) is strictly better than x(2) on at least one objective,

or fj(x(1)) < fj(x(2)) for at least one j ∈ 1, 2, . . . , r.
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Algorithm 2 Generalized Surrogate Single-Objective Memetic
Algorithm (GS-SOMA)

1: initialization: Generate and evaluate a database contain-

ing a population of designs, archive all exact evaluations

into the database.

2: while computational budget is not exhausted do

3: if generation count < database building phase (Gdb)

then

4: Evolve the population using exact fitness function

evaluations, archive all exact evaluations into the

database.

5: else

6: Apply evolutionary operators (selection, crossover,

mutation) to create a new population.

7:

8: / ∗ ∗ ∗ ∗ Local Search Phase ∗ ∗ ∗ ∗ /

9:

10: for each individual x in the population do

11: • Find m nearest points to x in database as training

points for surrogate models.

12: • Build model-1: M1, as an ensemble of all M ′
j for

j = 1, . . . , n where n is the number of surrogate

models used.

13: • Build model-2: M2, which is a low-order PR

model.

14: • Apply local search in M1 to arrive at x1
opt, and

M2 to arrive at x2
opt.

15: • Replace x with the locally improved solution,

i.e.,

16: if f (x1
opt) < f (x2

opt) then

17: x = x1
opt

18: else

19: x = x2
opt

20: end if

21: • Archive all new exact function evaluations into

the database.

22: end for

23:

24: / ∗ ∗ End of Local Search Phase ∗ ∗ /

25:

26: end if

27: end while

If set P is the entire feasible search space, the nondominated

set P∗ is labeled as the Pareto-optimal set. Any two solu-

tions in P∗ must nondominate each other, i.e., x(1) ∼ x(2).

On the other hand, Pareto front (PF ∗) is the image of the

Pareto-optimal set in objective space. The brief outline of

a typical multiobjective memetic algorithm (MOMA) using

weighting (scalarization) technique [58]–[60] is illustrated in

Algorithm 3. In contrast, the studied GSM framework for

multiobjective optimization (GS-MOMA) is outlined in Algo-

rithm 4. Note that the key differences of the two algorithms

lie in the local search phase and selection pool forming

phase.

GS-MOMA begins with the population initialization phase

and evolutionary search based on exact fitness function for a

Algorithm 3 Multiobjective Memetic Algorithm

1: initialization: Generate and evaluate a population of de-

sign vectors.

2: while computational budget is not exhausted do

3: Apply MO evolutionary operators (selection, crossover,

mutation) to create a new population.

4:

5: / ∗ ∗ ∗ ∗ Local Search Phase ∗ ∗ ∗ ∗ /

6:

7: for each individual x in the population do

8: • Generate a random weight vector w =

(w1, w2, . . . , wr),
∑r

i=1 wi = 1 where r is the number

of objectives.

9: • Apply local search in faggr =
∑r

i=1 wifi(x) to find

an improved solution, xopt.

10: • Perform Lamarckian learning, i.e.,

11: if faggr(xopt) < faggr(x) then

12: x = xopt

13: end if

14: end for

15:

16: / ∗ ∗ End of Local Search Phase ∗ ∗ /

17:

18: end while

number of early generations, Gdb, before entering the local

search phase. In the local search phase, independent local

searches are conducted on: 1) M1, the ensemble of n surrogate

models; 2) M2, the smoothing low-order PR model on each

individual of the generated offspring population. For the sake

of brevity, the core distinguishing feature of GS-MOMA can

be noted in line 17 of Algorithm 4, i.e., the existence of the

Replace&Archive procedure.

The Replace&Archive procedure performs replacements

based on domination between the original offspring and the

two local optima found. The original offspring will only be

replaced by one dominating optimum found. Any other local

optima are then saved into the learning archive, Al. Note that

the result of GS-MOMAs local searches is either xopt � x or

xopt ∼ x. Otherwise, there is no improvement to the original

offspring, and hence we get xopt == x.

Based on the procedure in Algorithm 5, the possible

local search outcomes and corresponding actions taken by

the scheme are summarized in Table I. Note that there exist

six possible actions to be taken by GS-MOMA which are

summarized as follows:

1) replacement is performed once [e.g., Fig. 3(a)];

2) two subsequent replacements are performed [e.g.,

Fig. 3(b)];

3) both replacement and archiving are performed [e.g.,

Fig. 3(c)];

4) archiving is performed once [e.g., Fig. 3(d)];

5) archiving is performed twice [e.g., Fig. 3(e)];

6) neither replacement nor archiving is performed [e.g.,

Fig. 3(f)].
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TABLE I

Actions Taken by the Replace&Archive Scheme in GS-MOMA for Corresponding Results of Local Searches. Note That Irrelevant

Cases Have Been Excluded for Brevity

x1
opt vs x x2

opt vs x x1
opt vs x2

opt Actions taken by GS-MOMA

� � � x = x1
opt

� � ≻ x = x2
opt

� � ∼ x = x1
opt, archive x2

opt

� � == x = x1
opt

� == � x = x1
opt

� ∼ � x = x1
opt

� ∼ ∼ x = x1
opt, archive x2

opt

== � ≻ x = x2
opt

== == == No changes

== ∼ ∼ Archive x2
opt

∼ � ≻ x = x2
opt

∼ � ∼ x = x2
opt, archive x1

opt

∼ == ∼ Archive x1
opt

∼ ∼ � Archive x1
opt

∼ ∼ ≻ Archive x2
opt

∼ ∼ ∼ Archive x1
opt and x2

opt

∼ ∼ == Archive x1
opt

At the end of each GS-MOMA generation, Al is combined

with the current parent population, Pc, and the offspring

population, Po to form the entire pool of individuals, Ps

that will then undergo the MOEA selection mechanism, i.e.,

Ps = Pc

⋃

Po

⋃

Al. From here, the process described repeats

until the maximum computational budget of the GS-MOMA

is exhausted.

E. Local Search Scheme

In the GSM framework for SO/MOO, a trust-region-

regulated search strategy is utilized to ensure convergence

to some local optimum or the global optimum of the exact

computationally expensive fitness function [8], [53], [61], even

though surrogate models are deployed in the local search.

For each individual in the GS-SO/MOMA population, the

local search (refer to line 14 of Algorithm 2 and line 16

of Algorithm 4) proceeds with a sequence of trust-region

subproblems of the form

minimize : f̂ k(xk
c + s)

subject to : ‖s‖ ≤ �k (6)

where k = 0, 1, 2, . . . , kmax, f̂ (x) is the approximation function

corresponding to the objective function f (x). Meanwhile, xk
c ,

s, and �k represent the initial guess (current best solution)

at iteration k, an arbitrary step, and the trust-region radius at

iteration k, respectively. In our experiments, the Sequential

Quadratic Programming (SQP) [54] is used to minimize the

sequence of subproblems on the approximated landscape.

During the local search, the initial trust-region radius � is

initialized based on the minimum and maximum values of the

m design points used to construct the surrogate model (refer

to line 11 of Algorithm 2 and line 13 of Algorithm 4). The

trust-region radius for iteration k, i.e., �k is updated based

on a measure which indicates the accuracy of the surrogate

model at the kth local optimum, xk
opt. This measure, ρk,

provides a measure of the actual versus predicted change in

the exact fitness function values at the kth local optimum and

is calculated as

ρk =
f (xk

c) − f (xk
opt)

f̂ (xk
c) − f̂ (xk

opt)
. (7)

The value of ρk is then used to update the trust-region radius

as follows [61]:

�k+1 = C1�
k, if ρk ≤ C2

= �k, if C2 < ρk ≤ C3 (8)

= C4�
k, if ρk > C3

where C1, C2, C3, and C4 are constants. Typically, C1 ∈ (0, 1)

and C4 ≥ 1 for the scheme to work efficiently. From experi-

ence, we set C1 = 0.25, C2 = 0.25, C3 = 0.75, and C4 = 2, if

||xk
opt − xk

c ||∞ = �k or C4 = 1, if ||xk
opt − xk

c ||∞ < �k.

The trust-region radius for the next iteration, �k+1, is

reduced if the accuracy of the surrogate, measured by ρk is

low. On the other hand, �k is doubled if the surrogate is found

to be accurate and the kth local optimum, xk
opt, lies on the

trust-region bounds. Otherwise the trust-region radius remains

unchanged.

The initial guess of the optimum at iteration k + 1 becomes

xk+1
c = xk

opt, if ρk > 0

= xk
c, if ρk ≤ 0. (9)

The trust-region process for an individual terminates when the

termination condition is satisfied. For instance, this termination

condition could be when the trust-region radius � approaches

ε, where ε represents some small trust-region radius, or when

a maximum number of iteration kterm is reached.
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Fig. 3. Examples of the six different actions taken by the Replace&Archive scheme in GS-MOMA for corresponding results of local searches. (a) An
example of the case where replacement is performed only once by GS-MOMA. (x1

opt � x) ∧ (x1
opt � x2

opt) ∧ (x ∼ x2
opt). x1

opt replaces x. (b) An example

of the case where two subsequent replacements are performed by GS-MOMA. (x1
opt � x) ∧ (x2

opt � x1
opt). x1

opt replaces x, followed by x2
opt replaces x.

(c) An example of the case where both replacement and archiving are performed by GS-MOMA. (x1
opt � x) ∧ (x2

opt � x) ∧ (x1
opt ∼ x2

opt). x1
opt replaces

x, x2
opt is archived in Al. (d) An example of the case where archiving is performed only once by GS-MOMA. (x ∼ x1

opt) ∧ (x ∼ x2
opt) ∧ (x1

opt � x2
opt).

x1
opt is archived in Al. (e) An example of the case where archiving is performed twice by GS-MOMA. (x ∼ x1

opt) ∧ (x ∼ x2
opt) ∧ (x1

opt ∼ x2
opt).

Both x1
opt and x2

opt are archived in Al. (f) An example of the case where neither replacement nor archiving is performed. No new optimum
is found.

IV. Empirical Study

In this section, we present an empirical study on the GSM

framework for solving single and multiobjective optimization

problems. In the present study, we considered a diverse set of

exact interpolating and generalizing approximation techniques

for constructing the local surrogate models, i.e., M1 and

M2. These include the interpolating Kriging/Gaussian process

(GP), interpolating linear spline radial basis function (RBF)

and second-order polynomial regression (PR). For greater

details on GP, PR, and RBF, the reader is referred to [55]–

[57] and Appendix A.

A. Parameters of GSM Framework

In this subsection, we discuss the user-specified parameters

of the GSM framework. Apart from the parameters of the

underlying SO/MOEA, the generalized framework has three

additional user-specified parameters: m, Gdb, and kterm.

Since model accuracy is highly dependent on the sufficiency

of the m data points used for model building, the size of

nearest neighboring points used (based on Euclidean distance)

is defined by d +(d +1)(d +2)/2, where d is the dimensionality

of the optimization problem. It is worth noting that the com-

plexity for identifying these m points is negligible compared

to the cost of surrogate model building. Moreover, since our

emphasis here is with regard to a framework that is tailored

for solving computationally expensive problems, i.e., problems

that may cost from minutes to hours of computational time per

evaluation, such overheads are considered to be insignificant.

From these m data points, as many as (d + 1)(d + 2)/2 among

them4 are chosen uniformly as the training data for building

the surrogates, the remaining data points then form the set for

validating the prediction quality of the surrogate.

Parameter Gdb, on the other hand, defines the period of the

database building phase (refer to lines 3–5 in Algorithms 2

and 4) before the core operation of the GSM framework

begins to take effect. Hence, Gdb can be adapted for different

optimization problems according to the fulfillment on the

requirement of parameter m. The lower bound of Gdb is

defined by the period to acquire a minimum of m data points

for construction of reliable surrogate models.

4This amount corresponds to the minimum number of data points required
for building quadratic regression models.
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Algorithm 4 Generalized Surrogate Multiobjective Memetic Algo-
rithm (GS-MOMA)

1: initialization: Generate and evaluate an initial population

with Npop individuals, archive all exact evaluations into a

database.

2: while computational budget is not exhausted do

3: if generation count < database building phase (Gdb)

then

4: Evolve the population using exact fitness function

evaluations, archive all exact evaluations into the

database.

5: else

6: Generate the offspring population, Po using MO evo-

lutionary operators (selection, crossover, mutation)

on the selection pool.

7:

8: / ∗ ∗ ∗ ∗ Local Search Phase ∗ ∗ ∗ ∗ /

9:

10: Initialize the learning archive, Al to empty state.

11: for each individual x in the offspring population do

12: • Generate a random weight vector w =

(w1, w2, . . . , wr),
∑r

i=1 wi = 1 where r is the

number of objectives.

13: • Find m nearest points to x in database as training

points for surrogate models.

14: • Build model-1: M1, as an ensemble of all M ′
j for

j = 1, . . . , n where n is the number of surrogate

models used of faggr =
∑r

i=1 wifi(x)

15: • Build model-2: M2, which is a low-order PR

model, of faggr =
∑r

i=1 wifi(x)

16: • Apply local search in M1 to arrive at x1
opt, and

M2 to arrive at x2
opt

17: • Replace&Archive( x, x1
opt, x2

opt, Al )

18: end for

19:

20: / ∗ ∗ End of Local Search Phase ∗ ∗ /

21:

22:

23: / ∗ ∗ ∗ ∗ Selection pool forming ∗ ∗ ∗ ∗ /

24:

25: Form selection pool, Ps = Pc

⋃

Po

⋃

Al.

26:

27: / ∗ ∗ End of selection pool forming ∗ ∗ /

28:

29: end if

30: end while

Theoretically, the trust-region local search scheme termi-

nates when the trust-region radius, � approaches ε, where ε

represents some very small value for termination condition

(refer to Section III-E). Nevertheless, for practical reason,

under limited computational budget, it is more appropriate to

derive a suitable value for kterm as the termination condition

in the trust-region local search. In what follows, we present a

theoretical bound for kterm

�1
min (C1)kmin ≤ ε (10)

Algorithm 5 Procedure Replace&Archive(x, x1
opt, x2

opt, Al)

1: if x1
opt � x then

2: x = x1
opt

3: if x2
opt � x1

opt then

4: x = x2
opt

5: else if x2
opt ∼ x1

opt then

6: Archive x2
opt in Al

7: end if

8: else if x2
opt � x then

9: x = x2
opt

10: if x2
opt ∼ x1

opt then

11: Archive x1
opt in Al

12: end if

13: else if (x1
opt ∼ x) ∧ (x2

opt == x) then

14: Archive x1
opt in Al

15: else if (x2
opt ∼ x) ∧ (x1

opt == x) then

16: Archive x2
opt in Al

17: else if (x1
opt ∼ x) ∧ (x2

opt ∼ x) then

18: if (x1
opt � x2

opt) ‖ (x1
opt == x2

opt) then

19: Archive x1
opt in Al

20: else if x2
opt � x1

opt then

21: Archive x2
opt in Al

22: else

23: Archive x1
opt and x2

opt in Al

24: end if

25: end if

⇒ (C1)kmin ≤ ε

�1
min

(11)

⇒ kmin log C1 ≤ log ε

�1
min

. (12)

Since C1 ∈ (0, 1) → log C1 < 0, we arrive at

⇒ kmin ≥
(

log
(

ε

�1
min

))

/ (log C1) (13)

⇒ kmin ≥ logC1

(

ε

�1
min

)

. (14)

Similarly, the maximum number of trust-region iterations in

the local search, i.e., kmax, is estimated by

kmax < Nmax
succ + Nmax

succ logC1

(

ε

�1
max

)

(15)

⇒ kmax < Nmax
succ

(

1 + logC1

(

ε

�1
max

))

. (16)

Note that Nmax
succ is the maximum number of successful itera-

tions, while �1
min and �1

max are the lower and upper bounds

of the initial trust-region radius. In effect, the bounds for kterm

as the termination condition can be derived as

logC1

(

ε

�1
min

)

≤ kterm < Nmax
succ

(

1 + logC1

(

ε

�1
max

))

. (17)

In the trust-region-regulated local search, �1 depends on the

local region of interest where the initial m nearest neighbors

are located. Hence, it is not possible to define this term

precisely for any new optimization problem. For instance, if

�1
min ≈ 10ε and C1 = 0.25, we arrive at

kterm ≥
log 0.1

log 0.25

kterm ≥ 1.66. (18)
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TABLE II

The Benchmark Problems Used (F1−F10) for the Empirical

Study of Single-Objective Optimization

Benchmark Description Global
Problem Optimum

f (x∗)

F1 Ackley 0.0

F2 Griewank 0.0

F3 Rosenbrock 0.0

F4 Shifted Rotated Rastrigin (F10 in [63]) −330.0

F5 Shifted Rotated Weierstrass (F11 in [63]) 90.0

F6 Shifted Expanded Griewank −130.0
plus Rosenbrock (F13 in [63])

F7 Hybrid Composition Function (F15 in
[63])

120.0

F8 Rotated Hybrid Composition Function
(F16 in [63])

120.0

F9 Rotated Hybrid Composition Function 10.0
with Narrow Basin Global Optimum
(F19 in [63])

F10 Noncontinuous Rotated Hybrid 360.0
Composition Function (F23 in [63])

TABLE III

Definition of the Single-Objective MAs (SOMAs) Compared

Algorithms Definition

GA No surrogate is used

SS-SOMA-GP Single surrogate SOMA with M1: GP

SS-SOMA-PR Single surrogate SOMA with M1: PR

SS-SOMA-RBF Single surrogate SOMA with M1: RBF

SS-SOMA-Perfect Single surrogate SOMA with M1: Perfect
model

GS-SOMA Generalized surrogate SOMA with
M1: Weighted-average ensemble of GP, PR,
and RBF
M2: PR

As opposed to using kterm = 1 which translates to a single

iteration local search, a minimum value of kterm ≥ 2 is more

practical to allow the mechanisms of the trust-region-regulated

local search to take effect.

B. Single-Objective Optimization

Empirical study on the GS-SOMA is performed using 10

benchmark problems (F1–F10) reported in [62], [63] and

summarized here in Table II. More detailed description of

the problems is also provided in Appendix B. It consists

of problems with diverse properties in terms of separability,

multimodality, and continuity.

In this paper, all the benchmark problems are configured

with a dimensionality of d = 30 for SOO. Performance

comparisons are then made between the GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF, SS-SOMA-Perfect, and GS-

SOMA (refer to Table III for the definition of the algorithms

investigated here). Note that to facilitate a fair comparison,

the surrogate memetic variants are built on top of the same

GA used in the study, which ensures that any improvement

observed is a direct contribution of the surrogate framework

considered. SS-SOMA-XXX refers to the different surrogate-

assisted single-objective MA variants, each with a unique

approximation method used to generate the surrogate model.

TABLE IV

Setting of Experiments for GA, SS-SOMA, SS-SOMA-Perfect,

and GS-SOMA

Parameters Setting

Population size (Npop) 100

Crossover probability (Pcross) 0.9

Mutation probability (Pmut) 0.1

Maximum number of exact evaluations 8000

Evolutionary operators Uniform crossover
& mutation,
elitism and ranking selection

Number of trust-region iteration(kterm)
for SS-SOMA and GS-SOMA 3

Database building phase (Gdb)
for SS-SOMA and GS-SOMA 20
(in number of generations)

Number of independent runs 20

For instance, XXX in SS-SOMA-XXX refers to GP, PR, or

RBF. On the other hand, SS-SOMA-Perfect refers to an SS-

SOMA that employs an imaginary approximation technique

that generates error-free surrogates,5 i.e., RMSE = 0. Hence,

the notion of ‘curse or blessing of uncertainty’ does not exist

in the SS-SOMA-Perfect search. As such, any SS-SOMA-

XXX that under/out-performs SS-SOMA-Perfect is clearly

attributed to the effects of curse and bless of uncertainty,

respectively. Last but not least, GS-SOMA refers to the

Generalized Surrogate framework for single-objective opti-

mization. The common parameter settings of the algorithms

used in the present experimental study are summarized in

Table IV.

1) Experimental Results: In Tables V–XIV, the detailed

statistical results of 20 independent runs for SS-SOMAs,

GS-SOMA, and GA are presented. The GS-SOMA and best

performing SS-SOMA are highlighted in the tables. Note that

none of the SS-SOMAs always dominates in performance

on all 10 benchmark problems. This makes good sense since

the performance of any surrogate-assisted evolutionary search

would depend on the match between the characteristics of

the problem landscape and approximation scheme used. For

instance, in the tables, it is shown that SS-SOMA-PR serves to

be best suited for F1, F5, and F9 since it outperforms all other

algorithms on these problems. Similarly, this also applies

to SS-SOMA-GP which excels on F3. On the other hand,

SS-SOMA-RBF, though not superior, performs relatively well

on F3, F4, F7, and F8. Moreover, it is worth noting that the

SS-SOMAs are observed to have performed much poorly on

several occasions. For instance, SS-SOMA-PR fares badly on

F3, F4, F7, and F8. The same is true for SS-SOMA-GP on

F1, F4–F8, and F10, and SS-SOMA-RBF on F1, F2, F5, F6,

F9, and F10.

On the other hand, the results in Tables V–XIV, indicate that

GS-SOMA consistently performs well on all the benchmark

problems. The t-test results, i.e., at 95% confidence level, for

the different algorithms as reported in Table XV confirm that

5An error-free surrogate model can be realized by using exact fitness
function in the portion of SS-SOMA where a surrogate model should be used,
but the incurred fitness evaluation is counted only as many as in SS-SOMA.
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Fig. 4. Convergence trends for F1–F10 obtained from GS-SOMA, SS-SOMA-Perfect, and SS-SOMA-AV.
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TABLE V

Statistics of the Final Solution Quality at the End of 8000 Exact Function Evaluations for F1 Using GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF, and GS-SOMA

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst

GA 1.24e+01 9.50e−01 1.23e+01 1.12e+01 1.42e+01
SS-SOMA-GP 6.43e+00 9.73e−01 3.98e+00 2.87e+00 1.56e+01
SS-SOMA-PR 1.39e+00 1.93e−01 1.36e+00 1.14e+00 1.75e+00
SS-SOMA-RBF 4.91e+00 7.57e−01 4.86e+00 3.78e+00 6.09e+00
GS-SOMA 3.58e+00 5.09e−01 3.67e+00 2.87e+00 4.28e+00

TABLE VI

Statistics of the Final Solution Quality at the End of 8000 Exact Function Evaluations for F2 Using GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF, and GS-SOMA

Optimization Statistical Values
Algorithm Mean Std. Dev. Median Best Worst
GA 4.58e+01 8.61e+00 4.67e+01 2.15e+01 6.19e+01
SS-SOMA-GP 1.79e+01 8.58e+00 1.07e+01 5.15e−09 3.00e+01
SS-SOMA-PR 1.18e−02 2.78e−02 4.29e−08 7.48e−10 1.19e−01
SS-SOMA-RBF 7.49e−01 8.98e−02 7.51e−01 6.02e−01 8.72e−01
GS-SOMA 2.2e−03 4.60e−03 8.95e−09 1.40e−10 1.54e−02

TABLE VII

Statistics of the Final Solution Quality at the End of 8000 Exact Function Evaluations for F3 Using GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF, and GS-SOMA

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst

GA 4.10e+02 1.01e+02 3.85e+02 2.33e+02 5.73e+02
SS-SOMA-GP 2.99e+01 7.73e−01 3.00e+01 2.87e+01 3.11e+01
SS-SOMA-PR 6.73e+01 2.55e+01 5.62e+01 3.72e+01 1.04e+02
SS-SOMA-RBF 4.90e+01 2.92e+01 3.97e+01 2.92e+01 1.57e+02
GS-SOMA 4.63e+01 2.92e+01 3.02e+01 2.83e+01 1.26e+02

TABLE VIII

Statistics of the Final Solution Quality at the End of 8000 Exact Function Evaluations for F4 Using GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF, and GS-SOMA

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst

GA −5.46e+01 3.01e+01 −5.48e+01 −1.11e+02 5.19e−01
SS-SOMA-GP −1.19e+02 1.87e+01 −1.17e+02 −1.50e+02 −8.71e+01
SS-SOMA-PR −1.19e+02 1.23e+01 −1.21e+02 −1.43e+02 −9.01e+01
SS-SOMA-RBF −1.65e+02 1.86e+01 −1.66e+02 −1.91e+02 −1.36e+02
GS-SOMA −1.26e+02 1.60e+01 −1.23e+02 −1.64e+02 −9.97e+01

TABLE IX

Statistics of the Final Solution Quality at the End of 8000 Exact Function Evaluations for F5 Using GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF, and GS-SOMA

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst

GA 1.26e+02 2.85e+00 1.26e+02 1.20e+02 1.32e+02
SS-SOMA-GP 1.19e+02 4.29e+00 1.20e+02 1.12e+02 1.25e+02
SS-SOMA-PR 1.16e+02 3.79e+00 1.16e+02 1.13e+02 1.25e+02
SS-SOMA-RBF 1.21e+02 2.61e+00 1.21e+02 1.18e+02 1.24e+02
GS-SOMA 1.19e+02 3.05e+00 1.19e+02 1.14e+02 1.24e+02
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TABLE X

Statistics of the Final Solution Quality at the End of 8000 Exact Function Evaluations for F6 Using GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF, and GS-SOMA

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst

GA −9.57e+01 9.43e+00 −9.79e+01 −1.06e+02 −7.28e+01
SS-SOMA-GP −1.02e+02 2.99e+00 −1.03e+02 −1.05e+02 −9.74e+02
SS-SOMA-PR −1.06e+02 2.45e+00 −1.07e+02 −1.09e+02 −1.02e+02
SS-SOMA-RBF −1.03e+02 2.43e+00 −1.03e+02 −1.07e+02 −9.96e+01
GS-SOMA −1.12e+02 1.05e+00 −1.23e+02 −1.13e+02 −1.11e+02

TABLE XI

Statistics of the Final Solution Quality at the End of 8000 Exact Function Evaluations for F7 Using GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF, and GS-SOMA

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst

GA 7.29e+02 5.92e+01 7.27e+02 6.43e+02 8.21e+02
SS-SOMA-GP 6.81e+02 7.23e+01 6.95e+02 6.02e+02 8.23e+02
SS-SOMA-PR 6.42e+02 5.80e+01 6.34e+02 5.73e+02 7.09e+02
SS-SOMA-RBF 6.27e+02 7.93e+01 5.99e+02 5.95e+02 8.49e+02
GS-SOMA 6.07e+02 3.06e+01 6.00e+02 5.79e+02 6.59e+02

TABLE XII

Statistics of the Final Solution Quality at the End of 8000 Exact Function Evaluations for F8 Using GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF, and GS-SOMA

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst

GA 4.83e+02 6.3e+01 4.62e+02 4.19e+02 6.06e+02
SS-SOMA-GP 4.52e+02 9.66e+01 4.35e+02 3.40e+02 5.63e+02
SS-SOMA-PR 3.94e+02 4.41e+01 3.75e+02 3.43e+02 4.52e+02
SS-SOMA-RBF 3.79e+02 3.3e+01 3.69e+02 3.51e+02 4.41e+02
GS-SOMA 3.25e+02 1.17e+02 2.86e+02 2.32e+02 5.54e+02

TABLE XIII

Statistics of the Final Solution Quality at the End of 8000 Exact Function Evaluations for F9 Using GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF, and GS-SOMA

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA 1.02e+03 2.35e+01 1.02e+03 9.86e+02 1.08e+03
SS-SOMA-GP 9.42e+02 1.71e+01 9.37e+02 9.25e+02 9.81e+02
SS-SOMA-PR 9.32e+02 8.26e+00 9.31e+02 9.22e+02 9.48e+02
SS-SOMA-RBF 9.81e+02 1.43e+01 9.80e+02 9.67e+02 1.00e+03
GS-SOMA 9.42e+02 1.75e+01 9.37e+02 9.30e+02 9.86e+02

TABLE XIV

Statistics of the Final Solution Quality at the End of 8000 Exact Function Evaluations for F10 Using GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF, and GS-SOMA

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA 1.51e+03 5.52e+01 1.52e+03 1.40e+03 1.58e+03
SS-SOMA-GP 1.26e+03 1.88e+02 1.22e+03 1.03e+03 1.54e+03
SS-SOMA-PR 1.07e+03 1.07e+02 1.04e+03 9.42e+02 1.29e+03
SS-SOMA-RBF 1.12e+03 1.16e+02 1.15e+03 9.59e+02 1.28e+03
GS-SOMA 1.01e+03 7.85e+01 9.53e+02 9.09e+02 1.51e+03
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TABLE XV

Result of t-Test With 95% Confidence Level Comparing Statistical Values for GS-SOMA and Those of SS-SOMA-GP, SS-SOMA-PR,

SS-SOMA-RBF, SS-SOMA-Perfect on F1−F10 (s+, s−, and ≈ Indicates That GS-SOMA is Significantly Better, Significantly Worse,

and Indifferent, Respectively)

GA SS-SOMA-GP SS-SOMA-PR SS-SOMA-RBF SS-SOMA-Perfect

F1 s+ s+ s− s+ s+

F2 s+ s+ ≈ s+ s−
F3 s+ s− s+ ≈ s−
F4 s+ ≈ ≈ s− s+

F5 s+ ≈ ≈ s+ s+

F6 s+ s+ s+ s+ s+

F7 s+ s+ s+ ≈ s+

F8 s+ s+ s+ ≈ s+

F9 s+ ≈ s− s+ s+

F10 s+ s+ ≈ s+ s+

GS-SOMA outperforms or is competitive to the SS-SOMAs

on 44/50 cases. On the remaining six cases, GS-SOMA also

displays solution qualities close to that of the superior SS-

SOMA, see the highlighted results in Tables V–XIV. Note

that this is a significant achievement considering that no a

priori knowledge is available to select an appropriate surrogate

modeling scheme for the problems considered. This highlights

the reliability of the generalized framework.

The search convergence trends of GS-SOMA, SS-SOMA-

AV, and SS-SOMA-Perfect are also plotted in Fig. 4. Note

that SS-SOMA-AV represents the estimated performance one

might expect to get when an approximation technique is

randomly chosen for use. Hence, SS-SOMA-AV is generated

from the average of the results obtained by all three SS-

SOMAs, i.e., SS-SOMA-GP, SS-SOMA-PR, and SS-SOMA-

RBF. It is evident from the search convergence trends that GS-

SOMA is superior over SS-SOMA-AV on the 10 benchmark

problems. This indicates that the generalized framework is

more reliable when one has no knowledge about the suitability

of the approximation scheme for the problem at hand.

2) Analyzing the Generalized Evolutionary Framework in

Single-Objective Optimization: To gain a better understanding

of the generalized framework, we further analyze the reliability

and effectiveness of the ensemble (M1) and smoothing (M2)

surrogate models in contributing to the evolutionary search.

To facilitate the analysis, the normalized root mean square

errors (N-RMSE) of fitness predictions based on the ensemble

surrogate model, i.e., M1 in GS-SOMA search, for the bench-

mark problems are presented in Fig. 5. The N-RMSE of model

i is determined as follows:

Normalized RMSEi =
RMSEi

∑n
j=1 RMSEj

(19)

where n is the total approximation methods used in shaping the

ensemble. From this figure, the consistently low N-RMSE of

the ensemble model generated in the GS-SOMA search across

all benchmark problems demonstrates the high reliability of

the fitness prediction generated by M1 across the different

optimization problems over any single surrogates.

Further, it is worth noting that the use of M2 contributes

to the fitness improvement in GS-SOMA, which confirms

Fig. 5. Normalized RMSE by GP, PR, RBF, and weighted average ensemble.

Fig. 6. Normalized fitness improvement during the runs of GS-SOMA
contributed by M1 (ImpM1

) and M2 (ImpM2
).
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Fig. 7. Normalized RMSE by GP, PR, RBF, and weighted average ensemble
on MF1–MF6.

the possible benefits of bless of uncertainty in surrogate

model. The normalized average fitness improvement of the

local searches contributed via the use of M1 (ImpM1
) and M2

(ImpM2
) during the GS-SOMA searches are summarized in

Fig. 6 and is defined by

Normalized ImpM1
=

ImpM1

ImpM1
+ ImpM2

Normalized ImpM2
=

ImpM2

ImpM1
+ ImpM2

. (20)

ImpM1
is the total fitness improvements attained by local

refinements, i.e., through Lamarckian learning, when f (x1
opt) <

f (x2
opt), while ImpM2

is the total fitness improvements when

f (x2
opt) < f (x1

opt).

From the statistical results given in Fig. 6, it is notable

that M1 and M2 surrogates have contributed to the surrogate-

assisted memetic search in their unique ways. This provides a

means for explaining the results that were obtained in Fig. 4

and Tables V–XIV. In particular, the reason for the fact that

all surrogate-assisted SOMAs outperform SS-SOMA-Perfect

on F1 (Ackley) suggests the presence of ‘bless of uncertainty’

through the use of surrogate(s), since the notion of ‘curse or

bless of uncertainty’ cannot exist in the latter. Further, the

fact that SS-SOMA-PR is the most superior on F1 (Ackley)

highlights the strength of the PR model in contributing to

the search via smoothing the rugged landscape of the Ackley

function. This hypothesis is clearly supported by the large

portion of fitness improvements that are contributed by M2

(i.e., the PR model) on F1, see Fig. 6. On the other hand,

neither SS-SOMAs nor GS-SOMA manage to outperform

the SS-SOMA-Perfect on F3(Rosenbrock), suggesting the

presence of ‘curse of uncertainty’ due to the surrogate(s).

Further, the results in F3 of Fig. 6 also indicate that M2

(i.e., the smoothing PR model) did not contribute significantly

to the search since the problem landscape of this function

is originally smooth. Rather, the use of ensemble model in

GS-SOMA had contributed to reliable fitness improvement

Fig. 8. Archiving to replacement ratio of GS-MOMA on MF1–MF6.

on F3(Rosenbrock) by generating reliable prediction accuracy.

On the other test problems, both M1 and M2 surrogates were

shown to contribute significantly to GS-SOMA in their own

unique ways.

C. Multiobjective Optimization

In this subsection, we present the empirical study of the GS-

MOMA on six moderate- to high-dimensional MO benchmark

problems, labeled here as MF1–MF6 [64]. The MO benchmark

problems used in the study are summarized in Table XVI.

Performance comparisons are then made between the stan-

dard nondominated sorting genetic algorithm-II (NSGA-II)

[65] and variants of MOMA. For fair comparison, we compare

GS-MOMA with several SS-MOMAs and the NSGA-II since

the formers are demonstrated with NSGA-II as the baseline by

building on top of it. Hence, all algorithms compared inherit

the same evolutionary operators as the NSGA-II used in our

experiment. In SS-MOMAs, an offspring will be replaced in

the spirit of Lamarckian learning during local search if its ag-

gregated fitness function is found to be better than the original

offspring. Similarly, SS-MOMA-Perfect is introduced here to

assess the effects of approximation error on surrogate-assisted

evolutionary search performance. For the sake of brevity, the

notations and definitions of the MO algorithms studied are

tabulated in Table XVII while the common parameter settings

of the MO algorithms used in the experimental study are

defined in Table XVIII.6

Many performance indicators exist for assessing the perfor-

mance of MOEAs, such as those summarized in [66], [67].

Here, the following three performance indicators are used.

1) Generational Distance (GD) [68], [69]: This measure-

ment indicates the gap between the true Pareto front

(PF ∗) and the evolved Pareto front (PF ). Mathemati-

6Since MF3 and MF4 have higher dimensionality, i.e., d = 50, greater initial
database size is required. For these cases, Gdb is set to 20.
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TABLE XVI

Multiobjective Benchmark Problems (MF1−MF6). Parametric Domain Used is [0, 1]d , Where d is the Problem Dimensionality

Considered in This Paper

Benchmark Formulation Characteristics
Function

MF1 (d = 30) f1(x) = x1 Convex, 2-objective Pareto front

f2(x) = g(x)[1 −
√

f1(x)/g(x)]

g(x) = 1 + 9(
∑d

i=2
xi)/(d − 1)

MF2 (d = 30) f1(x) = x1 Nonconvex, 2-objective Pareto front

f2(x) = g(x)[1 − f1(x)/g(x)2]

g(x) = 1 + 9(
∑d

i=2
xi)/(d − 1)

MF3 (d = 50) f1(x) = x1 Convex, disconnected, 2-objective Pareto front

f2(x) = g(x)[1 −
√

f1/g − (f1/g)sin(10πf1)]

g(x) = 1 + 9(
∑d

i=2
xi)/(d − 1)

MF4 (d = 50) f1(x) = 1 − exp(−4x1)sin6(6πx1) Nonconvex, 2-objective Pareto front

f2(x) = g(x)[1 − (f1(x)/g(x))2]

g(x) = 1 + 9[
∑d

i=2
xi/(d − 1)]0.25

MF5 (d = 20) f1(x) = cos( π
2
x1)cos( π

2
x2)(1 + g(x)) Nonconvex, 3-objective, Pareto front

f2(x) = cos( π
2
x1)sin( π

2
x2)(1 + g(x))

f3(x) = cos( π
2
x1)(1 + g(x))

g(x) =
∑d

i=3
(xi − x1)2

MF6 (d = 10) f1(x) = x1 Convex, 2-objective, multiple local Pareto front

f2(x) = g(x)[1 −
√

f1(x)/g(x)]

g(x) = 1 + 10(d − 1) +
∑d

i=2
(x2

i − 10 cos(4πxi))

cally, it can be formulated as

GD =
1

nPF

√

√

√

√

nPF
∑

i=1

di
2 (21)

where nPF is the number of members in PF , di is

the Euclidean distance (in objective space) between

member i of PF and its nearest member in PF ∗. A low

value of GD is more desirable since it reflects a good

convergence to the true Pareto fronts.

2) Maximum Spread (MS) [70]: It is used to measure

how well the true Pareto front (PF ∗) is covered by the

evolved Pareto front (PF ). The MS measurement used

in this paper is formulated as

MS =

√

√

√

√

1

r

r
∑

i=1

[

min(f max
i , Fmax

i ) − max(f min
i , Fmin

i )

Fmax
i − Fmin

i

]2

(22)

where f max
i and f min

i are the maximum and minimum

of the ith objective in the evolved PF , respectively.

Fmax
i and Fmin

i are the maximum and minimum of the

ith objective in PF ∗, respectively. Higher value of MS

reflects a larger area of PF ∗ covered by PF , which is

desirable.

3) Hypervolume Ratio (HR) [69]: This indicates the ratio

between the hyperarea or hypervolume (H) [71] domi-

nated by the evolved PF and PF ∗, where HR is defined

as

HR =
H(PF )

H(PF ∗)

H = volume
(
⋃nPF

i=1 vi

)

. (23)

Here, vi denotes the hypercube constructed from mem-

ber i of a particular Pareto front and the reference point.

A HR value close to 1 indicates that the evolved Pareto

front is quite close to the true Pareto front, in both

convergence and spread of solutions.

1) Experimental Results: The obtained Pareto fronts of the

benchmark problems for 20 independent runs are combined

and depicted in Figs. 9–14. The respective performance met-

rics are then summarized in Figs. 15–20. From these results, all

surrogate-assisted multiobjective EAs, i.e., SS-MOMAs and

GS-MOMA, are shown to outperform the standard NSGA-

II on MF1, MF2, MF5, and MF6. MF6 (ZDT4) is generally

regarded as a challenging problem and hence commonly used
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Fig. 9. Pareto front evolved for benchmark problem MF1 in (a) NSGA-II, (b) GS-MOMA, (c) SS-MOMA-I, (d) SS-MOMA-II, and (e) SS-MOMA-Perfect.

Fig. 10. Pareto front evolved for benchmark problem MF2 in (a) NSGA-II, (b) GS-MOMA, (c) SS-MOMA-I, (d) SS-MOMA-II, and (e) SS-MOMA-Perfect.
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TABLE XVII

Definition of the Multiobjective MAs (MOMAs) Compared

Algorithms Definition

NSGA-II No surrogate is used

GS-MOMA Generalized surrogate MOMA with
M1: Weighted-average ensemble of GP, PR, and
RBF
M2: PR

SS-MOMA-I Single surrogate MOMA with
M1: Ensemble of GP, PR, and RBF

SS-MOMA-II Single surrogate MOMA with
M1: PR

SS-MOMA-Perfect Single surrogate MOMA with
M1: Perfect model

TABLE XVIII

Setting of Experiments for NSGA-II, GS-MOMA, and SS-MOMA

Parameters Setting

Population size (Npop) 100

Crossover probability (Pcross) 0.9

Mutation probability (Pmut) 0.1

Maximum number of exact evaluations MF1–MF2: 8000
MF3–MF4: 16 000
MF5: 30 000
MF6: 20 000

Evolutionary operators Simulated binary crossover,
polynomial mutation,
binary tournament selection,
elitism, nondomination rank,
and crowded distance

Number of trust-region iteration (kterm) 2
for SS-MOMA and GS-MOMA

Database building phase (Gdb) MF1–MF2, MF5–MF6: 10
for SS-MOMA and GS-MOMA MF3–MF4: 20
(in number of generations)

Number of independent runs 20

TABLE XIX

Radial Basis Kernels

Linear splines ||x − ci||
Thin plate splines ||x − ci||k ln||x − ci||
Cubic splines ||x − ci||3

Gaussian exp− ||x−ci||2
βi

Multiquadrics

√

1 + ||x−ci||2
βi

Inverse multiquadrics (1 + ||x−ci||2
βi

)−
1
2

by many in the literature. Here, we validate our results on

ZDT4 against those obtained by Deb et al. [28]. While

[28] reported to solve ZDT4 with from 21 781 to 22 730

exact function evaluations with an achieved spread measure7

of 0.332 to 0.422, GS-MOMA requires only 20 000 exact

evaluations at a competitive spread measure of 0.410 ± 0.046.

On MF3 and MF4, some SS-MOMAs perform competitively

or slightly poorer than NSGA-II [see Figs. 11(d) and 12(d)].

On the other hand, GS-MOMA searches more efficiently than

all the SS-MOMA variants and NSGA-II on the six benchmark

7The spread metric [72] considers the distance between two extreme ends
of Pareto front as well as the uniformity of distribution for solutions between
the two extremes. This metric may be used for measuring the diversity of
converged Pareto fronts. Note that a lower spread metric is desirable.

problems considered. Note that GS-MOMA also outperforms

the SS-MOMA-Perfect on a majority of the MOO benchmarks

with respect to all three performance metrics, thus suggesting

the positive synergy of the ensemble and smoothing surrogate

models in the GSM framework.

2) Analyzing the Generalized Evolutionary Framework in

Multiobjective Optimization: To arrive at better understanding

of the generalized framework in the context of multiobjective

optimization, we analyze next the reliability and effectiveness

of the ensemble (M1) and smoothing (M2) surrogate models

in contributing to evolutionary search.

The N-RMSE, i.e., see (19), of fitness predictions based on

GP, PR, RBF, or ensemble in GS-MOMA is summarized in

Fig. 7. From the results, the ensemble model M1 is shown to

arrive at low N-RMSE on all the multiobjective test problems

considered, which is consistent with observations obtained

in the single-objective context. M1 generates high-reliability

predictions in comparison to the other single surrogate model

counterparts, i.e., GP, PR or RBF.

Besides N-RMSE, the solution archiving to replacement

ratio, labeled here as Ŵ, of the GS-MOMA search is also

reported in Fig. 8. Ŵ indicates the degree of solution diversity

(through archival of new nondominating solutions) against

search convergence (through the process of Lamarckian learn-

ing replacement) in the GS-MOMA search. While Lamarckian

learning helps to speedup convergence toward the desired

Pareto front, the large Ŵ ratio observed on all benchmark prob-

lems implies frequent discovery of potential nondominating

solutions when using both M1 and M2 with local refinements.

This suggests ‘bless of uncertainty’ may take the form of faster

search convergence and better solution diversity in the context

of multiobjective evolutionary search.

D. Computational Complexity of GSM Framework

In this subsection, we present an analytical study on the

computational complexity of the GSM framework. The com-

putational effort, referred here by Tcomp, of GS-SOMA or

GS-MOMA is formulated as follows:

Tcomp = GdbNpop

∑r
i=1 Fi + (Gmax − Gdb)

[Npop(Tens + TPR + 2kterm

∑r
i=1 Fi + Toverhead)] (24)

where

Gdb number of standard SO/MOEA search gen-

erations configured for building the database

of training data points at the initial search

phase of the GSM framework;

Gmax maximum number of search generations;

Npop population size;

r number of objectives to optimize;

kterm number of iterations made in the trust-

region-regulated local searches;

F original/exact function evaluation cost;

Tens time to build M1, i.e., the ensemble model;

TPR time to build M2, i.e., the polynomial regres-

sion model, which is not applicable if PR is

already built when constructing M1;
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Fig. 11. Pareto front evolved for benchmark problem MF3 in (a) NSGA-II, (b) GS-MOMA, (c) SS-MOMA-I, (d) SS-MOMA-II, and (e) SS-MOMA-Perfect.

Fig. 12. Pareto front evolved for benchmark problem MF4 in (a) NSGA-II, (b) GS-MOMA, (c) SS-MOMA-I, (d) SS-MOMA-II, and (e) SS-MOMA-Perfect.
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Fig. 13. Pareto front evolved for benchmark problem MF5 in (a) NSGA-II, (b) GS-MOMA, (c) SS-MOMA-I, (d) SS-MOMA-II, and (e) SS-MOMA-Perfect.

Fig. 14. Pareto front evolved for benchmark problem MF6 in (a) NSGA-II, (b) GS-MOMA, (c) SS-MOMA-I, (d) SS-MOMA-II, and (e) SS-MOMA-Perfect.
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Fig. 15. Performance metrics for benchmark problem MF1. (a) Generational distance (GD). (b) Maximum spread (MS). (c) Hypervolume ratio (HR).
(A:NSGA-II, B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect.)

Fig. 16. Performance metrics for benchmark problem MF2. (a) Generational distance (GD). (b) Maximum spread (MS). (c) Hypervolume ratio (HR).
(A:NSGA-II, B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect.)

Fig. 17. Performance metrics for benchmark problem MF3. (a) Generational distance (GD). (b) Maximum spread (MS). (c) Hypervolume ratio (HR).
(A:NSGA-II, B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect.)

Fig. 18. Performance metrics for benchmark problem MF4. (a) Generational distance (GD). (b) Maximum spread (MS). (c) Hypervolume ratio (HR).
(A:NSGA-II, B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect.)
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Fig. 19. Performance metrics for benchmark problem MF5. (a) Generational distance (GD). (b) Maximum spread (MS). (c) Hypervolume ratio (HR).
(A:NSGA-II, B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect.)

Fig. 20. Performance metrics for benchmark problem MF6. (a) Generational distance (GD). (b) Maximum spread (MS). (c) Hypervolume ratio (HR).
(A:NSGA-II, B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect.)

Toverhead other additional costs such as for fitness

predictions and finding nearest points, which

are often negligible.

On the other hand, the computational cost for SS-SOMA or

SS-MOMA variants is

Tcomp = GdbNpop

∑r
i=1 Fi + (Gmax − Gdb)

[Npop(Tm + kterm

∑r
i=1 Fi + Toverhead)] (25)

where Tm is the time taken to build the particular surrogate

model used.

Although there are several elements in (24) and (25), it

is worth noting that when working with computationally

expensive problems, the most significant part contributing to

the total computational effort incurred is F . Hence, when F

is significantly large, which is assumed to be fulfilled in any

surrogate-assisted optimization framework, Tens, TPR, Toverhead

and Tm are generally considered to be negligible, otherwise

such frameworks should never be used.

V. Conclusion

With a plethora of approximation/surrogate modeling ap-

proaches available in the literature, the choice of technique

to use greatly affects the performance of surrogate-assisted

evolutionary searches. It is argued that every approximation

technique introduces some unique characteristics suitable for

modeling some classes of problems accurately but not for

others. Given that a priori knowledge about the problem land-

scape is often scarce, the ability to tackle new problems in a

reliable way is of significant value. This paper has investigated

a generalized framework that unifies diverse surrogate models

synergistically in the memetic evolutionary search. In contrast

to existing studies, the studied memetic framework empha-

sizes not only on 1) mitigating the impact of ‘curse of un-

certainty’ robustly, but also 2) benefitting from the ‘bless

of uncertainty,’ through the use of ensemble and landscape

smoothing surrogate models, respectively.

The core purpose of proposing any new search strate-

gies, including the GSM framework, is to solve real-world

optimization problems more robustly, effectively and/or effi-

ciently. Hence, to facilitate possible systematic study and gain

deeper understanding of the proposed methods for solving

complex real-world problems plagued with computationally

expensive functions, benchmark problems of diverse known

properties have been employed. In this paper, we have pre-

sented extensive numerical studies on commonly used single/

multiobjective optimization benchmark problems which have

demonstrated the competitiveness of the generalized frame-

work. Overall, the ensemble model is shown to be capable of

attaining reliable, accurate surrogate models, while smoothing

model speeds up evolutionary search performance by travers-

ing through the multimodal landscape of complex problems.
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Statistically, the generalized framework achieved significantly

better performance on SOO/MOO when compared to SS-

SOMA/MOMA and their underlying SO/MOEA.

Presently, the GSM framework is used for solving real-

world problems plagued with computationally expensive func-

tions, particularly in the field of aerodynamic and molecular

structural designs. Based on our experiences with both bench-

mark and real-world problems that range from turbine blade

[7], [20] to airfoil designs [8], [11], [22], [32], the observations

obtained from the use of benchmark problems do not deviate

significantly from those in the real-world problems we have

experimented. Some of the observations and problems we have

noted when dealing with real-world problems are listed as

follows.

1) In contrast to benchmark problems, the time taken to

collect adequate amount of database points when dealing

with real-world problems can be relatively significant if

unsupported by sufficient machines capability. A possi-

ble solution is to directly utilize an external database of

previously evaluated design points, if available, instead

of building the database from scratch in the initial Gdb

generations of evolutionary optimization. When existing

database are unavailable, or the design points available

are insufficient for building reliable surrogates, a smaller

Gdb can be used to obtain the initial design points

necessary for the reliable surrogate building to facilitate

time saving.

2) When parallel machines capability is available, multi-

level parallelization can be leveraged through the GSM

framework, namely, 1) generation level, i.e., individuals

at the same generation are sent to multiple computing

nodes for evaluation; 2) individual level, independent

local searches utilizing M1 and M2 respectively, are

executed in parallel. Hence, further acceleration can be

expected.
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Appendix A

Approximation/Surrogate Modeling Techniques

Here, we provide a brief review on three different

surrogate modeling techniques used in this paper, namely:

Kriging/Gaussian process (GP), polynomial regression (PR),

and radial basis function (RBF). Throughout this section,

let D = {xi, ti}, i = 1, . . . , m denote the training dataset,

where xi ∈ Rd is an input design vector and ti ∈ R is the

corresponding target value.

A. Kriging/Gaussian Process (GP)

The GP surrogate model [55] assumes the presence of an

unknown true modeling function f (x) and an additive noise

term v to account for anomalies in the observed data. Thus

t = f (x) + v. (26)

The standard analysis requires the specification of prior

probabilities on the modeling function and the noise model.

From a stochastic process viewpoint, the collection t =

{t1, t2, . . . , tm} is called a Gaussian process if every subset

of t has a joint Gaussian distribution. More specifically

P(t|C, {xm}) =
1

Z
exp

(

−
1

2
(t − µ)T C−1(t − µ)

)

(27)

where C is a covariance matrix parameterized in terms of

hyperparameters θ, i.e., Cij = k(xi, xj; θ) and µ is the process

mean. The Gaussian process is characterized by this covari-

ance structure since it incorporates prior beliefs both about

the true underlying function as well as the noise model. In the

present study, we use the following exponential covariance

model:

k(xi, xj) = exp −(xi − xj)T �(xi − xj) + θd+1 (28)

where � = diag{θ1, θ2, . . . , θd} ∈ Rd×d is a diagonal matrix of

undetermined hyperparameters, and θd+1 ∈ R is an additional

hyperparameter arising from the assumption that noise in the

dataset is Gaussian (and output dependent). We shall hence-

forth use the symbol θ to denote the vector of undetermined

hyperparameters, i.e., θ = {θ1, θ2, . . . , θd+1}. In practice, the

undetermined hyperparameters are tuned to the data using the

evidence maximization framework. Once the hyperparameters

have been estimated from the data, predictions can be readily

made for a new testing point.

B. Polynomial Regression (PR)

In PR metamodeling technique [56], we define an exponent

vector ε containing positive integers (π1, π2, . . . , πd) and

define xε
i as an exponent input vector (xi1

π1 , xi2

π2 , . . . , xid
πd ).

Given a set of exponent vectors ε1, ε2, . . . , εo and the set

of data (xi, ti), where i = 1, 2, . . . , m, the polynomial model

of (o − 1)th order has the form

t̂i = C1x
ε1

i + C2x
ε2

i + · · · + Cmx
εo

i (29)

where C1, C2, . . . , Co are the coefficient vectors to be esti-

mated, and Cj = (cj1
, cj2

, . . . , cjd
), j = 1, 2, . . . , o.

The least square method is then used to estimate the

coefficients of the polynomial model. By definition, the least

square error E to be minimized is

E =

m
∑

i=1

[ti − t̂i]
2. (30)

It may be easily shown that ti = f (xi), and by multiplying

both sides of (29) with x
εj

i and taking the sum of m pairs of

input-output data, we arrive at

C1

∑

i

x
ε1+εj

i + · · · + Co

∑

i

x
εo+εj

i =
∑

i

tix
εj

i . (31)

For j = 1, 2, . . . , o, the polynomial model for the training

dataset can be represented in the matrix notation as follows:

AγT = bT (32)
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where

A =

⎡

⎢

⎣

∑

i x
ε1+ε1

i . . .
∑

i x
ε1+εo

i

...
...

∑

i x
εo+ε1

i . . .
∑

i x
εo+εo

i

⎤

⎥

⎦
(33)

b = (
∑

tix
ε1

i , . . . ,
∑

tix
εo

i ) (34)

γ = (C1, C2, . . . , Co). (35)

Then the coefficient matrix of the polynomial is

γ = (A−1bT )T . (36)

Let Bi = (x
ε1

i , . . . , x
εo

i ), the following equations may be

derived:

A =
∑

i

BT
i Bi

b =
∑

i

tiBi

t̂i = γ.BT
i .

The predicted output for a new input pattern is then given

by t̂i = γ.BT
i .

C. Radial Basis Function

The surrogate models of RBF used in this paper are inter-

polating radial basis function networks of the form

t̂ = f̂ (x) =

m
∑

i=1

αiK(||x − xi||) (37)

where K(||x − xi||) : Rd → R is a RBF and α =

{α1, α2, . . . , αm} ∈ Rm denotes the vector of weights. Hence,

the number of hidden nodes in the RBF here is as many as

the number of training points.

Typical choices for the kernel include linear splines, cubic

splines, multiquadrics, thin-plate splines, and Gaussian func-

tions [57]. Recent studies in [73], [74], indicate that the

linear, cubic, and thin plate spline RBFs have better theoretical

properties than the multiquadric and Gaussian RBFs. Hence,

in this paper, we opt to use linear spline kernel function.

The structure of some commonly used radial basis kernels

and their parameterization are shown in Table XIX Given

a suitable kernel, the weight vector can be computed by

solving the linear algebraic system of equations Kα = t, where

t = {t1, t2, . . . , tm} ∈ Rm denotes the vector of outputs and

K ∈ Rm×m denotes the Gram matrix formed using the training

inputs (i.e., the ijth element of K is computed as K(||xi−xj||)).

Appendix B

Single-Objective Benchmark Functions

Single-objective benchmark functions used in this paper are

presented in this section. The shifted and/or rotated functions

are taken from [62] and [63]. Note that due to the long

description for F7–F10, reader is referred directly to [63]

for those functions. From F4–F6, the following nomenclature

applies:

o = [o1, o2, . . . , od]: the shifted global optimum

M: linear transformation matrix, obtained from [63].

F1: Ackley

F (x) = 20 + e − 20 exp

(

−0.2

√

1
d

d
∑

i=1

x2
i

)

− exp

(

1
d

d
∑

i=1

cos(2πxi)

)

(38)

−32.768 ≤ xi ≤ 32.768, i = 1, 2, . . . , d.

Global optimum x∗
i = 0.0 for i = 1, . . . , d, F (x∗) = 0.0.

F2: Griewank

F (x) = 1 +
∑d

i=1 x2
i /4000 −

∏d
i=1 cos(xi/

√
i) (39)

−600 ≤ xi ≤ 600, i = 1, 2, . . . , d.

Global optimum x∗
i = 0.0 for i = 1, . . . , d, F (x∗) = 0.0.

F3: Rosenbrock

F (x) =
∑d−1

i=1 (100 × (xi+1 − x2
i )2 + (1 − xi)

2) (40)

−2.048 ≤ xi ≤ 2.048, i = 1, 2, . . . , d.

Global optimum x∗
i = 1.0 for i = 1, . . . , d, F (x∗) = 0.0.

F4: Shifted Rotated Rastrigin

F (x) =
∑d

i=1(z2
i − 10cos(2πzi) + 10) − 330 (41)

z = (x − o) ∗ M,

−5 ≤ xi ≤ 5, i = 1, 2, . . . , d.

Global optimum x∗ = o, F (x∗) = fbias = −330.

F5: Shifted Rotated Weierstrass

F (x) =
∑d

i=1(
∑kmax

k=0 [akcos(2πbk(zi + 0.5))]) (42)

−d
∑kmax

k=0 [akcos(2πbk.0.5)] + 90

z = (x − o) ∗ M,

−0.5 ≤ xi ≤ 0.5, i = 1, 2, . . . , d.

Global optimum x∗ = o, F (x∗) = fbias = 90. a = 0.5, b = 3,

kmax=20.

F6: Shifted Expanded Griewank Plus Rosenbrock

F (x) = F2(F3(z1, z2)) + F2(F3(z2, z3)) + . . . (43)

+F2(F3(zd−1, zd)) + F2(F3(zd, z1)) − 130

z = x − o + 1,

−3 ≤ xi ≤ 1, i = 1, 2, . . . , d.

Global optimum x∗ = o, F (x∗) = fbias = −130.

F7: Hybrid Composition Function [63, F15].

F8: Rotated Hybrid Composition Function of F7 [63, F16].

F9: Rotated Hybrid Composition Function with Narrow Basin

Global Optimum [63, F19].

F10: Noncontinuous Rotated Hybrid Composition Function

[63, F23].
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