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Generalizing the majority voting scheme to
spatially constrained voting

Andras Hajdu, Member, IEEE, Lajos Hajdu, Agnes Jonas, Laszlo Kovacs, and Henrietta Toman

Abstract—Generating ensembles from multiple individual classifiers is a usual appraoch to raise the accuracy of the decision.

For decision majority voting is a popular rule. In this paper, we generalize classic majority voting by letting a further constraint

to decide whether a correct or false decision is made if k correct votes is present among the total n ones. This generalization is

motivated by object detection problems, where the members of the ensemble are image processing algorithms giving their votes

as pixels in the image domain. The shape of the desired object define a geometric constraint the votes should obey to be able to

decide together. Namely, the votes in this scenarion should fall inside a region matching the shape of the object. We give several

theoretical result in this new model for both dependent/indipendent classifiers, whose individual accuracies may also differ. As a

real world example we present our ensemble-based system developed for the detection of the optic disc in retinal images. For

this problem experimental results are shown on how our model is capable to characterize such a system and how the model can

give a helping hand on the further improvability of the system, as well.

Index Terms—Computer Society, IEEEtran, journal, LATEX, paper, template.

✦

1 INTRODUCTION

ENSEMBLE-BASED systems are rather popular to
raise the classification accuracy by combining dif-

ferent sources (classifiers). Regarding pattern recogni-
tion, the idea of combining the decisions of multiple
classifiers has also been studied [1]. As corresponding
examples, we can mention neural networks [2], [3],
decision trees [4], sets of rules [5] and other models
[6], [7], [8]. As a specific application field, now we will
focus on object detection in digital images which is a
vivid field [9], [10], [11], as well.

A usual way for information fusion is to consider
the majority of the votes of the classifiers as the basis
of the decision. The current literature is quite rich
regarding both theoretical results and applications of
such systems. Strong focus is set to the combination
of the labels of two (binary decision) or more classes.
The combination of the votes may take place based
on simple majority [2], [12], [13], weighted majority
[12], or using some other variants [14], [15].

In the research of majority voting systems a cardinal
issue is the assumptions on the dependency of the
voters. Several results are gained for independent
voters, but the minimum and maximum accuracy
of such majority voting systems is also studied. In
this paper, we investigate how such voting systems
behave if we apply some further constraint on the
votes. Namely, we generalize simple majority voting
by introducing values pn,k for the probability that a
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good decision is made if k of n voters are correct.
In other words, in our case it will be possible that a
good decision is made even if the good votes are in
minority.

The introduction of this new model is motivated by
a medical image processing problem – the detection of
the optic disc (OD) in retinal images. For an impres-
sion of the problem, see Figure 1 showing the optic
disc, and the region of interest (ROI) of the retinal
image.

ROI

OD

True OD Cand.

False OD

Fig. 1. The optic disc (OD) in a retinal image and some

possible outputs of different OD detectors.

Organizing more individual OD detector algo-
rithms into a voting system may raise detection accu-
racy [16]. In our approach, all of the OD algorithms
return with the OD center as a single pixel. In this
scenario, majority voting cannot be applied directly
since besides the logical value of the votes their spatial
placement are also important. Namely, we have con-
sidered discs of diameter of the OD (dOD) covering the
ouput of the detector algorithms. With this constraint,
the circle having diameter dOD with maximal number
of candidates has been chosen for the optic disc. Note
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that, the diameter dOD is a clinically predetermined
constant.

The superiority of an ensemble over the individual
algorithms motivated us to work out a corresponding
theoretical model for the above constrained voting.
Namely, the general pn,k term will be adjusted in this
specific OD detection task by geometric constraints
with requiring that the votes should fall inside a disc
of a fixed diameter dOD. In this combined system we
can make a good decision even if the bad candidates
have majority such as in the case illustrated in Figure
1. Bad decision can be made only when a subset
of bad candidates with larger cardinality than the
number of good ones can be bounded by a circle
having diameter dOD.

The rest of the paper is organized as follows. Section
2 recalls the basic concepts of the classical major-
ity voting system as the basis for generalization. In
section 3, we show how to incorporate constraints
into this basic formulation. We present theoretical
results and a demonstrative example for the case of
indipendent voters. Since in applications independent
detection algorithms are hardly expected, we also
generalize to the dependent case in section 4 with
including a corresponding demo example again. Espe-
cially, we investigate the possible lowest and highest
accuracy of ensembles. Section 5 contains our empir-
ical results regarding a true application (optic disc
detection), where we apply our model to characterize
of our current detector system and to analyze its
further improvability. Finally, in section 6, we draw
some conclusions.

2 MAJORITY VOTING

Let D = (D1, D2, . . . , Dn) be a set of classifiers,
Di : R

k → Ω (i = 1, . . . , n), where Ω is a set of finite
class labels. The majority voting rule assigns the class
label supported by the majority of the classifiers Di to
x. Usually, ties (same number of different votes) are
broken randomly.

In [13] Kuncheva et al. discuss exhaustively the
following special case. Let n be odd, |Ω| = 2 (each
classifier output is a binary vector) and all classifiers
are independent and have the same classification ac-
curacy p. An accurate class label is given by majority
voting if at least ⌈n/2⌉ classifiers give correct answers.
The majority vote method with independent classifier
decisions gives an overall correct classification accu-
racy calculated by the following formula:

P =

⌊n/2⌋
∑

k=0

(

n

k

)

pn−k(1− p)k. (1)

Several interesting results can be found in [1] ap-
plying the majority voting in pattern recognition. This
method is guaranteed to give a higher accuracy than
the individual classifiers if the classifiers are indepen-
dent and p > 0.5.

3 GENERALIZATION TO CONSTRAINED VOT-
ING

As we have already discussed in the introduction,
we generalize the classic majority voting approach
by considering some constraints that must be also
fulfilled by the votes. To give a more general method-
ology beyond geometric considerations, we model
this type of constrained voting by introducing values
0 ≤ pn,k ≤ 1 describing the probability of making
a good decision, when we have exactly k good votes
from the n voters. Then, in section 5 we will adopt this
general model to our practical problem with spatial
constraints.

As we summarized in the introduction, several the-
oretical results are reached for indipendent voters, so
we start with generalizing to this case first. However,
in the vast majority of applications, we cannot expect
indipendency among algorithms trying to detect the
same object. Thus, we also generalize to the case
of dependent voters with generalizing such formerly
investigated concepts that have high practical impact,
as well.

3.1 The independent case

In our model we consider a classifier Di with accuracy
pi as a random variable ηi of Bernoulli distribution,
i.e.

P (ηi = 1) = pi, P (ηi = 0) = 1− pi (i = 1, . . . , n).

Here ηi = 1 means correct classification by Di. In
particular, the accuracy of Di is just the expected value
of ηi, that is, Eηi = pi (i = 1, . . . , n).

Let pn,k (k = 0, 1, . . . , n) be given real numbers with
0 ≤ pn,0 ≤ pn,1 ≤ · · · ≤ pn,n ≤ 1, and define the
random variable ξ such that

P (ξ = 1) = pn,k and P (ξ = 0) = 1− pn,k

where k = |{i : ηi = 1}|. That is, ξ represents the
modified ”majority voting” of the classifiers Di: if k
out of the n classifiers make a good decision, then
we make a good decision (i.e. we have ξ = 1) with
probability pn,k.

Note that in the special case where

pn,k =















1, if k > n/2,

1/2, if k = n/2,

0, otherwise,

(2)

we get the classical majority voting scheme.
The values pn,k for a fixed n as a function of k

corresponding to the classic majority voting can be
observed in Figure 2.

The ensemble accuracy of the classic majority vot-
ing system is enclosed in Table 3.1 for different
number of classifiers (n) for some equal individual
accuracies (p).
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1

pn,k

0

0 k n

Fig. 2. The graph of pn,k for a fixed n for classic

majority voting.

n=3 n=5 n=7 n=9

p = 0.6 0.6480 0.6826 0.7102 0.7334
p = 0.7 0.7840 0.8369 0.8740 0.9012
p = 0.8 0.8960 0.9421 0.9667 0.9804
p = 0.9 0.9720 0.9914 0.9973 0.9991

TABLE 1

Ensemble accuracy for classic majority voting.

First we show that ξ is of Bernoulli distribution, as
well. We also provide the corresponding parameter q.
In other words, in our model q represents the accuracy
of the ensemble.

Lemma 3.1: The random variable ξ is of Bernoulli
distribution with parameter q, where

q =

n
∑

k=0

pn,k
∑

I⊆{1,...,n}

|I|=k

∏

i∈I

pi
∏

j∈{1,...,n}\I

(1− pj). (3)

Proof: Since for any k ∈ {0, 1, . . . , n} we obviously
have

P (|{i : ηi = 1}| = k) =
∑

I⊆{1,...,n}

|I|=k

∏

i∈I

pi
∏

j∈{1,...,n}\I

(1−pj),

the statement immediately follows from the definition
of ξ.

The special case, when we assume equal accuracy
for the classifiers (i.e. p = p1 = · · · = pn) received
strong attention in the literature, so we generalize to
this case first. In the rest of this subsection we assume
p = p1 = · · · = pn. Then,

q =

n
∑

k=0

pn,k

(

n

k

)

pk(1− p)n−k. (4)

Thus, by the particular choice (2) for the values of pn,k,
we get q = P where P is given by (1). In order to have
the majority voting be ”better” than the individual
decisions, we need only to guarantee that q ≥ p. The
next statement yields a guideline along this way.

Proposition 3.1: Let pn,k = k/n (k = 0, 1, . . . , n).
Then we have q = p, and consequently Eξ = p.

Proof: Since by Lemma 3.1 ξ is of Bernoulli distri-
bution with parameter q, we automatically have

Eξ = q.

Thus we need only to show that q = p whenever
pn,k = k/n (k = 0, 1, . . . , n). By our settings, from (4)
we have

q =
n
∑

k=0

k

n

(

n

k

)

pk(1−p)n−k =
1

n

n
∑

k=0

k

(

n

k

)

pk(1−p)n−k.

Observe that the last sum just expresses the expected
value of a random variable of binomial distribution
with parameters (n, p). Thus we have

q =
1

n
np = p,

and the statement follows.
Figure 3 also illustrates the special linear case for

pn,k which assures equal ensemble q and individual
accuracies p.

1

pn,k

0

0 k n

Fig. 3. The graph of pn,k for the linear case providing

p = q.

As we mentioned already, Eξ = q expresses that the
”composite system” has accuracy q. Further, the above
statement shows that if the probabilities pn,k increase
uniformly (linearly), then the ”composite system” has
the same accuracy as the individual classifiers. As a
trivial consequence we obtain the following corollary.

Corollary 3.1: Suppose that for all k = 0, 1, . . . , n we
have pn,k ≥ k/n. Then q ≥ p, and consequently Eξ ≥
p.

The next result helps us to compare the new frame
with the classical majority voting scheme.

Theorem 3.1: Suppose that p ≥ 1/2 and for any k
with 0 ≤ k ≤ n/2 we have

(i) pn,k + pn,n−k ≥ 1,
(ii) pn,n−k ≥ (n− k)/n.

Let q be given by (4). Then q ≥ p, and consequently
Eξ ≥ p.

Proof: We can write

q =

n
∑

k=0

pn,k

(

n

k

)

pk(1−p)n−k =

⌊n/2⌋
∑

k=0

(pn,k

(

n

k

)

pk(1−p)n−k+

+pn,n−k

(

n

n− k

)

pn−k(1−p)k)+pn,n/2

(

n

n/2

)

pn/2(1−p)n/2.
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Here if n is odd, the last term should be considered
to be zero.

Now by our assumptions p ≥ 1/2, (i) and (ii), using
also the identities

(

n
k

)

=
(

n
n−k

)

and k/n+(n−k)/n = 1,
for any k with 0 ≤ k < n/2 we have

pn,k

(

n

k

)

pk(1− p)n−k + pn,n−k

(

n

n− k

)

pn−k(1− p)k ≥

(1−pn,n−k)

(

n

k

)

pk(1−p)n−k+pn,n−k

(

n

n− k

)

pn−k(1−p)k =

=
k

n

(

n

k

)

pk(1− p)n−k +
n− k

n

(

n

n− k

)

pk(1− p)n−k+

+pn,n−k

(

n

n− k

)

(pn−k(1− p)k − pk(1− p)n−k) ≥

≥
k

n

(

n

k

)

pk(1− p)n−k +
n− k

n

(

n

n− k

)

pk(1− p)n−k+

+
n− k

n

(

n

n− k

)

(pn−k(1− p)k − pk(1− p)n−k) =

=
k

n

(

n

k

)

pk(1− p)n−k +
n− k

n

(

n

n− k

)

pn−k(1− p)k.

In the last inequality, we use (ii) and the fact that
pn−k(1− p)k − pk(1− p)n−k is non-negative. Further-
more, in case of n is even by (ii) we also have

pn,n/2

(

n

n/2

)

pn/2(1−p)n/2 ≥
n/2

n

(

n

n/2

)

pn/2(1−p)n/2.

Thus we obtain

q ≥
n
∑

k=0

k

n

(

n

k

)

pk(1− p)n−k = p.

Here the last equality follows from the proof of
Proposition 3.1. Since Eξ = q, the inequality Eξ ≥ p
immediately follows.

As a simple consequence we obtain the follow-
ing corollary concerning the classical majority voting
scheme. Note that the next result is a theorem of
Kuncheva et al. [13].

Corollary 3.2: Suppose that n is odd, p ≥ 1/2 and
for all k = 0, 1, . . . , n we have

pn,k =

{

1, if k > n/2,

0, otherwise.

Then q ≥ p, and consequently Eξ ≥ p.
Proof: Observing that by the above choice for the

values of pn,k, both properties (i) and (ii) of Theorem
3.1 are satisfied, the statement immediately follows
from Theorem 3.1.

Of particular interest is the case where the com-
posite system makes exclusively good decisions after
t executions. So write ξ⊗t for the random variable
obtained by repeating ξ independently t times, and

counting the number of 1 values (correct votes) ob-
tained, where t is a positive integer. Then as it is well-
known, ξ⊗t is a random variable of binomial distri-
bution, with parameters (t, q) (with q given by (4)).
Now we are interested in the probability P (ξ⊗t = t).
In case of using an individual classifier Di (that is, a
random variable ηi) with any i = 1, . . . , n, we certainly
have P (η⊗t

i ) = pt. Here η⊗t
i denotes the random

variable obtained by repeating ηi independently t
times, and counting the number of 1 values (correct
votes) occured. To make the ”combined system” better
than the individual classifiers we need to choose the
probabilities pn,k so that P (ξ⊗t = t) ≥ pt. In fact we
can characterize a much more general case. For this
purpose we need the following lemma, due to Gilat
[17].

Lemma 3.2: For any integers t and l with 1 ≤ l ≤ t
the function

f(x) =

t
∑

k=l

(

t

k

)

xk(1− x)t−k

is strictly monotone increasing on [0, 1].
Note that obviously, for any x ∈ [0, 1] we have

t
∑

k=0

(

t

k

)

xk(1− x)t−k = 1.

As a simple consequence of Lemma 3.2 we obtain
the following result.

Theorem 3.2: Let t and l be integers with 1 ≤ l ≤ t.
Then P (ξ⊗t ≥ l) ≥ P (η⊗t

1 ≥ l) if and only if q ≥ p, i.e.
Eξ⊗t ≥ tp.

Proof: Let t and l be as given in the statement.
Then we have

P (ξ⊗t ≥ l) =
t
∑

k=l

(

t

k

)

qk(1− q)t−k

and

P (η⊗t
1 ≥ l) =

t
∑

k=l

(

t

k

)

pk(1− p)t−k.

Thus by Lemma 3.2 we obtain that

P (ξ⊗t ≥ l) ≥ P (η⊗t
1 ≥ l)

if and only if q ≥ p, and the theorem follows.

3.2 Example 1 – demonstrating the independent
case

We illustrate the results achieved for the independent
case by a simple example for better understanding.

Suppose that n players play a game. Players can
tell the truth with probability p or lie. Each player
says a number. If one says 1/n that means telling the
truth, if one says a number xi independently from
the interval [−1/n, 0] that means telling a lie. Let k
mean the number of true answers, in this way n − k
people tell lie. We get the final decision by adding
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the numbers told by players. So we obtain the final
decision by evaluating the expression below:

n−k
∑

i=1

xi +
k

n
. (5)

If (5) is positive, then we make a correct decision,
otherwise we make a false one.

To characterize this simple game in our model note
that the probability that a good decision is made in
the case of k true answers can be calculated as:

pn,k = P

(

n−k
∑

i=1

xi +
k

n
> 0

)

.

To have a closed formula for the above values
pn,k, we adopt some results regarding the distribution
function of the sum of unifrom random variables from
[18]. That is, we have

pn,k = P

(

n−k
∑

i=1

xi > −
k

n

)

= 1− P

(

n−k
∑

i=1

xi < −
k

n

)

=

P

(

n−k
∑

i=1

xi <
k

n

)

=

n−k
∑

j=0

(−1)j
(

n−k
j

)

max
(

k−j
n , 0

)n−k

(n− k)!
(

1
n

)n−k
.

The values pn,k for a fixed n as a function of k
corresponding to Example 1 can be observed in Figure
4.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9

pn,k

k

Fig. 4. The graph of pn,k for a fixed n for Example 1.

Now, the total accuracy q for this decision system
can be calculated by the formula (4) we have already
derived for independent classifiers. The ensemble ac-
curacy q of Example 1 is enclosed in Table 3.2 for
different number of classifiers (n) and for different
probabilities for telling the truth by the players (p).

n=3 n=5 n=7 n=9

p = 0.6 0.7914 0.8766 0.9134 0.9367
p = 0.7 0.8781 0.9476 0.9729 0.9846
p = 0.8 0.9438 0.9847 0.9951 0.9981
p = 0.9 0.9854 0.9982 0.9998 0.9999

TABLE 2

Ensemble accuracy for Example 1.

If we compare Table 3.1 with Table 3.2, we can see
that for Example 1 the accuracy values of the decision
system are greater than the corresponding ones for
classic majority voting.

4 THE DEPENDENT CASE

In this section we investigate how dependencies
among the voters influence the accuracy of the ensem-
ble (see e.g. [12], [19]). For this purpose we general-
ize some concepts that were introduced for classical
majority voting to measure the extremal behavior
(minimal/maximal accuracy) of an ensemble. First
we consider ”pattern of success” and ”pattern of
failure” which are such realizations of the votes in a
serie of experiments that lead to the possible highest
and lowest accuracy of the ensemble, respectively.
It is worth noting that to define these measures, a
rather serious discretization restriction of the model
is needed to be made. Namely, not only the pi accu-
racies of the individual classifiers are given, but also
the precise numbers of successful decisions during
the experiment are fixed. E.g. for a classifier having
accuracy p = 0.6 we consider 6 correct votes in 10
experimental runs.

Though there are some results in the literature for
the case of different accuracies pi of the classifiers
Di (or, in other words, for the case Eηi = pi (i =
1, . . . , n)), see e.g. [2], [20] and the references there,
the vast majority of the results (such as e.g. in [13])
concern the case p = p1 = · · · = pn. So in the next
subsection we shall make the latter assumption, too.
However, afterwards, in section 4.2, we give a much
more general framework which handles both depen-
dencies without the discretization restriction and also
different accuracies of classifiers that makes the model
realistic for applications. Finally, in section 4.3, we
give an example similarly to Example 1, to illustrate
the dependent behavior of the classifiers in our model.

4.1 Pattern of success and pattern of failure

Repeat the experiments η1, . . . , ηn t times, with some

positive integer t, and write η
(j)
i for the j-th realiza-

tion of ηi. Suppose (as a rather strong, but standard
assumption) that we have

|{j : η
(j)
i = 1}| = r for all i = 1, . . . , n.

Here r is a positive integer; to fit the previous more
general model one can consider r = np. We are
interested in the behavior (accuracy) of ξ repeated t
times, or in other words in the value Eξ⊗t, under the
above assumption. Write ξ(j) for the j-th realization
of ξ (j = 1, . . . , t). Then we clearly have Eξ⊗t =
Eξ(1) + · · ·+ Eξ(t).

The number of 1 values are fixed for ηi, however,
their positions are still free. For simplicity, we shall
describe the situation by a table T of size n× t: in the
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(i, j)-th entry T (i, j) of T we write 0 or 1, according

to the actual value of η
(j)
i (1 ≤ i ≤ n, 1 ≤ j ≤ t).

Our first result in this situation concerns the case of
linear pn,k.

Proposition 4.1: If pn,k = k/n for all k = 0, 1, . . . , n
then Eξ⊗t = r.

Proof: Denote by uj the number of ones in the j-th
column of the table T for j = 1, . . . , t. Then we have
Eξ(j) = uj/n. Thus

Eξ⊗t = Eξ(1) + · · ·+ Eξ(t) = u1/n+ · · ·+ ut/n.

Since u1 + · · ·+ ut is just the total number of ones in
T , we have

u1 + · · ·+ ut = nr.

Combining the above equalities we obtain

Eξ⊗t = r

and the statement follows.
In view of the proof of Proposition 4.1, we see that

in case of a general system pn,k we have

Eξ⊗t =

t
∑

j=1

pn,uj

where uj is the number of ones in the j-th column
of T . So to describe the pattern of success and the
pattern of failure, we need to maximize and minimize
the above quantity, respectively.

Our next result concerns the pattern of success.
Here we consider the problem only under some fur-
ther assumptions, which in fact are not necessary to
study and describe the situation. However, on the
one hand the statement already in its form shows
the essential method to be applied, and on the other
hand, without these assumptions the statement would
become rather technical. Further, as we have men-
tioned already, in the next subsection we describe a
general method, which works without any technical
restrictions.

Theorem 4.1: Let the probabilities pn,k be arbitrary,
up to pn,0 = 0. Let k1 6= 0 be an index such that
pn,k1

/k1 ≥ pn,k/k for all k = 1, . . . , n. Then Eξ⊗t ≤
nrpn,k1

/k1. Further, if tk1 = nr then the maximum
can be attained.

Proof: As we noted already, we have

Eξ⊗t =

t
∑

j=1

pn,uj
.

On the other hand, by our assumption pn,k1
/k1 ≥

pn,k/k for all k = 1, . . . , n,

t
∑

j=1

pn,uj
=

t
∑

j=1

uj 6=0

ujpn,uj
/uj ≤

≤

t
∑

j=1

ujpn,k1
/k1 = (pn,k1

/k1)

t
∑

j=1

uj = nrpn,k1
/k1

holds, which implies the first part of the statement.
Assume now that we also have tk1 = nr. Fill in

the n× t table T with zeros and ones arbitrarily, such
that we have r ones in each row. If there is a column
containing less than k1 ones, then by tk1 = nr there is
another column with more than k1 ones. Write j1 and
j2 for the indices of these columns, respectively. Then
there exists a row say with index i, such that T (i, j1) =
0 and T (i, j2) = 1. Change these zero and one values,
and continue this process as long as possible. Since
tk1 = nr, finally we end up with a table T containing
r ones in each row and k1 ones in each column. Then
we clearly have that

Eξ⊗t =

t
∑

j=1

pn,k1
= tpn,k1

= tk1pn,k1
/k1 = nrpn,k1

/k1

and the theorem follows.
Our next theorem describes the pattern of failure,

in a similar fashion as the previous statement.
Theorem 4.2: Let the probabilities pn,k be arbitrary,

up to pn,0 = 0. Let k2 6= 0 be an index such that
pn,k2

/k2 ≤ pn,k/k for all k = 1, . . . , n. Then Eξ⊗t ≥
nrpn,k2

/k2. Further, if tk2 = nr then the minimum
can be attained.

Proof: Since the proof of the statement follows the
same lines as that of the previous theorem, we omit
the details.

We also consider the so-called multiplicative case
for the pattern of success, which means to make only
good decisions. In other words, we would like to
describe the situation where

P (ξ⊗t = t) =
t
∏

j=1

pn,uj

is maximal. Note that in this case one can typically
easily obtain a table T with P (ξ⊗t = t) = 0. So now
finding the minimum (i.e. investigating the pattern of
failure) does not make sense.

For the special case pn,k = k/n we have the follow-
ing result.

Theorem 4.3: Let pn,k = k/n for all k = 0, 1, . . . , n,
and assume that nr ≥ t. Then P (ξ = t) is maximal for
the tables T in which

⌊nr/t⌋ ≤ uj ≤ ⌈nr/t⌉ (1 ≤ j ≤ t),

where uj denotes the number of ones in the j-th col-
umn of T . Further, all these tables T can be explicitly
constructed.

Proof: Let T be an arbitrary table having r ones in
each row such that T has no column consisting only of
zeros. Since nr ≥ t, such a T exists (and can be easily
constructed). In view of the proof of Proposition 4.1,
for the corresponding ξ⊗t we have

P (ξ⊗t = t) = (1/nt)

t
∏

j=1

uj .
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If for some indices 1 ≤ j1, j2 ≤ t we have uj1−uj2 ≥ 2,
then clearly (uj1 −1)(uj2 +1) > uj1uj2 . Hence ”transit-
ing” a one from the j1-th column to the j2-th column
(keeping its row; just as at the end of the proof of
Theorem 4.1), the new value for P (ξ⊗t = t) will be
larger than the previous one. Continuing this process
as long as possible, finally we obtain a table T where
for any indices 1 ≤ j1, j2 ≤ t we have |uj1 − uj2 | ≤ 1.
Obviously, this is equivalent to

⌊nr/t⌋ ≤ uj ≤ ⌈nr/t⌉ (1 ≤ j ≤ t).

Noting that for all such tables T the values of P (ξ⊗t =
t) coincide, and that in fact these tables differ from
each other only by a permutation of their columns,
the theorem follows.

Note that if t > nr then T necessarily has a column
with all zero entries, whence P (ξ⊗t = t) = 0 in this
case.

In case of a general system pn,k we have the fol-
lowing result.

Theorem 4.4: Let the probabilities pn,k be arbitrary,
up to pn,0 = 0 and pn,k > 0 for 0 < k ≤ n. Let k0 6= 0
be an index such that (ln pn,k0

)/k0 ≥ (ln pn,k)/k for all

k = 1, . . . , n. Then P (ξ⊗t = t) ≤ (1/nt)p
(nr/k0)
n,k0

. Fur-
ther, if tk0 = nr then the maximum can be attained.

Proof: We have

P (ξ⊗t = t) = (1/nt)

t
∏

j=1

pn,uj
= (1/nt) exp(

t
∑

j=1

ln pn,uj
).

On the other hand, by our assumption (ln pn,k1
)/k1 ≥

(ln pn,k)/k for all k = 1, . . . , n,

t
∑

j=1

ln pn,uj
=

t
∑

j=1

uj 6=0

uj(ln pn,uj
)/uj ≤

t
∑

j=1

uj(ln pn,k0
)/k0 =

= ((ln pn,k0
)/k0)

t
∑

j=1

uj = nr(ln pn,k0
)/k0

holds. Thus

P (ξ⊗t = t) ≤ (1/nt)p
(nr/k0)
n,k0

,

which implies the first part of the statement. The
second part can be proved following the argument
at the end of the proof of Theorem 4.1.

4.2 Extremal accuracies by linear programming

We assumed earlier that the ηi (i = 1, . . . , n) random
variables (classifiers) are independent. In our appli-
cation we consider different algorithms detecting the
optic disc as classifiers. These algorithms can not be
considered independent in all cases because it can
happen that the performance of the algorithms is
based on very similar conditions. In case of dependent
algorithms we have to decide how to measure the
dependencies of the algorithms. For this aim, we can

consider the joint distribution of the outputs of the
algorithms. So let

pa1,...,an
= P (η1 = a1, . . . , ηn = an),

where ai = {0, 1, ∗}. The star denotes any of the
outputs: ∗ = 0 or 1. The probabilities pa1,...,an

can
be considered as the entries of the contingency table
of η1, . . . , ηn. The problem to determine the com-
bination of classifiers achieving the best/the worst
performance in classification is equivalent to solve
the following linear optimization problem. Maxi-
mize/Minimize

q(pa1,...,an
) =

n
∑

k=0

(pn,k
∑

a1+...+an=k

pa1,...,an
) (6)

under the following conditions:

∑

ai=1

p∗,...,∗,ai,∗,...,∗ = pi, (i = 1, . . . , n) (7)

∑

ai=0

p∗,...,∗,ai,∗,...,∗ = 1− pi, (i = 1, . . . , n)

∑

a1,...,an

pa1,...,an
= 1

pa1,...,an
≥ 0, ai ∈ {0, 1} (i = 1, . . . , n).

Here we assume that Eηi = pi (i = 1, . . . , n) so the
accuracy of the i-th detecting algorithm is pi.

In the special case, when (η1, . . . , ηn) are totally
independent, we have

pa1,...,an
= P (η1 = a1, . . . , ηn = an) =

= P (η1 = a1) . . . P (ηn = an).

That is, the entries of the contingency table can be
determined by the probabilities p1, . . . , pn. In this case,
the objective function q(pa1,...,an

) in (6) can be written
in the same form as in (3) for q.

We demonstrate our method by the following ex-
ample. Take n = 3, and suppose that the accuracies of
the algorithms (i.e. the expected values of η1, η2, η3)
are p1 = 1/2, p2 = 2/3, p3 = 3/4, respectively. Further,
let the pn,k values be given by

p3,0 = 0, p3,1 = 2/3, p3,2 = 1, p3,0 = 1.

These values correspond to the following situation: if
the “good” votes are in majority then we surely make
a good decision, and already in case one “good vote”
we can make a good decision with high probability.

Set, as before,

ca1,a2,a3
= P (η1 = a1, η2 = a2, η3 = a3) (a1, a2, a3 ∈ {0, 1}).

Then to maximize the accuracy q (the expected value
of the composite system), we need to maximize the
function

q := (2/3)(c1,0,0+c0,1,0+c0,0,1)+c1,1,0+c1,0,1+c0,1,1+c1,1,1
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under the constraints

c1,0,0 + c1,0,1 + c1,1,0 + c1,1,1 = 1/2,

c0,1,0 + c1,1,0 + c0,1,1 + c1,1,1 = 2/3,

c0,0,1 + c1,0,1 + c0,1,1 + c1,1,1 = 3/4,

c0,0,0+c1,0,0+c0,1,0+c0,0,1+c1,1,0+c1,0,1+c0,1,1+c1,1,1 = 1,

ca1,a2,a3
≥ 0 (a1, a2, a3 ∈ {0, 1}).

Solving this standard linear programming problem
(e.g. by Maple), we obtain that the maximum is given
by q = 35/36, taken at the values

c0,0,0 = c0,1,0 = c0,0,1 = c1,1,1 = 0,

c1,0,0 = 1/12, c1,1,0 = 1/6, c1,0,1 = 1/4, c0,1,1 = 1/2.

So the “best choice” for the dependencies among
η1, η2, η3 correspond to the contingency table com-
posed from the above values of ca1,a2,a3

.
Finally we note that in a similar way one can easily

compute the “worst choice” for the dependencies, too.
For this purpose we need to minimize the value of
the above given q, rather than maximize it, under the
same constraints. Now a simple calculation by Maple
gives that the “worst choice” of the contingency table
entries is given by

c1,0,0 = c0,1,0 = c1,1,0 = c1,0,1 = 0,

c0,0,0 = 1/4, c0,0,1 = 1/12, c0,1,1 = 1/6, c1,1,1 = 1/2

yielding the value q = 13/18.
If a new classifier is added to an existing system, the

accuracy of the new system is affected by two main
properties of the new classifier: its accuracy and its
correlation with the classifiers in the existing system.
Let ηn+1 be a random variable with Eηn+1 = pn+1.

If we consider that only the accuracies remain the
same after adding ηn+1 to the system, then a similar
problem to the one defining in (6) has to be solved to
determine q(pa1,...,an+1

.
Maximize/Minimize the function

q(pa1,...,an+1
) =

n+1
∑

k=0

(pn+1,k

∑

a1+...+an+1=k

pa1,...,an+1
)

(8)
with the following conditions:

∑

ai=1

p∗,...,∗,ai,∗,...,∗ = pi, (i = 1, . . . , n+ 1)

∑

ai=0

p∗,...,∗,ai,∗,...,∗ = 1− pi, (i = 1, . . . , n+ 1)

∑

a1,...,an+1

pa1,...,an+1
= 1,

pa1,...,an+1
≥ 0, ai ∈ {0, 1} (i = 1, . . . , n+ 1).

Here we assume that Eηi = pi (i = 1, . . . , n+1) so the
accuracy of the i-th detecting algorithm is pi.

Since we have that

pn,k ≥ pn+1,k (9)

and
pn,k ≤ pn+1,k+1, (10)

so
Qmin ≥ q(pa1,...,an+1

≥ Qmax

Where Qmin and Qmax is the solution of the problem
with the condition pn+1,k = pn,k and pn+1,k = pn,k−1,
respectively.

If we consider that both the entries of the contin-
gency table of η1, . . . , ηn and the accuracies remain the
same after adding ηn+1 to the system, to determine the
best/the worst choice for the new classifier to achieve
the best/the worst performance for the new system
the following linear optimization problem has to be
solved. Maximize/Minimize the function

q(pa1,...,an+1
) =

n+1
∑

k=0

(pn+1,k

∑

a1+...+an+1=k

pa1,...,an+1
)

(11)
with the following conditions:

∑

ai=1

p∗,...,∗,ai,∗,...,∗ = pi, (i = 1, . . . , n+ 1)

∑

ai=0

p∗,...,∗,ai,∗,...,∗ = 1− pi, (i = 1, . . . , n+ 1)

pa1,...,an
=

1
∑

an+1=0

P (η1 = a1, . . . , ηn = an, ηn+1 = an+1),

∑

a1,...,an+1

pa1,...,an+1
= 1,

pa1,...,an+1
≥ 0, ai ∈ {0, 1} (i = 1, . . . , n+ 1).

Here we assume that Eηi = pi (i = 1, . . . , n+1) so the
accuracy of the i-th detecting algorithm is pi.

In the special case, when ηn+1 is totally independent
from (η1, . . . , ηn), the entries of the new contingency
table can be determined by the probabilities pa1,...,an

and pn+1, where Eηn+1 = pn+1:

pa1,...,an,1 = P (η1 = a1, . . . , ηn = an, ηn+1 = 1) =

= pn+1pa1,...,an
, (12)

pa1,...,an,0 = P (η1 = a1, . . . , ηn = an, ηn+1 = 0) =

= (1− pn+1)pa1,...,an
.

Considering these equations, we get that the linear
optimization problem to be solved can be written in
a simpler form: maximize/minimize the function the

q(pa1,...,an+1
) = (13)

n+1
∑

k=0

(pn+1,k(
∑

a1+...+an=k

pa1,...,an,0+
∑

a1+...+an=k−1

pa1,...,an,1)) =



9

n+1
∑

k=0

(pn+1,k(
∑

a1+...+an=k

(1− pn+1)pa1,...,an
+

+
∑

a1+...+an=k−1

pn+1pa1,...,an
))

under the conditions defining in (7).
Here we assume that Eηi = pi, (i = 1, . . . , n + 1) so
the accuracy of the i-th detecting algorithm is pi.

If we consider that the entries of the contingency
table of η1, . . . , ηn remain the same after adding ηn+1

to the system, the solution of the problem in (13) only
depend on pn+1. We get the following proposition for
the system accuracies:
If

pn+1 ≥

n
∑

k=0

(pn,k
∑

a1+...+an=k

(pn,k − pn+1,k))

n
∑

k=0

(pn,k
∑

a1+...+an=k

(pn+1,k+1 − pn+1,k))

then
q(pa1,...,an+1

) ≥ q(pa1,...,an
).

Since we have (9) and (10) that

n
∑

k=0

(pn,k
∑

a1+...+an=k

(pn,k − pn+1,k))

n
∑

k=0

(pn,k
∑

a1+...+an=k

(pn+1,k+1 − pn+1,k))
≥ 0.

In the particular case pn,k = k/n we obtain the
following result.

Theorem 4.5: Let η = (η1, . . . , ηn) be an n-
dimensional random variable, where Eηi = pi, (i =
1, . . . , n). We consider the joint distribution pa1,...,an

=
P (η1 = a1, . . . , ηn = an). Let pnk = k/n (k =
0, 1, . . . , n). Then we have Eξ = p1+...+pn

n .
Proof: It follows from rearranging the sums in the

following way:

Eξ =

n
∑

k=0

∑

a1+...+an=k

k

n
· pa1,...,an

=

=
1

n

n
∑

i=1

∑

ai=1

pa1,...,an
=

1

n

n
∑

i=1

P (ηi = 1) =
p1 + . . .+ pn

n
.

4.3 Example 2 – demonstrating the dependent

case

Similarly to the independent case, we illustrate the
results achieved for the dependent case by a corre-
sponding variant of Example 1.

Suppose that n players play a game. Players can tell
the truth with probability p or lie. Each player say a
number. Truth-tellers say 1/n, while liers a random
xi number from the interval [−1/n, 0]. k means the
number of true answers, in this way n− k people tell
lie. However, unlike in Example 1, in this game the

liers vote in a dependent way with saying the same
random number, that is, x1 = x2 = · · · = xn−k = x ∈
[−1/n, 0]. Similarly to Example 1, for the final decision
we evaluate the sum of the votes:

k

n
+ (n− k)x. (14)

Namely, if (14) is positive then we make a correct
decision, otherwise we make a false one.

For Example 2, the probability that we make a
correct decision if k of the n votes are correct can be
calculated as:

pn,k = P

(

k

n
+ (n− k)x > 0

)

=

{

P
(

x > − k
n(n−k)

)

= min
(

k
n−k , 1

)

, if k < n,

1, if k = n.

The values pn,k for a fixed n as a function of k
corresponding to Example 2 can be observed in Figure
5.
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pn,k

k

Fig. 5. The graph of pn,k for a fixed n for Example 2.

Now, the total accuracy q for this decision system
can be calculated by the formula (4) we have already
derived for independent classifiers. The ensemble ac-
curacy q of Example 2 is enclosed in Table 4.3 for
different number of classifiers (n) and for different
probabilities for telling the truth by the players (p).

n=3 n=5 n=7 n=9

p = 0.6 0.7929 0.8568 0.8886 0.9100
p = 0.7 0.8791 0.9331 0.9573 0.9712
p = 0.8 0.9443 0.9781 0.9899 0.9950
p = 0.9 0.9856 0.9970 0.9993 0.9997

TABLE 3

Ensemble accuracy for Example 2.

If we compare Table 3.2 with Table 4.3, we can see
that ...@@@

5 A CASE STUDY – OPTIC DISC DETECTION

In this section, we present a medical image processing
application (optic disc detection) that motivated the
creation of the constrained voting model. We start
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with showing how the general formulation consid-
ering the pn,k probabilities is restricted for this spe-
cific challenge using geometric constraints defined
by anatomic rules. Then, we present the accuracy of
our current ensemble, characterize it by the achieved
results and discussing on the possibilities of further
improvement by exploiting some of our results.

5.1 Constraining by shape characteristics

In our application, the votes are required to fall inside
a disc of diameter dOD to vote together. For the
calculation of the values pn,k the correct k votes must
fall inside the true OD position, however, the n − k
false ones can fall within such a disc anywhere else
within the ROI. That is, more false regions are possible
to be formed which gives the possibility to make a
correct decision even if the true votes are in minority.
Note that, a canidate of an algorithm is considered to
be correct if its distance from the manually selected
OD center is not larger than dOD/2, see also Figure 7.

If we assume independency among the algorithms,
for this case the behavior of the values pn,k as a
function of k for a given n is shown in Figure 6.
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Fig. 6. The graph of pn,k for a fixed n with our

geometric constraint to fall within a disc of diameter

dOD.

Figure 6 shows that the pn,k increase exponentially
in k for a given n. This follows from the results of [21],
[22] saying that the probability that the diameter of a
point set is not less than a given constant decreases
exponentially if the number of points tends to infinity.
Note that, this diameter corresponds again to the
diameter dOD of the OD.

The ensemble accuracy for our geometrically con-
strained system is enclosed in Table 5.1 for different
number of independent classifiers (n) for some equal
individual accuracies (p).

From Table 5.1 we can see a rapid increase in
the ensemble accuracy e.g. in comparison with the
accuracies found for Example 1 and 2, respectively.
From trivial geometric considerations we can also see
why the few number of votes (e.g. n = 3) performs
bad.

Now, to describe the geometrically constrained case
in detail, let us consider the probability (1 − pi)ri

n=3 n=5 n=7 n=9

p = 0.6 0.6435 0.9076 0.9654 0.9893
p = 0.7 0.7889 0.9631 0.9938 0.9985
p = 0.8 0.9029 0.9906 0.9986 0.9997
p = 0.9 0.9697 0.9994 1.0000 1.0000

TABLE 4

Ensemble accuracy for applying our geometric

constraint.

with ri ∈ [0, 1] for the i-th independent classifier
that means that the i-th classifier makes wrong clas-
sification and participates in making a bad decision.
For the algorithm Di with accuracy pi giving a bad
candidate (xi, yi) for the optic disc, we consider that
the distribution of (xi, yi) is uniform outside the optic
disc for all i (i = 1, . . . , n).

In this case, we have:

r1 = . . . = rn =
T0

T − T0
, (15)

where T0 and T are the area of the optic disc and
the ROI (region of interest in the image domain),
respectively, so ri is the same predetermined constant
for all i (i = 1, . . . , n). For better understanding see
also Figure 7.

T0

T0

T0

T0

>d /2
od

<d
/2

od

>d /2
od

>d /2od

Manually Selected OD

>d /2od

>d
/2od>
d

/2
o
d

Fig. 7. The geometric constraint applied to the candi-

dates of the algorithms: they should fall inside a disc of

a fixed diameter dOD to vote together.

For the interpretation of the values pn,k for this case,
let us consider the decomposition of the number of
false candidates n−k = k1+ . . .+kl, where all the bad
votes are covered by the l disjoint discs of diameter
dOD, and ki is the cardinality of the bad votes covered
by the i-th disc. Without the loss of generality, we may
assume that k1 ≥ . . . ≥ kl. To determine the values
pn,k, we introduce the probability P (n, k, k1, . . . , kl)
for the good decision in case of a concrete realization
of the k votes:

P (n, k, k1, . . . , kl) =

n!

k!k1! . . . kl!
p1 . . . pk(1− pk+1) . . . (1− pn)·

·

(

1−
T0

T

)k1

. . .

(

1−
lT0

T

)kl

.
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Applying the geometric constraint, bad decision is
made only when k1 > k so pn,k = 0 for k1 > k, while
pn,k = 1 for k > k1 should hold. The case k1 = k is
broken randomly. Based on these considerations and
summing for the possible distribution of the k votes
among the circles, we can calculate the values pn,k as
follows:

pn,k =
∑

k1+...+kl=n−k,k>k1

P (n, k, k1, . . . , kl) (16)

+
1

2

∑

k1+...+kl=n−k,k=k1

P (n, k, k1, . . . , kl).

The pn,k values calculated by (16) and the ones
shown in Figure 6 are slightly differ. The reason of the
difference is that in our geometric derivation to have a
closed for, we have considered only disjoint discs that
fall inside the ROI, as well. However, these differences
are minor, and both approaches have exponential
trends.

5.2 An ensemble-based OD detector

Progressive eye diseases can be caused by diabetic
retinopathy (DR) which can even lead to blindness.
One of the first essential steps in automatic grading
of the retinal images is to determine the exact location
of the main anatomical features, such as the optic disc.
The locations of these features play important role in
making diagnosis in the clinical protocol. The optic
disc can be considered as a bright region with circular
shape. In our automatic screening system originally
we have collected eight OD detector algorithms to
compose an ensemble from. Then, with a brute force
approach (i.e. checking all the possible ensembles)
we select such an ensemble which maximizes the
accuracy of the combined system. In this way, we
composed an ensemble of the following six OD-
detectors:

• Based on pyramidal decomposition: Lalonde et al.
[24] created an algorithm which generates a pyra-
mid with simple Haar-based discrete wavelet
transform. The pixel with highest intensity value
in the low-resolution image (4th or 5th level of
decomposition) is considered as the center of the
OD. The individual accuracy of this algorithm
was found to be p1 = 0.767 on our dataset.

• Based on edge detection: This method [24] uses edge
detection algorithm which is based on Rayleight-
based CFAR threshold. Next, Hausdorff distance
is calculated between the set of edge points and a
circular template like the average OD. The pixel
with lowest distance value is selected for OD
center. The individual accuracy of this algorithm
was found to be p2 = 0.958 on our dataset.

• Based on entropy measurement: Sopharak et al. [25]
proposed this method which applies a median
and a CLAHE filter on the retinal image. In a

neighborhood of each pixel the entropy of inten-
sity is calculated; the pixel with largest entropy
value is selected as the OD center. The individ-
ual accuracy of this algorithm was found to be
p3 = 0.315 on our dataset.

• Based on kNN classification: Niemeijer et al. [26] ex-
tracted features (number, width, orientation and
density of vessels and their combination), and
applied a kNN classifier to decide whether a pixel
belongs to the OD area. The centroid of the largest
component found is considered as the OD center.
The individual accuracy of this algorithm was
found to be p4 = 0.759 on our dataset.

• Based on fuzzy convergence of blood vessels: This
method [27] thins the vessel system and models
each line-shape segment with a fuzzy segment.
A voting map of these fuzzy segments is created
and the pixel receiving the most votes is consid-
ered as the center of the OD. The individual accu-
racy of this algorithm was found to be p5 = 0.977
on our dataset.

• Based on Hough transformation of vessels: Ravis-
hankar et al. [28] proposed to fit lines to the
thinned vessel system by Hough transformation.
The intersection of these lines results in a voting
map. A weighting is also applied considering the
intensity values corresponding to the intersection
points. The pixel having highest voting result is
considered as the center of the OD. The individ-
ual accuracy of this algorithm was found to be
p6 = 0.647 on our dataset.

For measuring the accuracy of both the individual
algorithms and the ensembles we used the database
Messidor 1 containig 1200 digital images, where the
optic disc centers were manually selected by clinical
experts. As for the decision of the ensemble, we select
the disk with the OD-sized diameter containing the
largest number of algorithm candidates. Then, as a
final candidate we consider the centroid of these can-
didates. This final candidate is considered as correct,
if it falls inside the disk centered at the manually
selected OD center and havin the OD-diameter.

Using the theoretical foundations of the previous
sections, we can characterize our current ensemble
and can also check its improvability as given next.

5.3 Characterizing the OD-ensemble by the model

A natural question regarding the ensemble of the
detectors is what accuracies we can expect as best or
worst with such individual detector accuracies. Then,
we can see the position regarding accuracy of our
current ensemble within this interval, and can also
check how it relates to a system which would contain
independent detectors.

1. Kindly provided by the Messidor program partners (see
http://messidor.crihan.fr).
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The values pn,k for our application that are used
to calculate the above characterizing ensemble accu-
racies as a function of k for a given n is shown in
Figure 8.
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Fig. 8. The graph of pn,k for a fixed n with our

geometric constraint.

Using the technique described in section 4.2, we
have the following ensemble minimal and maximal
accuracies, respectively:

qmin = 0.899, qmax = 1. (17)

Based on our experiments the ensemble accuracy is:

q = 0.981, (18)

which is quite close to the possible maximum ac-
curacy. However, if we calculate the accuracy with
the assumption of independency of the detectors, by
formula @@@ we have:

qind = 0.998. (19)

That is, we can see that an ensemble of indepen-
dent algorithms would lead to nearly perfect results
regarding accuracy. On the other hand, it is not supris-
ing that our current system perform worse, since
in this specific detection task it is quite challengint
to find algorithms based on different (independent)
principles.

5.4 On the improvability of the detector

Beside the above characterization, a more exciting
issue is the improvability of an exisiting ensemble
regarding its accuracy. For this study, we investigate
to what extent the addition of a new algorithm Dn+1

may improve the system. For this study we observe
both the change of the system accuracy (q) and the in-
terval for the minimal and maximal system accuracy.
More precisely, we will consider the following cases:

A. we fix the output of the algorithms of the cur-
rent ensemble for an experiment in terms of a
contingency table, and

1. add a new independent algorithm and
check how the ensemble accuracy (q)
changes,

2. add a new dependent algorithm and check
how the minimal (qmin) and maximal
(qmax) ensemble accuracy change,

B. we ignore the output of the algorithms of the
current ensemble for an experiment, and

1. add a new independent algorithm and
check how the ensemble accuracy (q)
changes by assuming that the ensemble
members are independent,

2. add a new dependent algorithm and check
the minimal (qmin) and maximal (qmax) en-
semble accuracy.

In section ??, we have laid the theoretical back-
ground to extend the ensemble with adding a new
classifier. Namely, we have formulated the ways of the
calculation of ensemble accuracy for the cases, when
the new classifier is dependent or independent from
the ensemble, respectively. Besides the simple ensem-
ble accuracy we have also explained how the minimal
and maximal accuracy of the ensemble would change.
Now, we adopt these results to our specific application
and investigate how our current OD detector ensem-
ble is going to behave, if a new detector algorithm is
added.

We start with the case (@@@), when the dependen-
cies of the current ensemble members are considered
as known in terms of a contingency table belonging
to our test on the Messidor database and the new
algorithm is considered to be independent from the
ensemble. For this case we have the numerical results
enclosed in Table 5.4. Note that, in this case we can
check the interval where the ensemble accuracy will
fall based on the lower and upper estimation that can
be derived for pn+1,k.

Accuracy of a new algorithm q⊖ q⊕

p7 = 0.6 0.957 0.989
p7 = 0.9 0.975 0.995

TABLE 5

The OD detector ensemble accuracy for the

estimation of the values pn+1,k if a new independent

algorithm of accuracy p7 is added to a dependent

system.

From Table 5.4 we can see that in our application a
new (independent) algorithm with accuracy approxi-
mately 0.9 is highly expected to improve the current
system accuracy given in (18).

Next, we analyse the case (see @@@), when the
dendencies of the algorithms are still considered, but
the new algorithm should not be independent. In
this setup, we can measure the accuracy interval for
the minimal (qmin) and maximal ensemble accuracies
(qmax), respectively, based on the estimation for the
values pn+1,k. The corresponding figures are included
in Table 5.4.
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Accuracy of a new algorithm q
⊖

min
q
⊕

min
q
⊖
max q

⊕
max

p7 = 0.1 0.920 0.981 0.981 0.995
p7 = 0.7 0.920 0.981 0.981 0.995
p7 = 0.9 0.942 0.981 0.981 0.995

TABLE 6

Minimal and maximal OD detector ensemble accuracy

for the estimation of the values pn+1,k if a new

dependent algorithm of accuracy p7 is added to a

dependent system.

Table 5.4 also shows that it is quite natural that
an individually very weak algorithm could lead to
a remarkable improvement of the ensemble, however,
this possibility is rather irrealistic. Moreover, since the
current ensemble is not optimal regarding dependen-
cies, even with a very diverse and accurate algorithm
we cannot reach accuracy 1. It is also visible from the
table that the original system accuracy (18) cannot be
outperformed with the lowest pn+1,k estimation, and
cannot be degraded with the highest pn+1,k estima-
tion, as well.

Another point which is worth considering with
the corresponding theoretical foundations are given
in section ?? that since the retinal databases are
quite heterogeneous, we cannot go for sure regarding
the depencies of the algorithms already fixed in the
ensemble found for a specific (in our case for the
Messidor) database. Thus, if we keep the individual
accuracies of the ensemble members, a useful infor-
mation could be to see to what extent a new algorithm
may ruin or improve the ensemble accuracy. In other
words, we performed the analyses, where we ignored
the contingency table found for the Messidor dataset.
In Table 5.4 we enclosed the corresponding accuracy
figures regarding the lower and upper estimation of
the values pn+1,k.

Accuracy of a new algorithm q⊖ q⊕

p7 = 0.6 0.975 0.997
p7 = 0.9 0.984 0.999

TABLE 7

The OD detector ensemble accuracy for the

estimation of the values pn+1,k if a new independent

algorithm of accuracy p7 is added to an independent

system.

By comparing Table 5.4 with Table 5.4 we can see
that if we omit the depencies of the algorithms, we can
expect higher ensemble accuracy. However, we have
no information about the differences between datasets
cauisng different dependencies among the ensemble
members. Since the original ensemble would lead to
very high accuracy with independent algorithms as
given in (19), only in case of a very accurate new
algorithm we can expect improvement.

Finally, we investigate the case, when a new al-
gorithm with accuracy p7 is added to our current
ensemble, with no constraints are given for the de-
pendencies. In other words, we check the minimal and
maximal accuracy of the extended system regarding
the lower and upper estimation of the values pn+1,k.
The current figures are enclosed in Table 5.4.

Accuracy of a new algorithm q
⊖

min
q
⊕

min
q
⊖
max q

⊕
max

p7 = 0.7 0.764 0.899 1 1
p7 = 0.9 0.908 0.934 1 1

TABLE 8

Minimal and maximal OD detector ensemble accuracy

for the estimation of the values pn+1,k if a new

dependent algorithm of accuracy p7 is added to a

system with no dependency constraints.

Table 5.4 indicates the natural fact that if the de-
pendencies are unknown, the minimal and maximal
accuracy can highly differ, and e.g. the ensemble per-
formance can be worse than that of some of its mem-
bers. However, it is also worth considering for our
specific OD detector ensemble that a new algorithm
of accuracy p7 = 0.9 will raise the minimal system
accuracy given in (17) by all means. A comparison
with Table 5.4 shows that if we do not assume any
dependencies for the original ensemble, we can reach
higher maximal and lower minimal system accuracies.

6 CONCLUSION

In this paper, we have worked out a new theoreti-
cal model that enables the investigation of majority
voting systems being more general than the simple
majority voting scheme. Namely, we have introduced
a further constraint in the model to say the probability
that a correct decision is made if k correct votes are
among the total number n. We have derived several
theoretical results for independent/dependent ensem-
bles composed by classifiers have not necessarily the
same individual accuracies. We have also embedded
former concepts and results from the literature of
classic majority voting, like the maximal (pattern of
success) and minimal (pattern of failure) accuracy of
an ensemble.

We have explained how a constraint may raise
from shape characteristics of objects in a detection
problem. Namely, we have presented an ensemble-
based system for optic disc detection in retinal images,
where the object has a circular anatomical geometry.
In this case, the members of the ensembles are detec-
tor algorithms that give their results in terms of single
pixels, as their candidate for the optic disc center. For
this application we have shown how our results can
be used for a quantitative and characterization of the
combined system. In this specific scenario the proba-
bility constraint have an exponential behavior which
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motivates the development of new algorithms, since
in case of an independent (or even better, diverse)
algorithm the system accuracy may be raised more
rapidly then in classic majority voting. Again, we have
given methods to see the influence of the addition of
a new algorithm to the existing ensemble.

Our approach seems to be extendable to other
detection problems (e.g. 3D organs, face components).
However, for this aim further efforts are needed, since
the geometric results presented in section 5.1 are
primarily investigated for set diameter only, which
is sufficient for the disc, but insufficient for more
complex shapes.
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