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Abstract By means of the Lie algebra expansion method,

the centrally extended conformal algebra in two dimensions

and the bms3 algebra are obtained from the Virasoro algebra.

We extend this result to construct new families of expanded

Virasoro algebras that turn out to be infinite-dimensional lifts

of the so-called Bk , Ck and Dk algebras recently introduced

in the literature in the context of (super)gravity. We also show

how some of these new infinite-dimensional symmetries can

be obtained from expanded Kač–Moody algebras using mod-

ified Sugawara constructions. Applications in the context of

three-dimensional gravity are briefly discussed.

1 Introduction

Infinite-dimensional symmetries play a prominent role in

different areas of physics. In particular, symmetries of the

Virasoro type have had remarkable applications in two-

dimensional field theory, fluid mechanics, string theory, soli-

ton theory and gravity among others.

The Virasoro algebra corresponds to the central extension

of the algebra of infinitesimal diffeomorphisms of the circle

[1]. It was first found in the context of string theory, where

it describes the conformal invariance of the two-dimensional

worldsheet swept out by strings. This is due to the fact that the

conformal algebra in two dimensions is infinite dimensional

and its central extension is given by two copies the Virasoro

algebra. Therefore, the Virasoro symmetry appears in any

physical system with conformal invariance defined on a two-

dimensional space. Examples of this are two-dimensional
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sigma models [2], spin lattice models near criticality [3], inte-

grable systems of the KdV type [4], the asymptotic structure

of the S-matrix in General Relativity [5] and the asymptotic

symmetries of three-dimensional gravity. In the last case,

Brown and Henneaux [6] showed that for suitable boundary

conditions the asymptotic symmetry of three-dimensional

Einstein gravity with negative cosmological constant is given

by two copies of the Virasoro algebra. The presence of the

centrally extended 2D-conformal symmetry at infinity was

the first hint of an holographic duality, which was later con-

jectured by Maldacena in the context of strings [7]. This

remarkable discovery has lead to a number of important sub-

sequent results that could shed light into the quantum nature

of gravity [8,9].

The Virasoro algebra is closely related to the Kač–Moody

algebra, which corresponds to the central extensions of the

loop algebra. In fact, a representation of the Virasoro alge-

bra can be constructed out of quadratic combinations of the

generators of the Kač–Moody algebra by means of the Sug-

awara construction. This is useful when studying WZW mod-

els, as it allows one to find the Virasoro symmetry at the

level of the energy momentum tensor starting from its cur-

rent algebra [10]. Furthermore the Drinfeld–Sokolov Hamil-

tonian reduction relates the WZW model to Liouville the-

ory, which is conformally invariant [11]. In the context of

three-dimensional gravity this has had remarkable uses. In

fact, when 3D Einstein gravity with negative cosmological

constant is formulated as a Chern–Simons theory, it can be

written as an SL(2, R) WZW model once the Hamiltonian

constraints are solved within the action. Then, upon imposing

the Brown–Henneaux boundary conditions, it can be further

reduced to Liouville theory at the boundary [12].

The Virasoro symmetry is not the only infinite-dimensio-

nal symmetry that appears when studying the asymptotic

structure of gravity theories. In four-dimensional General
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Relativity, the BMS group appears as the asymptotic sym-

metry of the theory at null infinity [13–15]. This symmetry

has attracted great attention in the last years regarding the

S-Matrix for quantum gravity and its connection with soft

theorems and the gravitational memory effect [16]. Remark-

ably, this enhancement of the Poincaré symmetry can also be

found in three dimensions [17]. Indeed, in the case of van-

ishing cosmological constant, the bms3 algebra is found as

the asymptotic symmetry of Einstein gravity at null infin-

ity [18]. This algebra is given by the semi-direct sum of the

infinitesimal diffeomorphisms on the circle with an abelian

ideal of super translations and can be obtained as an Inönü–

Wigner (IW) contraction [19,20] of the centrally extended

conformal algebra in two dimensions in the very same way

as the Poincaré symmetry follows from the AdS3 symmetry

[21]. The bms3 algebra can also be obtained from a Sug-

awara construction of the iso(2, 1) current algebra associ-

ated with the flat WZW model, which in turn follows from

an IW contraction of an sl(2) Kač–Moody algebra. Along

the same lines, a Hamiltonian reduction of the flat WZW

model leads to the flat Liouville theory as the classical two-

dimensional dual for asymptotically flat 3D Einstein gravity,

which is BMS3 invariant [22–24]. On the other hand, there is

an equivalence between symmetries of ultra-relativistic the-

ory and bms3 which has been relevant in the extension of the

AdS/CFT correspondence [25–28]. In the last years, gener-

alizations of the conformal and bms3 algebras together with

their Kač–Moody cousins have appeared in the literature in

the context of three-dimensional supergravity and higher spin

gravity [29–45]. Analogously to the pure gravity cases, these

extensions turn out to be connected by IW contractions.

A particular characteristic of the IW contraction is that

the starting and resulting algebras have the same number of

generators. A natural way to generalize the IW contraction

in order to obtain algebras of greater dimension than the

starting one is given by the Lie algebra expansion method

[46–50]. In particular, the S-expansion procedure formu-

lated in Ref. [50] combines the structure constants of a given

Lie algebra with the inner product of an abelian semigroup

and has given rise to a number of interesting new symme-

tries that can be used to formulate gravity theories coupled

to matter [51–60]. Such symmetries can be classified into

three families of algebras called Bk , Ck and Dk . Bk alge-

bras have been used to obtain General Relativiy from Chern–

Simons and Born–Infeld gravity theories in diverse dimen-

sions [51,53,55,56]. In particular, the B3 and B4 algebras

correspond to the Poincaré and Maxwell algebras [61–66].

It is important to note that Bk symmetries can be obtained

as IW contraction of the Ck algebras [54]. The Ck family

allows one to relate diverse (pure) Lovelock gravities to

Chern–Simons and Born–Infeld gravities [58,60]. Alterna-

tively, Bk algebras can be obtained as an IW contraction of

another set of algebras called Dk symmetries, which cor-

respond to direct sums of the form AdS ⊕ Bk−2 [57,59].

Supersymmetric extensions of some of these expanded alge-

bras have been worked out in Refs. [67–74], which can also be

obtained through the S-expansion mechanism. It is therefore

interesting to study what kind of infinite-dimensional sym-

metries can be obtained as S-expansions of known infinite-

dimensional algebras. In this paper we put forward such study

and present new families of infinite-dimensional algebras that

can be obtained by applying the semigroup expansion mech-

anism to the Virasoro algebra. We first show that the centrally

extended 2D-conformal algebra and the bms3 algebra can be

obtained as a semigroup expansion of the Virasoro algebra.

Then, by using more general semigroups, we construct new

families expanded Virasoro algebras that we name general-

ized 2D-conformal algebras and generalized bms3 algebras.

We also show how these new infinite dimensional symmetries

can be related by IW contractions. Interestingly these sym-

metries correspond to infinite dimensional enhancements of

the Bk and Ck algebras. Additionally, we provide an infinite-

dimensional lift of the so-called Dk algebras. Finally, we

study the Sugawara construction connecting expanded Kač–

Moody algebras with our expanded Virasoro algebras and

present some explicit examples.

The paper is organized as follows: In Sect. 2 we present

the general setup to S-expand the Virasoro algebra and obtain

the centrally extended 2D-conformal algebra as well as the

bms3 algebra particular cases. In Sect. 3 we show how the

expansion procedure can be used to construct a deformed

bms3 algebra which corresponds to an infinite-dimensional

lift of the Maxwell algebra. In the same way, an infinite-

dimensional enhancement of the AdS–Lorentz algebra is

constructed, which is given by three copies of the Vira-

soro algebra and can be related to the deformed bms3 sym-

metry by an IW contraction. In Sect. 4 we introduce the

generalized 2D-conformal algebras and generalized bms3

algebras. Section 5 is devoted to the construction of the

infinite-dimensional lifts of the Dk algebras. In Sect. 6 we

present (modified) Sugawara construction that allows one

to obtain expanded Virasoro algebras from expanded Kac–

Moody algebras in the simplest cases. Finally, future appli-

cations of these results in the context of 3D gravity theories

and WZW models are discussed in Sect. 7.

2 Centrally extended 2D-conformal algebra and bms3

algebra as S-expansions

The S-expansion method [50] consists in combining the

structure constants of a Lie algebra g with the elements of a

semigroup S to obtain a new Lie algebra G = S × g. In this

section we show that the centrally extended 2D-conformal

algebra and the bms3 algebra can be obtained explicitly as an

S -expansion of the Virasoro algebra for suitable semigroups.
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For details regarding the notation and the S-expansion pro-

cedure we refer the reader to the original references [75–82].

2.1 Expanding the Virasoro algebra

The starting point of this construction is the Virasoro algebra

vir,

[ℓm, ℓn] = (m − n)ℓm+n +
c

12
m(m2 − 1)δm+n,0, (2.1)

together with a semigroup S = {λα}, whose inner product is

defined by a 2-selector K
γ

αβ = K
γ

βα such that

λαλβ = λβλα = K
γ

αβλγ . (2.2)

We define an S-expanded Virasoro algebra as the direct prod-

uct virh = S × vir, where h = S × sl(2) is the expan-

sion of the sl(2, R) subalgebra of (2.1) generated by subset

{ℓ−1, ℓ0, ℓ1}
1. The generators of virh are given by

ℓ(m,α) = λαℓm (2.3)

and satisfy the commutation relations

[
ℓ(m,α), ℓ(n,β)

]
= (m − n)K

γ

αβ ℓ(m+n,γ )

+
cαβ

12
m(m2 − 1)δm+n,0, (2.4)

where cαβ denotes a set of central charges given by

cαβ = c K
γ

αβλγ . (2.5)

Note that the finite subalgebra h of virh is spanned by the

subset
{
ℓ(−1,α), ℓ(0,α), ℓ(1,α)

}
.

2.2 Centrally extended 2D-conformal algebra

The centrally extended conformal algebra in two dimensions

is given by the direct sum of a pair of Virasoro algebras

vir ⊕ vir, which we will simply denote vir2,

[Lm,Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[
L̄m, L̄n

]
= (m − n) L̄m+n +

c̄

12
m(m2 − 1)δm+n,0,

[
Lm, L̄n

]
= 0 . (2.6)

This algebra can be obtained as a particular S-expansion of

vir. In fact, let us consider the (semi)group Z2 = {λ0, λ1},

whose multiplication law is given by

1 This notation might seem awkward, but throughout our presentation

it will prove useful to label expanded Virasoro algebras by their corre-

sponding subalgebras h.

λ1 λ1 λ0

λ0 λ0 λ1

λ0 λ1

(2.7)

and from which the non-vanishing 2-selectors (2.2) can be

read off to be K 0
00 = K 0

11 = K 1
01 = K 1

10 = 1. Denoting the

generators (2.3) and the central charges (2.5) of the corre-

sponding expanded algebra

Jm ≡ ℓ(m,0) = λ0ℓm, c1 ≡ c00 = c11 = λ0c,

Pm ≡ ℓ(m,1) = λ1ℓm, c2 ≡ c01 = λ1c, (2.8)

Eq. (2.4) yields

[Jm,Jn] = (m − n)Jm+n +
c1

12

(
m3 − m

)
δm+n,0,

[Jm,Pn] = (m − n)Pm+n +
c2

12

(
m3 − m

)
δm+n,0,

[Pm,Pn] = (m − n)Jm+n +
c1

12

(
m3 − m

)
δm+n,0. (2.9)

It is easy to see that (2.9) is isomorphic to vir2 by making

the following change of basis:

Lm =
1

2
(Pm + Jm) , L̄−m =

1

2
(Pm − Jm) , (2.10)

which leads to (2.6) with central charges c = 1
2
(c2 + c1) and

c̄ = 1
2
(c2 − c1).

2.3 bms3 algebra

Consider now the expansion of the Viraroso algebra (2.1)

using the semigroup S
(1)
E = {λ0, λ1, λ2}, whose elements

satisfy the multiplication law

λ2 λ2 λ2 λ2

λ1 λ1 λ2 λ2

λ0 λ0 λ1 λ2

λ0 λ1 λ2

(2.11)

and where λ2 ≡ 0S is the zero element of the semigroup

such that 0Sλα = 0S . The 0S-reduced S
(1)
E -expanded algebra

is obtained imposing 0S × ℓ(m,α) = 0. Defining the non-

vanishing expanded generators (2.3) in the same way as in

(2.8), we get

[Jm,Jn] = (m − n)Jm+n +
c1

12

(
m3 − m

)
δm+n,0,

[Jm,Pn] = (m − n)Pm+n +
c2

12

(
m3 − m

)
δm+n,0,

[Pm,Pn] = 0, (2.12)

which corresponds to the bms3 algebra [18].

Let us also recall that the bms3 algebra can be obtained

from two copies of the Virasoro algebra as an IW contraction.
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Writing vir2 in the form (2.9) and rescaling its generators as

Jm → Jm, Pm → σPm, c1 → c1, c2 → σc2, (2.13)

leads to (2.12) in the limit σ → ∞. A similar approach

is considered in [83] where they implemented the IW con-

traction using a Grassman parameter. As we will see in the

following, this kind of limit procedure will be useful to estab-

lish different links between more general expanded Virasoro

algebras.

3 Deformed bms3 algebra

The centrally extended conformal algebra and its flat limit,

the bms3 algebra, are not the only symmetries that can be

obtained using the expansion method. In the present section

we present new infinite-dimensional symmetries which are

directly obtained as an S -expansion of the Virasoro algebra.

In particular, a deformed bms3 algebra as well as three copies

of the Virasoro algebra (vir3) can be obtained, where the

former corresponds to an IW contraction of the latter.

3.1 Deformed bms3 as an S-expansion

Let us consider the semigroup S
(2)
E = {λ0, λ1, λ2, λ3}, whose

elements satisfy

λ3 λ3 λ3 λ3 λ3

λ2 λ2 λ3 λ3 λ3

λ1 λ1 λ2 λ3 λ3

λ0 λ0 λ1 λ2 λ3

λ0 λ1 λ2 λ3

(3.1)

and where λ3 = 0S is the zero element. Denoting the gener-

ators (2.3) and the central charges (2.5) of the corresponding

expanded algebra as

Jm ≡ ℓ(m,0) = λ0ℓm, c1 ≡ c00 = c11 = λ0c,

Pm ≡ ℓ(m,1) = λ1ℓm, c2 ≡ c01 = λ1c,

Zm ≡ ℓ(m,2) = λ2ℓm, c3 ≡ c02 = c11 = λ2c, (3.2)

the 0S-reduced S
(2)
E -expanded algebra satisfies the commu-

tation relations

[Jm,Jn] = (m − n) Jm+n +
c1

12

(
m3 − m

)
δm+n,0,

[Jm,Pn] = (m − n) Pm+n +
c2

12

(
m3 − m

)
δm+n,0,

[Pm,Pn] = (m − n) Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Jm,Zn] = (m − n) Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Pm,Zn] = 0,

[Zm,Zn] = 0. (3.3)

Interestingly, the Maxwell algebra in (2 + 1) dimensions

is spanned by the generators J0,J1,J−1, P0,P1,P−1 and

Z0,Z1,Z−1. This can be made explicit in terms of genera-

tors {Ja, Pa, Za} obtained through the following change of

basis:2

J−1 = −2J0,J0 = J2 , J1 = J1,

P−1 = −2P0,P0 = P2 , P1 = P1,

Z−1 = −2Z0,Z0 = Z2 ,Z1 = Z1. (3.4)

This means that the deformedbms3 algebra (3.3) corresponds

to an infinite-dimensional lift of the (2 + 1)-dimensional

Maxwell algebra in the very same way as the algebras vir2

and bms3 are infinite-dimensional lifts of the AdS and the

Poincaré algebras in 2 + 1 dimensions, respectively.

3.2 Deformed bms3 algebra as a limit of vir3

Let us consider now S
(2)

M
= {λ0, λ1, λ2} as the relevant

abelian semigroup, whose elements satisfy the following

multiplication law:

λ2 λ2 λ1 λ2

λ1 λ1 λ2 λ1

λ0 λ0 λ1 λ2

λ0 λ1 λ2

(3.5)

Unlike the S
(2)
E semigroup, there is no zero element in this

case. Adopting the same notation (3.2) for the generators of

the S
(2)

M
-expanded algebra, we find the following commuta-

tion relations:

[Jm,Jn] = (m − n)Jm+n +
c1

12

(
m3 − m

)
δm+n,0,

[Jm,Pn] = (m − n)Pm+n +
c2

12

(
m3 − m

)
δm+n,0,

[Pm,Pn] = (m − n)Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Jm,Zn] = (m − n)Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Zm,Zn] = (m − n)Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Zm,Pn] = (m − n)Pm+n +
c2

12

(
m3 − m

)
δm+n,0. (3.6)

Note that the AdS–Lorentz algebra in 2+1 dimensions, also

known as the semi-simple extension of the Poincaré alge-

bra [84], is the subalgebra of (3.6) spanned by the genera-

tors J0,J1,J−1, P0,P1,P−1 and Z0,Z1,Z−1. This can be

explicitly seen using the change of basis (3.4), showing that

2 In this case the Maxwell algebra is realized with a non-diagonal

Minkowski metric ηab =

⎛
⎝

0 1 0

1 0 0

0 0 1

⎞
⎠.
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(3.6) defines and infinite-dimensional lift of the AdS–Lorentz

algebra in 2 + 1 dimensions.

Remarkably, there is a redefinition of the generators of

(3.6) that allows one to see its true algebraic structure. In

fact, considering the change of basis

Lm =
1

2
(Pm + Zm) , L̄−m =

1

2
(Pm − Zm) ,

L̃−m = Jm − Zm, (3.7)

three copies of the Virasoro algebra, which will be denoted

vir3, are revealed

[Lm,Ln] = (m − n) Lm+n +
c

12

(
m3 − m

)
δm+n,0,

[
L̄m, L̄n

]
= (m − n) L̄m+n +

c̄

12

(
m3 − m

)
δm+n,0,

[
L̃m, L̃n

]
= (m − n) L̃m+n +

c̃

12

(
m3 − m

)
δm+n,0, (3.8)

where the central extensions are given by c = 1
2

(c2 + c3),

c̄ = 1
2

(c2 − c3) and c̃ = c1 − c3. Additionally, as in the

case of the bms3 and the 2D-conformal algebra, there is a

limit procedure relating vir3 and the deformed bms3 alge-

bra through an IW contraction. In fact, the rescaling of the

generators of (3.6)

Jm → Jm, Pm → σPm, Zm → σ 2Zm,

c1 → c1, c2 → σc2, c3 → σ 2c3 , (3.9)

leads to the deformed bms3 algebra (3.3) in the limit σ → ∞.

4 Generalized expanded Virasoro algebras

In the previous sections we have seen how the S expansion

mechanism allows one to obtain the centrally extended 2D-

conformal algebra and the bms3 algebra from the Virasoro

algebra. In the context of three-dimensional gravity, the cen-

trally extended 2D-conformal algebra and the bms3 alge-

bra correspond to infinite-dimensional lifts of Ad S and the

Poincaré symmetries in 2 + 1 dimensions. Generalizing this

results we have subsequently shown how to construct infinite-

dimensional lifts of the Maxwell and the AdS–Lorentz alge-

bras in 2+1 dimensions, which correspond a deformed bms3

symmetry in the former case and to three copies of the Vira-

soro algebra in the latter. As has recently been pointed out

in Refs. [54,55,57,68], the Poincaré and the AdS algebras

as well as the Maxwell and the AdS–Lorentz algebras cor-

respond to particular cases of the Bk and Ck algebras for

k = 3 and k = 4, respectively. Such families of algebras have

been of particular interest in the context of gravity. Indeed,

as was shown in Refs. [51,53,56], General Relativity can

be obtained as a particular limit of a Chern–Simons and a

Born–Infeld gravity theory using the Bk symmetries. On the

other hand, the Ck algebras allow one to recover the pure

Lovelock Lagrangian from Chern–Simons and Born–Infeld

theories [58,60].

The results obtained up to this point clearly suggest that,

in the same way as their respective finite subalgebras, the

bms3 and vir2 algebras as well as the deformed bms3 and the

vir3 algebras should correspond to particular cases of certain

families of generalized infinite-dimensional symmetries. In

this section we present the general scheme that leads to such

families of expanded Virasoro algebras.

4.1 Generalized bms3 algebras

Let S
(k−2)
E = {λ0, λ1, . . . , λk−1} be the finite abelian semi-

group whose elements satisfy the following multiplication

law:

λαλβ =

{
λα+β if α + β ≤ k − 2,

λk−1 if α + β > k − 2,
(4.1)

where λk−1 = 0s is the zero element of the semigroup. The

S
(k−2)
E -expanded Virasoro algebra (2.4) in this case is given

by

[
ℓ(m,α), ℓ(n,β)

]

=

⎧
⎪⎨
⎪⎩

(m − n)ℓ(m+n,α+β)

+
cα+β+1

12
m(m2 − 1)δm+n,0 if α + β ≤ k − 2,

0 if α + β > k − 2,

(4.2)

where we have defined cα+β+1 ≡ cαβ . Following the nota-

tion introduced in Sect. 2, the algebra (4.2) will be denoted

by virBk
, as the subalgebra h generated by

{
ℓ(−1,α), ℓ(0,α),

ℓ(1,α)

}
corresponds to the Bk algebra in 2 + 1 dimensions

[51,85]. It is easy to see that (4.1) always contains an abelian

ideal spanned by the subset of generators

A =
{
ℓ(m,α̃)

}
, α̃ =

[
k

2

]
, . . . , k − 2

and for which
[
ℓ(m,α̃), ℓ

(
m,β̃

)
]

= 0,

[
ℓ(m,α̃), ℓ(m,α)

]
∈ A + central terms. (4.3)

For this reason the virBk
algebra will be referred to as gener-

alized bms3 algebra. This algebra corresponds to an infinite

dimensional lift of the Bk algebra in 2+1 dimensions, which

can be made explicit by redefining the generators in the form

J i
m ≡ ℓ(m,i) = λiℓm,

P ı̄
m ≡ ℓ(m,ı̄) = λı̄ℓm, (4.4)

where i takes even values and ı̄ takes odd values. Here we

identify the following cases:
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• For k − 2 = 2N the abelian ideal A is generated by

A =

{
P N+1

m ,J N+2
m , . . . ,P2N−1

m ,J 2N
m for N even,

J N+1
m ,P N+2

m , . . . ,P2N−1
m ,J 2N

m for N odd.

• For k − 2 = 2N + 1 the abelian ideal A is generated by

A =

{
P N+1

m ,J N+2
m , . . . ,J 2N

m ,P2N+1
m for N even,

J N+1
m ,P N+2

m , . . . ,J 2N
m ,P2N+1

m for N odd.

Using the definition (4.4), we write (4.2) in the form
[
J

i
m ,J

j
n

]
= (m − n)J

i+ j
m+n

+
ci+ j+1

12

(
m3 − m

)
δm+n,0, for i + j ≤ k − 2,

[
J

i
m ,P ı̄

n

]
= (m − n)P

i+ı̄
m+n

+
ci+ı̄+1

12

(
m3 − m

)
δm+n,0, for i + ı̄ ≤ k − 2,

[
P

ı̄
m ,P

j̄
n

]
= (m − n)J

ı̄+ j̄
m+n

+
cı̄+ j̄+1

12

(
m3 − m

)
δm+n,0, for ı̄ + j̄ ≤ k − 2,

others = 0. (4.5)

As mentioned before, the Bk algebra in 2 + 1 dimensions is

a subalgebra of (4.5) spanned by the generators J i
0 ,J i

1 ,J i
−1

and P ı̄
0,P

ı̄
1,P

ı̄
−1. Additionally, when written in this form it

is straightforward to see that setting k = 3 leads to the bms3

algebra (2.12), while k = 4 reproduces the deformed bms3

algebra (3.3). Thus, bms3 and its corresponding deformation

can be classified into the infinite family of generalized bms3

algebras virBk
.

4.2 Generalized 2D-conformal algebras

Another family of expanded Virasoro algebras can be

obtained by choosing a different semigroup. Let us consider

S
(k−2)

M
= {λ0, λ1, . . . , λk−2} as the relevant abelian semi-

group whose elements satisfy

λαλβ =

{
λα+β if α + β ≤ k − 2,

λ
α+β−2

[
k−1

2

] if α + β > k − 2. (4.6)

Then the S
(k−2)

M
-expanded algebra (2.4) takes the form

[
ℓ(m,α), ℓ(n,β)

]

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(m − n)ℓ(m+n,α+β)

+
cα+β+1

12
m(m2 − 1)δm+n,0 if α + β ≤ k − 2,

(m − n)ℓ(
m+n,α+β−2

[
k−1

2

])

+

c
α+β−2

[
k−1

2

]
+1

12
m(m2 − 1)δm+n,0 if α + β > k − 2,

(4.7)

and corresponds to virCk
, as its subalgebra h is given by

the Ck algebra in 2 + 1 dimensions [58,60]. This algebra

corresponds to an infinite-dimensional lift of the Ck algebra,

which can be explicitly seen by redefining the generators in

the form (4.4), yielding

[
J

i
m ,J

j
n

]
= (m − n)J

{i+ j}
m+n +

c{i+ j}+1

12

(
m3 − m

)
δm+n,0,

[
J

i
m ,P

j̄
n

]
= (m − n)P

{
i+ j̄

}

m+n +
c{

i+ j̄
}
+1

12

(
m3 − m

)
δm+n,0,

[
P

ı̄
m ,P

j̄
n

]
= (m − n)J

{
ı̄+ j̄

}

m+n +
c{

ı̄+ j̄
}
+1

12

(
m3 − m

)
δm+n,0,

(4.8)

where {· · · } means

{i + j} =

{
i + j if i + j ≤ k − 2,

i + j − 2
[

k−1
2

]
if i + j > k − 2.

(4.9)

As remarked before, the Ck algebra in 2+1 dimensions is the

subalgebra of virCk
spanned by the generators J i

0 ,J i
1 ,J i

−1

and P ı̄
0,P

ı̄
1,P

ı̄
−1. When written in the form (4.8) it is clear

that setting k = 3 leads to the centrally extended 2D-

conformal algebra (2.9), while the case k = 4 leads to the

vir3 algebra (3.6). Therefore virCk
will be referred to as the

(centrally extended) generalized 2D-conformal algebra. As

in the cases k = 3 and k = 4 studied in the previous sec-

tions, the generalized 2D-conformal algebra can be related

to the generalized bms3 one through an IW contraction. In

fact, rescaling the generators of (4.8) in the form

J i
m → σ iJ i

m, P
j̄

m → σ j̄P
j̄

m,

ci+1 → σ i ci+1, cı̄+1 → σ ı̄ cı̄+1, (4.10)

leads to the generalized bms3 algebra (4.5) in the limit σ →

∞.

The fact that the virCk
reduces to two and three copies of

the Virasoro algebra in the cases k = 3 and k = 4, respec-

tively, might make one think that it could generally be written

as k − 1 copies of the Virasoro algebra. However, this is not

true. Let us consider, for instance, the virC5
algebra. Renam-

ing its generators as J 0
m ≡ Jm , P1

m ≡ Pm , J 2
m ≡ Zm and

P3
m ≡ Rm , this algebra can be directly read off from (4.8) to

be

[Jm,Jn] = (m − n) Jm+n +
c1

12

(
m3 − m

)
δm+n,0,

[Jm,Pn] = (m − n) Pm+n +
c2

12

(
m3 − m

)
δm+n,0,

[Pm,Pn] = (m − n) Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Jm,Zn] = (m − n) Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Zm,Zn] = (m − n) Jm+n +
c1

12

(
m3 − m

)
δm+n,0,

[Zm,Pn] = (m − n) Rm+n +
c4

12

(
m3 − m

)
δm+n,0,

[Jm,Rn] = (m − n) Rm+n +
c4

12

(
m3 − m

)
δm+n,0,

123
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[Zm,Rn] = (m − n) Pm+n +
c2

12

(
m3 − m

)
δm+n,0,

[Rm,Rn] = (m − n) Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Pm,Rn] = (m − n) Jm+n +
c1

12

(
m3 − m

)
δm+n,0,

(4.11)

which cannot be redefined as four copies of the Virasoro

algebra by means of a generalization of (2.10) or (3.7).

5 Infinite-dimensional Dk-like algebras

In [57] new expanded algebras were presented as a family of

Maxwell-like algebras. Inspired by this construction, in this

section we consider the expansion of the Virasoro algebra by

means of the semigroup S
(k−2)
D , defined by the product rule

λαλβ =

{
λα+β if α + β ≤ k − 2,

λ(α+β−(k−1))mod2 +(k−3) if α + β > k − 2.

(5.1)

Using the notation (4.4) for the expanded generators, the

S
(k−2)
D -expanded algebra (2.4) can be written in the form

[
J

i
m ,J

j
n

]
= (m − n)J

{i+ j}
m+n +

c{i+ j}+1

12

(
m3 − m

)
δm+n,0,

[
J

i
m ,P

j̄
n

]
= (m − n)P

{
i+ j̄

}

m+n +
c{

i+ j̄
}
+1

12

(
m3 − m

)
δm+n,0,

[
P

ı̄
m ,P

j̄
n

]
= (m − n)J

{
ı̄+ j̄

}

m+n +
c{

ı̄+ j̄
}
+1

12

(
m3 − m

)
δm+n,0,

(5.2)

where {· · · } means

{i + j} =

⎧
⎨
⎩

i + j if i + j ≤ k − 2,

(i + j − (k − 1))mod2

+(k − 3) if i + j > k − 2.

(5.3)

These algebra corresponds to virDk
, as their subalgebra h is

given by the Dk algebra in 2+1 dimensions [57] and provides

with an infinite-dimensional lift of it. Interestingly, this kind

of algebras can be written as the direct sum of two copies

of the Virasoro algebra and a generalized bms3 algebra, i.e.,

virDk
= vir2 ⊕ virBk−2

, when an appropriate change of

basis is considered. Furthermore, an IW contraction of virDk

using the rescaling (4.10) leads to the generalized bms3 alge-

bra virBk
. In the following, a few simple examples will be

worked out.

5.1 vir2 ⊕ bms3

The simplest case to consider3 is k = 5, for which (5.1)

yields the virD5
algebra:

[Jm,Jn] = (m − n) Jm+n +
c1

12

(
m3 − m

)
δm+n,0,

3 The semigroup (5.1) is defined for k > 3 and k = 4 just gives the

semigroup S
(2)
M

, which was already studied in Sect. 3.

[Jm,Pn] = (m − n) Pm+n +
c2

12

(
m3 − m

)
δm+n,0,

[Pm,Pn] = (m − n) Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Jm,Zn] = (m − n) Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Zm,Zn] = (m − n) Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Zm,Pn] = (m − n) Rm+n +
c4

12

(
m3 − m

)
δm+n,0,

[Jm,Rn] = (m − n) Rm+n +
c4

12

(
m3 − m

)
δm+n,0,

[Rm,Zn] = (m − n) Rm+n +
c4

12

(
m3 − m

)
δm+n,0,

[Rm,Pn] = (m − n) Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Rm,Rn] = (m − n) Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

(5.4)

where we have defined

Jm ≡ J 0
m, Pm ≡ P1

m Zm ≡ J 2
m, Rm ≡ P3

m . (5.5)

The Maxwell-like algebra D5 in 2 + 1 dimensions [57]

is spanned by the generators J0,J1,J−1, P0,P1,P−1,

Z0,Z1,Z−1 and R0,R1,R−1. The algebraic structure of

the virD5
algebra can be made manifest by performing a

suitable change of basis. Indeed, the following redefinition:

Lm =
1

2
(Rm + Zm) , L̄−m =

1

2
(Rm − Zm) , (5.6)

reproduces the centrally extended 2D-conformal algebra

(2.6) with central charges c = 1
2

(c4 + c3) and c̄ =
1
2

(c4 − c3), while

J̃m =
1

2
(Jm − Zm) , P̃m =

1

2
(Pm − Rm) , (5.7)

leads to the bms3 algebra (2.12) with central charges c1 =
1
2

(c1 − c3) and c2 = 1
2

(c2 − c4). Since the set of generators{
Lm, L̃m

}
commutes with the set

{
J̃m, P̃m

}
, this shows that

the virD5
algebra is given by the direct sum of these two

subalgebras, namely, vir2 ⊕ bms3.

5.2 vir2⊕ deformed bms3

In the case k = 6, the S-expanded algebra virD6
is given by

[Jm,Jn] = (m − n) Jm+n +
c1

12

(
m3 − m

)
δm+n,0,

[Jm,Pn] = (m − n) Pm+n +
c2

12

(
m3 − m

)
δm+n,0,

[Pm,Pn] = (m − n) Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

123
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[Jm,Zn] = (m − n)Zm+n +
c3

12

(
m3 − m

)
δm+n,0,

[Zm,Zn] = (m − n)Mm+n +
c5

12

(
m3 − m

)
δm+n,0,

[Zm,Pn] = (m − n)Rm+n +
c4

12

(
m3 − m

)
δm+n,0,

[Jm,Rn] = (m − n)Rm+n +
c4

12

(
m3 − m

)
δm+n,0,

[Rm,Zn] = (m − n)Rm+n +
c4

12

(
m3 − m

)
δm+n,0,

[Rm,Pn] = (m − n)Mm+n +
c5

12

(
m3 − m

)
δm+n,0,

[Rm,Rn] = (m − n)Mm+n +
c5

12

(
m3 − m

)
δm+n,0,

[Jm,Mn] = (m − n)Mm+n +
c5

12

(
m3 − m

)
δm+n,0,

[Mm,Pn] = (m − n)Rm+n +
c4

12

(
m3 − m

)
δm+n,0,

[Mm,Zn] = (m − n)Mm+n +
c5

12

(
m3 − m

)
δm+n,0,

[Mm,Rn] = (m − n)Rm+n +
c4

12

(
m3 − m

)
δm+n,0,

[Mm,Mn] = (m − n)Mm+n +
c5

12

(
m3 − m

)
δm+n,0,

(5.8)

where we have defined

Jm ≡ J 0
m, Pm ≡ P1

m, Zm ≡ J 2
m,

Rm ≡ P3
m, Mm ≡ J 4

m . (5.9)

The Maxwell-like algebra D6 [57] is spanned by the genera-

tors J0,J1,J−1, P0,P1,P−1, Z0,Z1,Z−1, R0,R1,R−1

and M0,M1,M−1. The algebraic structure of this algebra

can be unveiled by performing a suitable change of basis. In

fact, two copies of the Virasoro algebra with central charges

c = 1
2

(c4 + c5) and c̄ = 1
2

(c4 − c5) can be recovered con-

sidering the redefinition

Lm =
1

2
(Rm + Mm) , L̄−m =

1

2
(Rm − Mm) . (5.10)

On the other hand, the change of basis

J̌m =
1

2
(Jm − Zm) , P̌m =

1

2
(Pm − Rm) ,

Žm =
1

2
(Zm − Mm) (5.11)

reproduces the deformed bms3 algebra (3.3) with central

charges c1 = 1
2

(c1 − c3), c2 = 1
2

(c2 − c4) and c3 =
1
2

(c3 − c5). Thus, as the generators (5.10) commute with

the generators (5.11), the S
(6)
D -expanded Virasoro algebra

virD6
is isomorphic to vir2⊕deformed bms3. This proce-

dure can be generalized for higher values of k, showing that

virDk
= vir2 ⊕ virBk−2

holds generically.

6 Sugawara construction and expanded Virasoro

algebras

The Kač–Moody algebra ĝk corresponds to the central exten-

sion of the loop algebra of a semi-simple Lie algebra g and

is given by

[
ja
m, jb

n

]
= i f ab

c jc
m+n + kmgabδm,−n, (6.1)

where fabc = − fbac correspond to the structure constants of

g and k denotes its central extension. The Sugawara construc-

tion allows one to construct a representation of the Virasoro

algebra out of bilinear combinations of the generators of the

Kač–Moody algebra by defining

ℓm =
1

2(k + Cg)
gab

∑

n

: ja
n jb

m−n :, (6.2)

where Cg is the dual Coxeter number of g, gab is the cor-

responding Killing–Cartan metric and normal ordering :: is

defined as

∑

n

: An Bm−n :=
∑

n≤−1

An Bm−n +
∑

n>−1

Bm−n An .

In fact, one can easily check that such definition implies that

ℓm has conformal weight one,
[
ℓm, ja

n

]
= −nja

m+n , and sat-

isfies the Virasoro algebra (2.1) with central charge

c =
kdimg

k + Cg

, (6.3)

where dimg =gabgab is the dimension of g.

6.1 Modified Sugawara construction

The modified Sugawara construction consists in defining new

Virasoro generators

ℓ̃m = ℓm + imgabα
a jb

m +
1

2
kα2δm,0,

where α ∈ g. Provided the generators ℓm satisfy vir with

central charge c, the modified generators ℓ̃n form a new rep-

resentation of the Virasoro algebra, i.e.

[
ℓ̃m, ℓ̃n

]
= (m − n)ℓ̃m+n +

c̃

12

(
m3 − m

)
δm,−n,

with a shifted central charge given by

c̃ = c + 12kα2 .

In the following, we will show how the expanded Virasoro

algebras presented in the previous sections can be obtained

123
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from Kač–Moody algebras associated with the Bk and Ck

algebras through generalized (modified) Sugawara construc-

tions.

6.2 bms3 and the Sugawara construction

Let us consider the following Kač–Moody-like algebra with

a semi-direct product structure:
[

ja
m, jb

n

]
= i f ab

c jc
m+n + k1mgabδm,−n,

[
ja
m, pb

n

]
= i f ab

c pc
m+n + k2mgabδm,−n,

[
pa

m, pb
n

]
= 0, (6.4)

which can be obtained from an S-expansion of (6.1) using

the semigroup S
(1)
E (see the appendix). Now we introduce the

following quadratic combinations of the generators ja
m and

pa
m :

Pm =
1

2k2
gab

∑

n

: pa
n pb

m−n :,

Jm =
1

2k2
gab

∑

n

:
(

ja
n pb

m−n + pa
n jb

m−n

)
: −

k1 + 2Cg

k2
Pm .

Using the affine current algebra (6.4) it is easy to see that
[
Jm, ja

n

]
= −nja

m+n,[
Jm, pa

n

]
= −npa

m+n,[
Pm, ja

n

]
= −npa

m+n,[
Pm, pa

n

]
= 0, (6.5)

and that Jm and Pm satisfy the commutation relations

[Jm,Jn] = (m − n)Jm+n +
dimg

6

(
m3 − m

)
δm,−n,

[Jm,Pn] = (m − n)Pm+n,

[Pm,Pn] = 0, (6.6)

which corresponds to the bms3 algebra (2.12) with central

charges c1 = 2 dimg and c2 = 0. The central charge c1

is familiar from the study of abelian Kač–Moody algebras

[1] and manifests here due to the abelian ideal generated by

pa
m . Now we can use the modified Sugawara construction to

obtain the fully centrally extended bm33 algebra from (6.4).

Indeed defining new generators:

J̃m = Jm + imgabα
a jb

m +
1

2
k1α

2δm,0,

P̃m = Pm + imgabα
a pb

m +
1

2
k2α

2δm,0,

one can show that

[
J̃m, J̃n

]
= (m − n)J̃m+n +

c̃1

12

(
m3 − m

)
δm,−n,

[
J̃m, P̃n

]
= (m − n)P̃m+n +

c̃2

12

(
m3 − m

)
δm,−n,

[
P̃m, P̃n

]
= 0,

where

c̃1 = 2dimg + 12k1α
2,

c̃2 = 12k2α
2.

This result can be understood as the quantum version of the

Sugawara construction described in [22,37] where bms3 is

realized as a Poisson algebra for the central charges of asymp-

totically flat three-dimensional Einstein gravity.

6.3 vir2 algebra

The bms3 algebra can also be obtained from the Sugawara

construction associated with a Z2-expansion of the Kač–

Moody algebra, after an IW contraction. In fact, using the

semigroup Z2 = S
(1)

M
to expand (6.1) (see the appendix), we

get

[
ja
m, jb

n

]
= i f ab

c jc
m+n + k1mgabδm,−n,

[
ja
m, pb

n

]
= i f ab

c pc
m+n + k2mgabδm,−n,

[
pa

m, pb
n

]
= i f ab

c jc
m+n + k1mgabδm,−n . (6.7)

Redefining the generators as ja
m = la

m + l̄a
−m and pa

m =

la
m − l̄a

−m , this algebra can be written as the product of two

identical Kač–Moody algebras with levels k = 1
2
(k1 + k2)

and k̄ = 1
2
(k1 − k2), i.e.,

[
la
m, lb

n

]
= i f ab

clc
m+n + kmgabδm,−n,

[
l̄a
m, l̄b

n

]
= i f ab

c l̄c
m+n + k̄mgabδm,−n,

[
la
m, l̄b

n

]
= 0 .

This means that, considering two independent Sugawara con-

structions

ℓm =
1

2(k + Cg)
gab

∑

n

: la
n lb

m−n :,

ℓ̄m =
1

2(k̄ + Cg)
gab

∑

n

: l̄a
n l̄b

m−n :,

one can trivially obtain the vir2 algebra (2.6) with central

charges c = kdimg
k+Cg

and c̄ = k̄dimg

k̄+Cg
. Using (2.10), one can

define

Pm =
σ

2(k + Cg)
gab

∑

n

:
(

la
n lb

m−n + μl̄a
n l̄b

−m−n

)
:,

Jm =
1

2(k + Cg)
gab

∑

n

:
(

la
n lb

m−n − μl̄a
n l̄b

−m−n

)
:, (6.8)

123
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where μ =
k+Cg

k̄+Cg
. The bilinears (6.8) satisfy the bms3

algebra (2.12) in the limit σ → ∞ with central charges

c1 =
(k−μk̄)
k+Cg

dimg and c2 =
(k+μk̄)
k+Cg

dimg.

6.4 Deformed bms3 algebra from a Sugawara construction

The Sugawara construction presented before can be general-

ized in order to recover the deformed bms3 algebra (3.3) from

an expanded Kač–Moody algebra. In this case we introduce

the following deformed current algebra:
[

ja
m, jb

n

]
= i f ab

c jc
m+n + k1mgabδm,−n,

[
ja
m, pb

n

]
= i f ab

c pc
m+n + k2mgabδm,−n,

[
ja
m, zb

n

]
= i f ab

czc
m+n + k3mgabδm,−n,

[
pa

m, pb
n

]
= i f ab

czc
m+n + k3mgabδm,−n,

[
pa

m, zb
n

]
= 0,

[
za

m, zb
n

]
= 0, (6.9)

which corresponds to an S-expansion of the Kač–Moody

algebra (6.4) with the semigroup S
(2)
E given in (3.1) (see the

appendix). Now we define the following quadratic combina-

tions of its generators:

Zm =
1

2k3
gab

∑

n

: za
n zb

m−n :,

Pm =
1

2k3
gab

∑

n

:
(

pa
n zb

m−n + za
n pb

m−n

)
: −

k2

k3
Zm,

Jm =
1

2k3
gab

∑

n

:
(

pa
n pb

m−n + ja
n zb

m−n + za
n jb

m−n

)

: −
k2

k3
Pm −

k1 + 3Cg

k3
Zm . (6.10)

The commutators of Jm , Pm and Zm with the generators of

(6.9) read

[
Jm, ja

n

]
= −nja

m+n,
[
Pm, ja

n

]
= −npa

m+n,[
Zm, ja

n

]
= −nza

m+n,[
Jm, pa

n

]
= −npa

m+n,
[
Pm, pa

n

]
= −nza

m+n,[
Zm, pa

n

]
= 0,[

Jm, za
n

]
= −nza

m+n,
[
Pm, za

n

]
= 0,

[
Zm, za

n

]
= 0s.

(6.11)

Using these relations the algebra of the bilinears (6.10) turns

out to be given by

[Jm,Jn] = (m − n)Jm+n +
3dimg

12

(
m3 − m

)
δm,−n,

[Jm,Pn] = (m − n)Pm+n,

[Jm,Zn] = (m − n)Zm+n,

[Pm,Pn] = (m − n)Zm+n,

[Pm,Zn] = 0,

[Zm,Zn] = 0, (6.12)

which corresponds to the deformed bms3 algebra (3.3) with

central charges c1 = 3 dimg, c2 = c3 = 0. In order to obtain

the fully centrally extended deformed bms3 algebra from

the deformed affine current algebra (6.9), we introduce the

following modified Sugawara construction:

J̃m = Jm + imgabα
a jb

m +
1

2
k1α

2δm,0,

P̃m = Pm + imgabα
a pb

m +
1

2
k2α

2δm,0,

Z̃m = Zm + imgabα
azb

m +
1

2
k3α

2δm,0. (6.13)

These generators satisfy the deformed bms3 algebra,

[
J̃m, J̃n

]
= (m − n)J̃m+n +

c̃1

12

(
m3 − m

)
δm,−n,

[
J̃m, P̃n

]
= (m − n)P̃m+n +

c̃2

12

(
m3 − m

)
δm,−n,

[
J̃m, Z̃n

]
= (m − n)Z̃m+n +

c̃3

12

(
m3 − m

)
δm,−n,

[
P̃m, P̃n

]
= (m − n)Z̃m+n +

c̃3

12

(
m3 − m

)
δm,−n,

[
P̃m, Z̃n

]
= 0,[

Z̃m, Z̃n

]
= 0 ,

where the central charges are given by

c̃1 = 3dimg + 12k1α
2,

c̃2 = 12k2α
2,

c̃3 = 12k3α
2 .

6.5 vir3 algebra

The deformed bms3 algebra can also be obtained as an IW

contraction of the Sugawara construction associated with an

S-expansion of the Kač–Moody algebra using the semigroup

S
(2)

M
. In fact the S

(2)

M
-expanded Kač–Moody algebra is given

by (see the appendix)

[
ja
m, jb

n

]
= i f ab

c jc
m+n + k1mgabδm,−n,

[
ja
m, pb

n

]
= i f ab

c pc
m+n + k2mgabδm,−n,

[
ja
m, zb

n

]
= i f ab

czc
m+n + k3mgabδm,−n,

[
pa

m, pb
n

]
= i f ab

czc
m+n + k3mgabδm,−n,

[
za

m, pb
n

]
= i f ab

c pc
m+n + k2mgabδm,−n,

[
za

m, zb
n

]
= i f ab

czc
m+n + k3mgabδm,−n, (6.14)
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which, through the redefinitions za
m = la

m + l̄a
−m , pa

m = la
m −

l̄a
−m and ja

m = l̃a
m + la

m + l̄a
−m , can be written as the direct

product of three identical commuting Kač–Moody algebras

with levels k = k3+k2
2

, k̄ = k3−k2
2

and k̃ = k1 − k3:

[
la
m, lb

n

]
= i f ab

clc
m+n + kmgabδm,−n,

[
l̄a
m, l̄b

n

]
= i f ab

c l̄c
m+n + k̄mgabδm,−n,

[
l̃a
m, l̃b

n

]
= i f ab

c l̃c
m+n + k̃mgabδm,−n .

Therefore, considering three independent Sugawara con-

structions

ℓm =
1

2(k + Cg)
gab

∑

n

: la
n lb

m−n :,

ℓ̄m =
1

2(k̄ + Cg)
gab

∑

n

: l̄a
n l̄b

m−n :,

ℓ̃m =
1

2(k̃ + Cg)
gab

∑

n

: l̃a
n l̃b

m−n :,

one can trivially obtain the vir3 algebra (3.8) with central

charges c = kdimg
k+Cg

, c̄ = k̄dimg

k̄+Cg
and c̃ = k̃dimg

k̃+Cg
. This means

that, using the relation (3.7), one can define

Zm =
σ 2

2(k + Cg)
gab

∑

n

:
(

la
n lb

m−n − μl̄a
n l̄b

−m−n

)
:,

Pm =
σ

2(k + Cg)
gab

∑

n

:
(

la
n lb

m−n + μl̄a
n l̄b

−m−n

)
:,

Jm =
1

2(k + Cg)
gab

∑

n

:
(

la
n lb

m−n − μl̄a
n l̄b

−m−n + νl̃a
n l̃b

−m−n

)
:,

(6.15)

where μ =
k+Cg

k̄+Cg
and ν =

k+Cg

k̃+Cg
. It is easy to verify that

the bilinear combinations (6.15) satisfy the deformed bms3

algebra (3.3) in the limit σ → ∞ with central charges c1 =

(k−μk̄)
k+Cg

dimg, c2 =
(k+μk̄)
k+Cg

dimg and c3 =

(
k+νk̃

)

k+Cg
dimg.

6.6 Generalization

Following the same steps as described above, one can in

principle always find a generalized (modified) Sugawara con-

struction that, given a semigroup S, allows one to pass from

the S-expanded Kač–Moody algebra to the corresponding

S-expanded Virasoro algebra. As we have seen, the Sug-

awara construction for the bms3 algebra and for the deformed

bms3 algebra are quite cumbersome and therefore their gen-

eralization for virBk
with k > 4 will not be given here.

In the case of the generalized conformal algebras virCk
, the

Sugawara constructions presented here have been somewhat

straightforward, as the cases k = 3 and k = 4 correspond the

direct product of two and three copies of the Virasoro alge-

bra, respectively. However, as we have stressed in Sect. 4.2,

for k > 4 it is not true anymore that the virCk
algebras can

be written as products of single copies of the Virasoro alge-

bra and therefore the Sugawara construction will be more

complicated.

7 Comments and further developments

In this paper we have presented the general setup to

obtain new infinite-dimensional algebras by applying the S-

expansion method to the Virasoro algebra. Interestingly, the

algebras obtained here contain known finite algebras as sub-

algebras and inherit the way they are related between each

other. Indeed, the following diagram summarizes the IW con-

tractions that relate the Poincaré, AdS, Maxwell and AdS–

Lorentz algebras in 2+1 dimensions as well as their relation

with the Lorentz algebra through different S-expansions:

Ad S3 Ad S3 ⊕ Lorentz

տZ2 ր
S

(2)

M

↓ IW Lorentz ↓ IW

ւ
S

(1)
E

ցS
(2)
E

Poincaré
Deformation

−→
+ Enlargement

Maxwell

In the first part of this article we have shown that the centrally

extended 2D-conformal algebra vir2 as well as the bms3 alge-

bra can be obtained as S-expansions of the Virasoro algebra

using the semigroups Z2 and S
(1)
E , respectively. Subsequently

we showed that, using the semigroups S
(2)

M
and S

(2)
E , the S-

expansion leads to three copies of the Virasoro algebra in

the former case and to a deformed bms3 algebra in the lat-

ter case. These algebras correspond to infinite-dimensional

lifts of the AdS–Lorentz and Maxwell algebras and, further-

more, the deformed bms3 algebra can be obtained as an IW

contraction of vir3. This means that the infinite-dimensional

symmetries presented here satisfy the same IW contraction

and expansion relations as their finite-dimensional subalge-

bras presented in the previous diagram, i.e.,

vir2 vir3

տZ2 ր
S

(2)
M

↓ IW vir ↓ IW

ւ
S

(1)
E

ցS
(2)
E

bms3
Deformation

−→
+ Enlargement

Deformed bms3

In Sect. 4, we have generalized the previous results by con-

sidering expansions of the Virasoro algebra with the semi-

groups S
(k−2)

M
and S

(k−2)
E to obtain two sets of families of

infinite-dimensional algebras that we have called general-

ized bms3 algebras and generalized 2D-conformal algebras.

These families are denoted, respectively, by virCk
and virCk

,

and reduce to the infinite-dimensional algebras previously

123
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discussed for k = 3 and k = 4. Furthermore, they turn out

to be related by an IW contraction for every value of k

Generalized 2D-conformal algebra
(
virCk

)

ր
S

(k−2)

M

vir ↓ IW

ցS
(k−2)
E

Generalized bms3 algebra
(
virBk

)

In Sect. 5 we have introduced another family of infinite-

dimensional algebras, virDk
, which can be obtained by

expanding the Virasoro algebra using the semigroup S
(k−2)
D ,

and showed the simplest examples explicitly. These algebras

can always be written as the direct product vir2 ⊕Bk−2 after

a suitable change of basis.

In Sect. 6 the Sugawara construction has been applied

to expanded Kač–Moody algebras to obtain the expanded

Virasoro algebras and the cases k = 3 and k = 4 have

been worked out explicitly. This result is remarkable as it

means that these new infinite-dimensional symmetries could

be related to some kind of generalized WZW theories whose

current algebras are given by expanded Kač–Moody alge-

bras. In that case the algebras virBk
or virCk

should be recov-

ered as the Poisson algebras for the stress-energy momentum

tensor components in the very same way as it happens for vir2

and bms3.

In the context of gravity, upon imposing suitable bound-

ary conditions, the algebras vir2 and bms3 appear as the

asymptotic symmetries of asymptotically AdS and Asymp-

totically flat three-dimensional Einstein gravity, respectively.

We conjecture that the new infinite-dimensional algebras

virBk
, virCk

and virDk
obtained here correspond the asymp-

totic symmetries of 3D gravity theories invariant under the

algebras Bk , Ck or Dk when suitable boundary conditions

for the fields content are adopted. These theories of gravity

can be straightforwardly constructed by considering Chern–

Simons actions invariant under these algebras. This will be

the subject of a subsequent article.

On the other hand, it is well known that the KdV system

possesses a Virasoro symmetry related to the KdV hierarchy

[86]. This result can be used to construct an infinite set of

boundary conditions for 3D gravity [87]. Along this line it

would be interesting to evaluate the existence of integrable

systems associated with expanded Virasoro symmetries and

they hierarchies as well as their relations to boundary condi-

tions for gravity theories invariant under the algebras Bk or

Ck .

Another natural generalization of our results is to extend

the expansion method to N -extended supersymmetric exten-

sion of asymptotic symmetries. In particular, it would be

interesting to study S-expanded super Virasoro symmetries.

However, this would require a more subtle treatment than the

one introduced here. Indeed, one cannot naively consider the

expansion of a super Virasoro structure. The general setup

and the respective supergravity models will be presented in a

future paper. As an ending remark: it would be worth explor-

ing the expansion procedure to higher spin extension of grav-

ity theories in 2 + 1 dimensions.
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Appendix

A Generalized Kač–Moody algebras

Let us consider the Kač–Moody algebra ĝk ,

[
ja
m, jb

n

]
= i f ab

c jc
m+n + kmgabδm,−n, (A.1)

which corresponds to the central extension of the loop algebra

of a semi-simple Lie algebra g. One can show that two fam-

ilies of Kač–Moody-like algebras can be obtained applying

diverse semigroups S to ĝk . Let S
(k−2)
E = {λ0, λ1, . . . , λk−1}

be the finite abelian semigroup whose elements satisfy (4.1)

and λk−1 = 0s is the zero element of the semigroup. Then

the S
(k−2)
E -expanded algebra is given by

[
ja
(m,α), jb

(n,β)

]

=

⎧
⎨
⎩

i f ab
c jc

(m+n,α+β)

+kα+β+1mgabδm,−n if α + β ≤ k − 2

0 if α + β > k − 2

(A.2)

where we have defined kα+β+1 ≡ kαβ = kK
γ

αβλγ . One

can see that the S
(k−2)
E -expanded algebras always contain an

abelian ideal generated by the set

A =
{

ja
(m,α̃)

}
, α̃ =

[
k

2

]
, . . . , k − 2,

and for which
[

ja
(m,α̃)

, jb(
m,β̃

)

]
= 0,
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[
ja
(m,α̃)

, jb
(m,α)

]
∈ A + central terms. (A.3)

In particular, the Kač–Moody-like structure appears by

redefining the generators in the form

ja(i)
m ≡ ja

(m,i) = λiℓm,

pa(ı̄)
m ≡ ja

(m,ı̄) = λı̄ℓm, (A.4)

where i takes even values and ı̄ takes odd values. This allows

one to write the S
(k−2)
E -expanded algebras in the form

[
ja(i)
m , j

b( j)
n

]
= i f ab

c j
c(i+ j)
m+n

+ ki+ j+1mgabδm,−n for i + j ≤ k − 2,[
ja(i)
m , pb(ı̄)

n

]
= i f ab

c p
c(i+ı̄)
m+n

+ ki+ı̄+1mgabδm,−n for i + ı̄ ≤ k − 2,[
pa(ı̄)

m , p
b( j̄)
n

]
= i f ab

c j
c(ı̄+ j̄)
m+n

+ kı̄+ j̄+1mgabδm,−n for ı̄ + j̄ ≤ k − 2,

others = 0. (A.5)

Let us note that, for k = 3, the semigroup corresponds to

the S
(1)
E whose elements satisfy (2.11) and the commutation

relations (A.5) reduce to the affine current algebra given by

(6.4). The case k = 4 reproduce the S
(2)
E -expanded algebra

whose generators satisfy (6.9).

An alternative family of generalized Kač–Moody algebras

can be obtained applying the S
(k−2)

M
= {λ0, λ1, . . . , λk−2}

semigroup to ĝk . Considering the multiplication law of the

semigroup (4.6) one can show that the S
(k−2)

M
-expanded alge-

bra takes the form

[
ja
(m,α), jb

(n,β)

]

=

⎧
⎪⎪⎨
⎪⎪⎩

i f ab
c jc

(m+n,α+β)
+ kα+β+1mgabδm,−n if α + β ≤ k − 2,

i f ab
c jc(

m+n,α+β−2
[

k−1
2

])

+ k
α+β−2

[
k−1

2

]
+1

mgabδm,−n if α + β > k − 2.

(A.6)

One can redefine the generators in the form (A.4) leading to

the following generalized affine current algebra:
[

ja(i)
m , j

b( j)
n

]
= i f ab

c j
c{i+ j}
m+n + k{i+ j}+1mgabδm,−n,

[
ja(i)
m , pb(ı̄)

n

]
= i f ab

c p
c{i+ı̄}
m+n + k{i+ı̄}+1mgabδm,−n,

[
pa(ı̄)

m , p
b( j̄)
n

]
= i f ab

c j
c
{
ı̄+ j̄

}

m+n + k{
ı̄+ j̄

}
+1mgabδm,−n,

(A.7)

where {· · · } means the following:

{i + j} =

{
i + j if i + j ≤ k − 2,

i + j − 2
[

k−1
2

]
if i + j > k − 2.

(A.8)

Interestingly the k = 3 and k = 4 cases reproduce two

and three copies of Kač–Moody algebras, respectively. How-

ever, for k ≥ 5 the commutation relations of the generalized

Kač–Moody algebra obtained here become non-trivial and

are given by (A.7).

It is important to mention that the two families of general-

ized Kač–Moody algebras presented here are related through

the IW contraction. Indeed, considering the rescaling of the

generators satisfying a S
(k−2)

M
-expanded algebra (A.7)

j0
m → j0

m, j i
m → σ i j i

m, pı̄
m → σ ı̄ pı̄

m,

k1 → k1, ki+1 → σ i ki+1, kı̄+1 → σ ı̄ kı̄+1,

the limit σ → ∞ leads to the S
(k−2)
E -expanded algebra (A.5).
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