
Generalizing the Optimality of Multi-Step
k-Nearest Neighbor Query Processing

Hans-Peter Kriegel, Peer Kröger, Peter Kunath, and Matthias Renz

Institute for Computer Science, Ludwig-Maximilians Universität München
{kriegel,kroegerp,kunath,renz}@dbs.ifi.lmu.de

WWW home page: http://www.dbs.ifi.lmu.de

Abstract. Similarity search algorithms that directly rely on index struc-
tures and require a lot of distance computations are usually not applica-
ble to databases containing complex objects and defining costly distance
functions on spatial, temporal and multimedia data. Rather, the use of
an adequate multi-step query processing strategy is crucial for the per-
formance of a similarity search routine that deals with complex distance
functions. Reducing the number of candidates returned from the filter
step which then have to be exactly evaluated in the refinement step is
fundamental for the efficiency of the query process. The state-of-the-art
multi-step k-nearest neighbor (kNN) search algorithms are designed to
use only a lower bounding distance estimation for candidate pruning.
However, in many applications, also an upper bounding distance ap-
proximation is available that can additionally be used for reducing the
number of candidates. In this paper, we generalize the traditional concept
of R-optimality and introduce the notion of RI -optimality depending on
the distance information I available in the filter step. We propose a new
multi-step kNN search algorithm that utilizes lower- and upper bound-
ing distance information (Ilu) in the filter step. Furthermore, we show
that, in contrast to existing approaches, our proposed solution is RIlu -
optimal. In an experimental evaluation, we demonstrate the significant
performance gain over existing methods.

1 Introduction

In many database applications such as molecular biology, CAD systems, multi-
media databases, medical imaging, location-based services, etc. the support of
similarity search on complex objects is required. In general, the user wants to
obtain as many true hits as soon as possible. Usually, in all these applications,
similarity is measured by metric distance functions. The most popular query
types are distance range (or ε-range) queries, k-nearest neighbor (kNN) queries,
and – more recently – reverse kNN queries. Those queries can be supported by
index structures such as the R-tree [1] or the R*-tree [2] and their variants for Eu-
clidean data or by the M-tree [3] and its variants for general metric data. These
index structures are designed for shrinking down the search space of tentative
hits in order to scale well for very large databases.

In Proc. 10th International Symposium on Spatial and Temporal Databases (SSTD'07), Boston, U.S.A., 2007.

However, index structures usually invoke a large number of distance com-
putations and, thus, do neither account for the increasing complexity of the
database objects nor for the costly distance functions used for measuring the
similarity. To cope with complex data objects and costly distance functions, the
paradigm of multi-step query processing has been defined for spatial queries
such as point queries and region queries [4, 5]. This paradigm has been extended
to similarity search in databases of complex objects performing distance range
queries [6, 7] and kNN queries [8, 9]. The key idea of multi-step query processing
is to apply a so-called filter step using a cheaper distance function, the so-called
filter distance, in order to prune as many objects as possible (as true hits or true
drops). For the remaining candidates, for which the query predicate cannot be
decided using the filter distance, the exact (more costly) distance needs to be
evaluated in the so-called refinement step.

In most applications, two different types of filter distances are commonly used
for multi-step query processing. First, a lower bounding filter distance produces
distances that are always lower or equal to the exact distance and can be used to
discard true drops. Second, an upper bounding filter distance produces distances
that are always greater or equal to the exact distance and can be used to identify
true hits. While both types of filter distances have successfully been used for
distance range queries, all existing multi-step kNN query processing algorithms
only use the lower bounding filter distance. Thus, these approaches can only
prune true drops, but cannot identify true hits in the filter step. Furthermore,
these approaches cannot report true hits already after the filter step, but need
to refine the candidates before reporting them as hits. However, in applications
where the results are further processed and this processing is quite costly due
to the complexity of the data objects, it is desirable to output true hits as soon
as possible even if the result set is not yet complete. Obviously, using an upper
bounding filter distance may allow to output a first set of true hits already after
the filter step before refinement. In addition, using an upper bounding filter
distance could significantly reduce the number of candidates that need to be
refined and, thus, could clearly improve query execution times. As a consequence,
the storage required to manage intermediate candidates during the entire filter-
refinement procedure can also be reduced.

In general, using also upper bounding distance information in the filter step
yields several advantages as long as no ranking of the kNNs is needed. However,
in many applications, users only want the result of a given kNN query rather
than a ranking. For example, a restaurant owner planning a public relations
campaign by sending a fixed number k of flyers to potential costumers may
choose the k customers with the smallest distance to the restaurant’s location.
In addition, many data mining algorithms that rely on kNN computation such
as density-based clustering, kNN classification, or outlier detection only require
the result of a kNN query, but not its ranking. Many of those methods use the
result of kNN queries for further processing steps.

In this paper, we propose a novel multi-step query processing algorithm for
kNN search using both a lower and an upper bound in the filter step. We show

that this algorithm is optimal, i.e. that it produces a minimum number of can-
didates which need to be refined. For that purpose, we generalize the notion
of R-optimality taking the distance estimations available in the filter step into
account. In a broad experimental evaluation, we show that when using our novel
multi-step query algorithm, the application of an upper bound in addition to
a lower bound in the filter step yields a significant performance gain over the
traditional approach using only lower bounding distance approximations. In par-
ticular, we show that this performance gain is not only in terms of the number
of candidates that need to be refined, implying a runtime improvement, but also
in terms of space requirements.

The rest of the manuscript is organized as follows. In Section 2 we discuss
existing multi-step kNN query processing algorithms. A generalized notion of
the optimality for multi-step kNN algorithms is presented in Section 3. Section
4 presents a novel multi-step kNN algorithm that meets the requirements of our
new generalized optimality. Section 5 presents our experimental evaluation and
Section 6 concludes the paper.

2 Multi-step kNN Query Processing

Let D be a database of objects and dist be a distance function on these objects.
For a given query object q and a given positive integer k ∈ N

+, a k-nearest
neighbor (kNN) query on a database D retrieves the objects in D that have the
k smallest distances to q, formally

Definition 1 (kNN query, kNN-distance). For a query object q and a query
parameter k ∈ N, a kNN query in D returns the smallest set NND(q, k) ⊆ D
that contains (at least) k objects from D, for which the following condition holds:

∀o ∈ NND(q, k),∀o′ ∈ D − NND(q, k) : dist(q, o) < dist(o′, q).

With nnk−dist(q,D) = max{dist(q, o)|o ∈ NND(q, k)} we denote the kth nearest
neighbor distance (also called kNN-distance) of q (w.r.t. D).

Since the database D is usually clear from context, we write NN(q, k) and
nnk−dist(q) instead of NND(q, k) and nnk−dist(q,D), respectively.

Let us note that in case of tie situations we include all ties into the result
set. Thus, the cardinality of the result set may exceed k and the result of a kNN
query is deterministic.

A naive solution for answering a given kNN query is to scan the entire
database D and test for each object if it is currently among the k-nearest
neighbors. This naive algorithm has a runtime complexity of O(N · QP), where
N = |D| denotes the number of objects in D and QP denotes the cost of evaluat-
ing the query predicate for one single object, which is usually dominated by the
complexity of the applied distance function dist. Obviously, using such a naive
solution for kNN query processing is very expensive and not feasible for a very
large set of complex objects. In fact, the problem is two-fold: On one hand, since

d
a
ta
b
a
s
e

fi
lt
e
r
s
te
p

drops

re
fi
n
e
m
e
n
t

re
s
u
lt

hits

candidates

multi-step query processor

q
u
e
ry

Fig. 1. Multi-step query processor.

the number of objects N in a database is usually very large, a sequential scan
over all objects to evaluate the query predicate would produce very high I/O
cost. On the other hand, due to the complexity of the distance function used in
the above mentioned applications, the evaluation of the query predicate QP of
one single object usually demands high CPU cost. In addition, many applications
deal with very large objects such as audio or video sequences. As a consequence,
the evaluation of the query predicate also invokes I/O cost and, thus, the cost
for evaluating a query predicate become the bottleneck during query processing.

Indexing methods (i.e., single-step query processing solutions) that enable
to prune large parts of the search space help to reduce the set of objects for
which the query predicate has to be evaluated, i.e. address the first problem
of high I/O cost due to a sequential scan. Theoretically, using an index, the
runtime complexity is decreased to O(log N · QP). However, index structures
have two important drawbacks when dealing with complex objects and costly
distance functions. First, indexes in general rely on the assumption that the
distance function used is a metric. Otherwise, if the distance function defined
on the database objects is not metric (in particular if the triangle inequality is
not fulfilled), indexes cannot be applied. Second, and more severely, indexes are
primarily designed to reduce the number of page accesses, but usually invoke the
evaluation of the query predicate for many objects, e.g. during the index traversal
and for the evaluation of the candidates reported from the indexing method.
Obviously, when dealing with complex objects where QP is the bottleneck, a
single-step query processing strategy is no longer feasible. Rather, a multi-step
query processing approach is required reducing the set of result candidates in a
filter step using an approximate evaluation of the query predicate which can be
computed much faster than the exact evaluation (and optimally does not invoke
extra I/O cost). This reduces the QP -part of the runtime complexity. In the filter
step, as many hits and drops as possible (the amount obviously depends on the
quality of the approximation) may already be identified. Finally, the remaining
candidates have to be exactly evaluated in a refinement step in order to complete
the result set. Since the filter step can also be supported by an index structure,

k-NearestNeighborSearch(q,k)

1 initialize ranking on index I
2 initialize result = sorted list〈key, object〉
3 initialize dmax = ∞ // stop distance
4 while o= ranking.getnext() and LB(q, o) ≤ dmax do
5 if dist(q, o) ≤ dmax then result.insert(dist(q, o),o)
6 if result.length ≥ k then dmax = result [k].key
7 remove all entries from result where key > dmax

8 endwhile
9 report all entries from result

Fig. 2. Multi-step kNN algorithm proposed in [9].

additionally the N part in the runtime complexity is decreased. A schematic
description of the multi-step query processor is illustrated in Figure 1.

Obviously, a multi-step kNN algorithm is correct if the algorithm does nei-
ther produce false drops in the filter step, i.e. all drops do not fulfill the query
predicate, nor produce false hits, i.e. all hits reported from the filter step really
fulfill the query predicate.

The state-of-the-art multi-step kNN search method is the algorithm proposed
in [9]. It uses a lower-bounding distance estimation LB in the filter step which is
always lower or equal to the exact distance, i.e. for any query object q the lower
bounding property

∀o ∈ D : LB(q, o) ≤ dist(q, o)

holds. A lower bounding filter can be used to prune true drops. The basic idea
of the proposed method in [9] is to iteratively generate candidates sorted by
ascending lower bounding filter distances to the query object q. For that purpose,
a ranking [10] of the database objects w.r.t. their filter distances to q is used.
The multistep kNN query processing proposed in [9] is initialized with the first
k objects from the ranking sequence having the k smallest filter distances. These
objects are refined, i.e. their exact distances to q are computed, and are inserted
into the current result set (sorted by ascending exact distances to q), representing
the kNN of q w.r.t. the already refined objects. A so-called stop distance dmax

is initialized as the distance of q to the kth object in the current result set
representing the kNN-distance of q w.r.t. the already refined objects. Now, an
iteration starts that, in each step, performs the following: First, the next object c
from the ranking sequence is fetched. If this object has a lower bounding distance
estimation to q larger than the stop distance, i.e. LB(q, c) > dmax, the iteration
stops. Otherwise, c is refined, i.e. the exact distance dist(q, c) is computed, and,
if necessary, c is added to the current result set and the stop distance dmax is
adjusted. When the iteration stops, the current result set contains the kNN of
q. The pseudo code of this algorithm is depicted in Figure 2.

In [9], the optimality w.r.t. the number of refined objects necessary for mul-
tistep kNN query processing is evaluated and formalized by the concept of R-
optimality. An algorithm is defined to be R-optimal, if it produces no more

o1
o2
o3
o4
o5
o6
o7
o8
o9
o10
o11
o12

LB(q,o1) dist(q,o1)

distance
nn8-dist(q)

(a) only with lower-bounding filter
distance.

o1
o2
o3
o4
o5
o6
o7
o8
o9
o10
o11
o12

LB(q,o1)

dist(q,o1)

distance

UB(q,o1)

nn8-dist(q)

(b) with lower- and upper-bounding
filter distances.

Fig. 3. k-nearest neighbor candidates (k=8)

candidates for refinement than necessary. It is shown that a multi-step kNN
algorithm is correct and R-optimal iff it exactly retrieves the candidate set
{o|LB(o, q) ≤ nnk−dist(q,D)} from the filter step.

3 Generalizing the Definition of Optimality

As indicated above, the algorithm presented in [9] uses only a lower bounding
distance estimation in the filter step. However, it is in general sensible to use
additional information, in particular an upper bounding filter distance. An upper
bounding filter distance estimation UB is always greater or equal to the exact
distance, i.e. for any query object q the following upper bounding property holds:

∀o ∈ D : UB(q, o) ≥ dist(q, o).

Using also an upper bounding filter distance yields several important advan-
tages. First, beside pruning true drops with the lower bound we can additionally
identify true hits using the upper bounding filter distance. This is illustrated in
Figure 3. It depicts for a given query object q the exact distances dist(q, o) for
twelve sample objects o1, .., o12 (k = 8). We can distinguish two cases of correct
candidate sets returned from the filter-step depending on the distance approx-
imations used: Figure 3(a) shows the case where only a lower bounding filter
distance LB is given in the filter-step and Figure 3(b) shows the case where we
are given both a lower bounding LB and an upper bounding UB filter distance
(illustrated by the bars). In both cases, we marked those objects which have

to be returned as candidates from the filter-step. In the first case (cf. Figure
3(a)), we have to refine all objects o ∈ D for which the lower bounding distance
LB(q, o) is smaller than or equal to the kNN-distance of q, i.e. we have to refine
the ten objects o1, ..., o10. In fact, this does not hold for the second case (cf. Fig-
ure 3(b)), where the objects o1, o2, o4, o5 and o6 can immediately be reported
as true hits in the filter step due to the upper bounding distance information.
Thus, in contrast to Case 1, the objects o1, o2, o4, o5 and o6 need not to be
refined.

A second advantage of using also an upper bounding filter distance is that
the storage requirements of the kNN algorithm can be significantly reduced. As
discussed above, [9] uses a ranking algorithm (e.g. [10]). Such a ranking algorithm
is usually based on a priority queue. For kNN queries, we can delete true drops
(identified using LB) from that queue. Analogously, we can also delete the true
hits (identified using UB) from the queue. Thus, the storage cost during query
execution are reduced. We will see in our experiments, that using both an upper
and a lower bounding filter distance significantly decreases the size of the priority
queue (used for producing the ranking sequence) compared to algorithms that
use only a lower bound.

Last but not least, a third advantage of using not only a lower bound but also
an upper bound in the filter step is the fact that those true hits, identified already
in the filter step, can be immediately reported to the user. Thus, the user may
receive a part of the complete result directly after the filter step before the query
process is completely finished, sometimes even before the exact evaluation of the
query predicate for any object has been carried out. The produced hits in the
filter step allow the user to inspect the first results very early which is obviously
a big advantage in real applications. Unfortunately, none of the existing multi-
step query processors provide this feature because none of these methods use
suitable distance estimations in the filter step.

The first obvious question following from these considerations is whether the
algorithm proposed in [9] is really R-optimal. We will see that the answer to
this question is “yes” and “no” – and in fact depends on the type of information
(only lower bound or upper and lower bound) available in the filter step. In the
traditional sense, a multi-step kNN algorithm is called R-optimal if it does not
produce more candidates in the filter-step than necessary. As discussed above,
the number of candidates that definitely need to be refined depends on the
distance approximation available in the filter step. Obviously, it is sensible to
define “optimality” in the context of which kind of information I is available
in the filter step. In the following, we present the notion of RI -optimality as a
generalization of the traditional R-optimality.

Definition 2 (Generalized Optimality). Given an information class I defin-
ing a set of distance approximations available in the filter step, a multi-step kNN
algorithm is called RI -optimal if it does not produce more candidates in the filter-
step than necessary.

Interesting information classes are Il = {LB}, i.e. only a lower bounding
distance approximation is available in the filter step, and Ilu = {LB, UB}, i.e.

nnk-dist(q)

LB UB

<

case 1:
case 2:
case 3:
case 4:
case 5:

correctness
correctness
R-optimality

case 6:

(a)

case 1:
case 2:
case 3:
case 4:
case 5:

R-optimality
correctness
correctness

case 6:

LB UB

nnk-dist(q) <

(b)

Fig. 4. Illustration of the proof of Lemma 1.

both a lower and an upper bounding distance approximation is available in the
filter step. In general, RIl

-optimality corresponds to the traditional concept of
R-optimality proposed in [9]. The lemma given in [9] identifies those algorithms
which are correct and RIl

-optimal. It states that a multi-step kNN algorithm
is correct and RIl

-optimal if and only if it exactly retrieves the candidate set
{o|LB(q, o) ≤ nnk−dist(q,D)} from the filter step. In [9], such an RIl

-optimal
algorithm is presented.

For the information class Ilu we can also identify the minimum set of candi-
dates that is produced by a correct and RIlu

-optimal algorithm.

Lemma 1. A multi-step kNN algorithm is correct and RIlu
-optimal, iff it refines

the candidate set

{o ∈ D|LB(q, o) ≤ nnk−dist(q,D) ≤ UB(q, o)} (Case 1)

if there are more than k candidates c ∈ D with LB(q, c) ≤ nnk−dist(q,D)
and, otherwise, it refines the candidate set

{o ∈ D|LB(q, o) ≤ nnk−dist(q,D) < UB(q, o)} (Case 2)

from the filter step.

Proof. Assume the following algorithm: For an arbitrary query range ε, we obtain
the object set S = {o ∈ D|LB(q, o) ≤ ε}. The objects in D − S are pruned as
true drops. Then, we retrieve the candidate set C = {o ∈ S|ε < UB(q, o)} ⊆ S
which has to be refined in the refinement step, the remaining objects in S−C are
immediately reported as hits. We show that this algorithm can only be correct
and RIlu

-optimal if ε = nnk−dist(q,D).

1. Let ε < nnk−dist(q,D):
Then, there may exist an object o ∈ D for which the following estimation

chain holds: ε < LB(q, o) ≤ dist(q, o) ≤ nnk−dist(q,D) (cf. Cases 2-3 in
Figure 4(a)). The last inequality implies that o ∈ NN(q, k). However, due
to the first inequality of the chain, we have o �∈ S, i.e. o will be pruned as a
false drop. This contradicts the correctness of the algorithm.
Furthermore, there may exist an object o ∈ D for which the following esti-
mation chain holds: LB(q, o) ≤ ε < UB(q, o) ≤ nnk−dist(q,D) (cf. Case 4 in
Figure 4(a)). The first and second inequalities indicate that o ∈ C, i.e. o is a
candidate that will be refined. However, due to the third inequality, it can be
definitely decided that o ∈ NN(q, k) and, thus, a refinement of the distance
between q and o is not necessary which contradicts the RIlu

-optimality.
2. Let ε > nnk−dist(q,D):

Then, there may exist an object o ∈ D for which nnk−dist(q,D) < LB(q, o) ≤
ε < UB(q, o) (cf. Case 2 in Figure 4(b)), i.e. o ∈ C will be refined. However,
due to the lower bounding property, nnk−dist(q,D) < LB(q, o) ≤ dist(q, o)
holds. Thus, o �∈ NN(q, k), and the algorithm cannot be RIlu

-optimal.
Furthermore, there may exist an object o ∈ D for which nnk−dist(q,D) <
dist(q, o) ≤ UB(q, o) ≤ ε (cf. Cases 3 and 4 in Figure 4(b)). The second
and the third inequalities indicate that LB(q, o) ≤ ε and o ∈ S − C, i.e. o
is reported as hit without refinement. However, from the first inequality it
follows that o �∈ NN(q, k) and, thus, the algorithm cannot be correct.

Thus, only ε = nnk−dist(q,D) achieves correctness and RIlu
-optimality does

not lead to any contradiction.
Obviously, all objects in the set {o ∈ D|LB(q, o) ≤ nnk−dist(q,D) < UB(q, o)}

have to be refined in order to determine, whether they fulfill the query predi-
cate or not (Case 2). All objects o ∈ D for which UB(q, o) ≤ nnk−dist(q,D)
holds, need not be refined, because dist(q, o) ≤ nnk−dist(q,D) due to the up-
per bounding property. However, if the number of candidates c with LB(q, c) ≤
nnk−dist(q,D) exceeds k (Case 1), we cannot decide whether those objects c
for which UB(q, o) = nnk−dist(q,D) holds, are hits or drops. The reason for
this is the following: no algorithm can anticipate the real nnk−dist(q,D) and,
thus, other candidates c′ could have a smaller dist(q, c′). If so, we would have
nnk−dist(q,D) < UB(q, c) and, thus, c would be a true drop. To make this deci-
sion in a correct way, c needs to be refined although UB(q, c) ≥ nnk−dist(q,D).
In tie situations, there may be more such objects c that need to be refined
although nnk−dist(q,D) ≥ UB(q, c). �

At first glance, Case 1 of Lemma 1 may appear to be rather arbitrary. How-
ever, as discussed in the proof of Lemma 1, there may be some situations where
we need to consider both cases. Let oi be the kNN of a query object q such that
UB(q, oi) = dist(q, oi) = nnk−dist(q,D). Let the object oj be a candidate with
LB(q, oj) ≤ UB(q, oi) = nnk−dist(q,D). Then, oj cannot be pruned before the
exact kNN-distance has been computed. In addition, if we have a tie situation,
e.g. dist(q, oj) = nnk−dist(q,D) = dist(q, oi), the kNN set of q cannot be deter-
mined correctly without the refinement of the object oi (contradicting Case 2).
The reason for this is that we cannot evaluate the query predicate for oj cor-
rectly even if we refine oj and compute dist(q, oj). If dist(q, oi) < dist(q, oj), then

algorithm kNN(QueryObject q, Integer k, DBIndex I)

// Step 1: Initialization
SortedList result;
SortedList candidates;
initialize ranking on I w.r.t. lower bounding distance approximation;
fetch the first k objects from ranking and add them to candidates;
dmin = kth smallest lower bound of the elements in candidates;
dmax = kth smallest upper bound of the elements in candidates;
df next = lower bounding distance of the next element in ranking ;

do {
update dmin, dmax, and df next;

// Step 2: Fetch a candidate
if dmin ≥ df next then

fetch next object from ranking → candidates; // only if dmax ≥ df next

update dmin, dmax, and df next;

// Step 3: Identify true hits and true drops by using dmin and dmax

for all c ∈ candidates do
if UB(q, c) < dmin then add c to result;
if LB(q, c) > dmax then prune c;

// Step 4: Refine a candidate
if |results|+|candidates| > k ∨ df next ≤ dmax then

for all c ∈ candidates with LB(q, c) ≤ dmin ∧ dmax ≤ UB(q, c) do
if dist(q, c) ≤ nnk−dist(q, result) then add c to result;

else
add all remaining c ∈ candidates to result;

} while (df next ≤ dmax ∨ |candidates| > 0)

return result;

Fig. 5. RI -Optimal k-NN Algorithm.

oj �∈ NN(q, k), otherwise, if dist(q, oi) = dist(q, oj), then oj ∈ NN(q, k). How-
ever, the exact value of dist(q, oi) is obviously not known before the refinement
of oi.

From Lemma 1 it follows, that the algorithm proposed in [9] is RIl
-optimal

but not RIlu
-optimal.

4 RIlu
-optimal Multi-step kNN Search

Based on the above observations, we are able to design an algorithm that is RIlu
-

optimal. The pseudo-code of our algorithm is depicted in Figure 5. The algorithm
iteratively reduces the candidate set, where in each iteration it identifies true
drops, true hits and/or refines a candidate for which the query predicate cannot
be determined without the refinement.

The algorithm starts with the initialization of the incremental ranking on the
used index according to the lower-bounding distances of all objects. Then, the

first k candidates are fetched from the ranking sequence into the candidate list
(Step 1). In order to detect which candidate must be refined, we use two variables
dmin and dmax generating a lower-bounding and an upper-bounding distance
estimation of the exact k-NN distance, i.e. dmin ≤ nnk−dist(q,D) ≤ dmax. The
basic idea of our algorithm is that we can use this restriction of the exact k-NN
distance in order to identify those candidates c with LB(q, c) ≤ nnk−dist(q,D) ≤
UB(q, c) which must be refined due to Lemma 1. Furthermore, as the stop
criterion of the main loop, we initialize the variable df next reflecting the lower-
bounding distance of the top element of the ranking sequence to q.

In the main loop, we first update the variables dmin, dmax and df next as
depicted. Then, we fetch the next candidate o from the ranking sequence into
the candidate set candidates, if dmin ≥ df next holds (Step 2). This condition
guarantees that we fetch only the next candidate from the ranking query if the
variable dmin does not guarantee the conservative estimation of the exact k-
NN distance any more. This ensures the RIlu

-optimality of the algorithm and
guarantees that our algorithm does not produce unnecessary candidates. Then,
the lower-bounding distance estimation of the newly fetched candidate must lie
on the new dmin value after the update of the dmin variable. Hence, the fetch
candidate either is a true hit or covers the exact kNN-distance, and thus, must
be refined. This guarantees, that our algorithm is optimal w.r.t. the number of
fetches from the ranking sequence which in turn is responsible for the optimality
according to the number of index accesses. Let us note, that our fetch routine
additionally hands over the actual dmax value to the ranking query method. This
allows us to proceed the exploration of the index only when necessary and to cut
the priority queue according to dmax in order to decrease the size of the queue.
After fetching a new candidate, we have to update the variables dmin, dmax and
df next in order to keep the consistency of the used distance estimation variables.

Step 3 of the algorithm identifies the hits and drops according to the dmin and
dmax values. Obviously, all candidates c with UB(q, c) < dmin can be returned
immediately as hits and all candidates c′ with LB(q, c′) > dmax can be pruned.

Next, if the number of received results plus the remaining number of can-
didates are greater than k and if the condition df next ≤ dmax holds, then we
refine the next candidate (Step 4). The first condition indicates whether it is still
necessary to refine a candidate. The reason for this condition is, that, if the re-
maining candidates definitely must belong to the query result because there are
no concurrent candidates available any more, we can stop the refinement and
immediately report the remaining candidates as hits. If both conditions hold,
the algorithm refines a candidate c with LB(q, c) ≤ dmin and dmax ≤ UB(q, c).
As mentioned above, this procedure guarantees the RIlu

-optimality of this algo-
rithm. We will show later that there must always be a candidate that fulfills the
above refinement criterion.

If df next > dmax, i.e. the top element of the ranking sequence can be pruned
as true drop or if there are no more candidates left, the main loop stops.

In the following, we show that our algorithm RI -Optimal kNN is (1) fetch
optimal in the number of fetches from the ranking sequence, (2) correct, and (3)

RIlu
-optimal. Let us note, that fetch optimal corresponds to a minimal number of

disk accesses of the underlying index on which the ranking sequence is computed
when using access optimal ranking query algorithms (e.g. [10]).

We start with showing that the variables dmin and dmax conservatively and
progressively approximate the exact kNN-distance nnk−dist(q,S), where S ⊆ D
is the set of candidates in a particular iteration of the algorithm.

Lemma 2. Let q be a query object and S ⊆ D be the set of candidates in a
particular iteration of the algorithm. Then, dmin ≤ nnk−dist(q,S) ≤ dmax.

Proof. dmin is the kth lower-bounding distance of objects from S to q and dmax

is the kth upper-bounding distance of objects from S to q.
First, we show that dmin ≤ nnk−dist(q,S). We know that there are at least

k objects o ∈ S with dist(q, o) ≤ nnk−dist(q,S). Consequently, there must be
at least k objects o ∈ S with LB(q, o) ≤ nnk−dist(q,S), and thus, dmin ≤
nnk−dist(q,S).

The second property nnk−dist(q,S) ≤ dmax can be shown in a similar way.
We know that there are at least k objects o ∈ S with UB(q, o) ≤ dmax. Conse-
quently, there must be at least k objects o ∈ S with dist(q, o) ≤ dmax, and thus,
nnk−dist(q,S) ≤ dmax. �

Fetch-optimality. In order to verify that our novel algorithm is fetch optimal,
we have to show that the lower-bounding distance estimation LB of the newly
fetched candidate in Step 2 is equal to the new dmin value after the update
of the dmin variable. dmin corresponds to the kth-smallest lower-bounding dis-
tance of the candidates which are already fetched from the ranking sequence.
Let c denote the already fetched candidate for which LB(q, c) = dmin actually
holds. We only fetch the next candidate c′ if LB(q, c′) ≤ dmin. Then, either
LB(q, c′) = dmin which trivially fulfills the criterion, or LB(q, c′) < dmin. In
the last case, LB(q, c) would not be the kth-smallest lower-bounding distance
estimation anymore, because c′ is an additional already fetched candidate with
LB(q, c′) < LB(q, c). Hence, dmin has to be set to LB(q, c′). Consequently, as
mentioned above, the fetched candidate c′ either is a true hit or certainly covers
the kNN-distance and, thus, must be refined.

Correctness. Due to Lemma 2, the candidates c with UB(q, c) ≤ dmin can safely
be reported as hits because dist(q, c) ≤ UB(q, c) ≤ dmin. Similarly, candidates c
with LB(q, c) > dmax can be safely pruned, since dist(q, c) ≥ LB(q, c) ≥ dmax.
In summary, our algorithm is correct, i.e. does not produce false hits or false
drops.

RIlu
-optimality. We can prove that our algorithm is RIlu

-optimal by showing
that we only refine candidates whose lower- and upper-bounding filter distances
cover the exact kNN-distance. In fact, we only refine those candidates c with
LB(q, c) ≤ dmin and dmax ≥ UB(q, c). Thus, according to Lemma 2, the RI -
optimality is guaranteed. However, this works only if in Step 4 of the algorithm
there exists at least one candidate c with LB(q, c) ≤ dmin and dmax ≤ UB(q, c).

Table 1. Summary of real-world test datasets.

Dataset description # objects distance ratio of the cost of
filter vs. refinement

San Joaquin road network 18,263 nodes Dijkstra 1/300

Protein protein graph 1,128 proteins graph kernel 1/2,000

Plane voxelized 3D CAD 35,950 voxel Euclidean 1

Timeseries audio timeseries 2400 clips DTW 1/150

Lemma 3. Let q be the query object and S ⊆ D be a set of candidates for
which the lower-bounding and upper-bounding distance estimations (LB(q, c)
and UB(q, c) for all c ∈ S) are known. Furthermore, let dmin denote the kth-
smallest lower-bounding distance estimation and dmax denote the kth-smallest
upper-bounding distance estimation in S. Then, the following statement holds:

∃o ∈ S : LB(q, o) ≤ dmin ≤ dmax ≤ UB(q, o).

Proof. Obviously, there must exist at least one candidate o ∈ S with dmin =
LB(q, o) and at least one candidate p ∈ S with dmax = UB(q, p). Let us assume,
that the statement in Lemma 3 does not hold, then for all candidates c ∈ S it
holds that LB(q, c) > LB(q, o) ∨ UB(q, c) < UB(q, p), i.e. this also holds for
o and p. Thus, if LB(q, o) < LB(q, p) and UB(q, o) < UB(q, p) it follows that
o �= p.

As a consequence, for k = 1, we have dmin = LB(q, o) and dmax = UB(q, o) �=
UB(q, p) which contradicts the assumption about dmax.

Analogously, for k > 1, there must be at least k candidates c ∈ S with
LB(q, c) ≤ LB(q, o) and there must be at most k − 1 candidates c ∈ S with
UB(q, c) < LB(q, p). Consequently there must be at least one candidate c ∈ S
with LB(q, c) ≤ LB(q, o) and UB(q, c) ≥ LB(q, p), which contradicts our above
assumption. �

In summary, assuming that a lower- and upper-bounding filter distance is
available for each processed object, our novel multi-step kNN algorithm is cor-
rect, requires the minimal number of index page accesses and is optimal w.r.t.
the number of refinements required to answer the query.

5 Experimental Evaluation

We conducted our experiments on Windows workstations with a 32-bit 3.2 GHz
CPU and 4 GB main memory. All evaluated methods were implemented in Java.

5.1 Setup

Our experimental testbed contains four real-world datasets with different char-
acteristics summarized in Table 1. We applied a special form of Lipschitz embed-
ding [11] for the first three datasets using randomly chosen singleton reference

0

10

20

30

40

50

60

2 5 10 25 50 100 250 500 1000
k parameter

pe
rc

en
t

unrefined fetches
unrefined hits

(a) San Joaquin

0

10

20

30

40

50

60

70

80

2 5 10 25 50 100 250 500 1000
k parameter

pe
rc

en
t

unrefined fetches
unrefined hits

(b) Protein

0

5

10

15

20

25

30

35

2 5 10 25 50 100 250 500 1000
k parameter

pe
rc

en
t

unrefined fetches
unrefined hits

(c) Plane

0

10

20

30

40

50

60

70

80

2 5 10 25 50 100 250 500 1000
k parameter

pe
rc

en
t

unrefined fetches
unrefined hits

(d) Timeseries

Fig. 6. Relative number of unrefined candidates.

sets in order to derive upper and lower bounds. For the timeseries dataset, we
generated lower- and upper-bounding distance approximations for the Dynamic
Time Warping (DTW) distance as described in [12] where we set the size of the
Sakoe-Chiba band width to 10%. Let us note, that for many applications there
may exist filter distance measures that yield an even better pruning power in the
filter step. We processed 50 randomly selected kNN queries for the particular
dataset and averaged the results.

5.2 RIlu
-Optimality vs. RIl

-Optimality

In the first experiment we demonstrate the superiority of our novel RIlu
-optimal

algorithm based on lower- and upper-bounding distance estimations over the
traditional RIl

-optimal algorithm that uses only lower-bounding distance esti-
mations in the filter step. Figure 6 shows the results of multi-step kNN queries
on our four datasets for different settings of the k parameter. In particular, the
number of hits and the number of fetches (in percent) that both need no refine-
ment are depicted. Note, that an RIl

-optimal algorithm has to refine all fetched
candidates, and thus, produces zero unrefined candidates. The results show that,
due to the use of an upper-bounding filter distance, a significant amount of the

0

200

400

600

800

1000

1200

2 5 10 25 50 100 250 500 1000
k parameter

re
fin

em
en

ts

LB-Opt
LB+UB-Opt

(a) San Joaquin

0

200

400

600

800

1000

1200

2 5 10 25 50 100 250 500 1000
k parameter

re
fin

em
en

ts

LB-Opt
LB+UB-Opt

(b) Protein

0

200

400

600

800

1000

1200

1400

2 5 10 25 50 100 250 500 1000
k parameter

re
fin

em
en

ts

LB-Opt
LB+UB-Opt

(c) Plane

0

200

400

600

800

1000

1200

1400

2 5 10 25 50 100 250 500 1000
k parameter

re
fin

em
en

ts

LB-Opt
LB+UB-Opt

(d) Timeseries

Fig. 7. Absolute number of needed refinements of RIl and RIlu approach.

hits does not need to be refined. If we consider that the filter step is 150 (time
series), 300 (road network), and 2,000 (proteins) times faster than the refine-
ment step, the runtime improvement is drastic. For three datasets we observe
that the amount of unrefined hits and fetches first decreases with increasing k
and then again increases. This is due to the characteristics of the datasets and
the used Lipschitz embedding: When increasing k, the distances first increase
very quickly, then stabilize at some point and finally increase again very quickly
when k converges to the number of objects in the dataset. As a consequence,
for very low and very high values of k, the distance approximations produce
rather selective stop criteria, whereas for medium values of k, the pruning power
decreases.

Figure 7 compares the RIlu
-optimal algorithm and an RIl

-optimal algorithm
according to the absolute number of refinement operations. The refinement re-
duction using the upper-bounding filter distance was clearly improved. In par-
ticular, for high k settings we have to refine only about half of the objects in
comparison to competing techniques using only the lower bound filter. For all
four datasets, we can also observe that the approximation qualities of the upper
bound and the lower bound are rather similar.

0

500

1000

1500

2000

2500

3000

2 5 10 25 50 100 250 500 1000

k parameter

Pr
io

rit
yQ

ue
ue

 A
cc

es
se

s Input Output Pruned

(a) San Joaquin

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 5 10 25 50 100 250 500 1000

k parameter

Pr
io

rit
yQ

ue
ue

 A
cc

es
se

s Input Output Pruned

(b) Plane

Fig. 8. Pruning of the priority queue by means of dmax.

5.3 Size of the Priority Queue of the Ranking Query

In the next experiment, we examine the influence of the dmax value on the size
of the priority queue of the ranking query. Figure 8 depicts the size of Input,
Output and Pruned. Input denotes the objects that are inserted into the priority
queue while traversing the index. Output denotes the objects removed from the
priority queue while fetching the next candidate. Pruned denotes the objects in
the priority queue that can be pruned according to the dmax value during the
execution of our novel algorithm. It can be observed that we achieve a significant
reduction of the priority queue. On the average, we can save more than 50% of
memory space when pruning the queue using dmax.

5.4 Early Output of Result Tuples

As mentioned in Section 4, the proposed upper bound filter allows the early out-
put of some true hits even before refinement. Our last experiment evaluates the
capability of early outputs for queries with k = 1000 and k = 250. Figure 9 de-
picts the number of fetches and true hits detected by our RIlu

-optimal algorithm
against the number of refinements. The number of refinements corresponds to
the number of iterations in the main loop of our algorithm (cf. Figure 5). It can
be observed that already about 45% of the results of the Protein dataset can
be reported before starting the refinement of the first object. On that dataset
this corresponds to a speed-up of approximately 2,000 for each of these objects.
After the 25th refinement, we have reported 500 of 1000 results. Similar results
can be seen for the experiments on the San Joaquin and Plane datasets. In
summary, a significant portion of the result could be reported very early. Very
few refinements are sufficient in order to report more than half of the entire re-
sults. Note, that the traditional RIl

-optimal algorithm proposed in [9] could be
adapted such that it would generate the first results before the need to refine the
first k candidates. However, it would be impossible to report more results than

0

200

400

600

800

1000

1200

0 100 200 300
refinements

ob

je
ct

s

 fetched hits

(a) Protein (k=1000)

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800
refinements

ob

je
ct

s

fetched hits

(b) Plane (k=1000)

0

50

100

150

200

250

300

0 25 50 75 100
refinements

ob

je
ct

s

fetched hits

(c) San Joaquin (k=250)

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600
refinements

ob

je
ct

s

 fetched hits

(d) San Joaquin (k=1000)

Fig. 9. Number of reported results against the number of query iterations.

there are refined candidates. As we can see in the experiments, our algorithm
reports significantly more results than required refinements. Thus, the user can
already evaluate the results before the query execution is finished. In an appli-
cation scenario where the first results are already sufficient for the user, e.g. a
doctor wants to confirm his diagnosis drawn from an X-ray image by comparing
the actual image to some of the k most similar images in his database, our algo-
rithm would yield a very high performance gain as very few refinements would
be necessary before the user stops the query execution procedure after getting
enough intuition about the result.

6 Conclusions

In this paper, we generalized the traditional notion of R-optimality in order
to capture the optimality of multi-step kNN query processing using both lower
and upper bounding filter distances. We proposed a novel kNN multi-step query
algorithm and showed that this algorithm is R-optimal in the generalized sense,
correct and fetch-optimal, i.e. requires a minimum number of fetch operations
on the underlying ranking algorithm. In our experiments, we demonstrated the

superiority of our novel query processing algorithm in comparison to state-of-the-
art competitors. In particular, we showed that our approach drastically reduces
the number of refinement operations and, thus, the query execution time since
the refinement is usually three orders of magnitude slower than the filter step.
Our approach features a considerably decreased storage requirement compared
to existing solutions and can be used to report first hits as early as possible even
before any object has been refined.

References

1. Guttman, A.: R-Trees: A dynamic index structure for spatial searching. In: Proc.
SIGMOD. (1984) 47–57

2. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: An efficient
and robust access method for points and rectangles. In: Proc. SIGMOD. (1990)
322–331

3. Ciaccia, P., Patella, M., Zezula, P.: M-Tree: an efficient access method for similarity
search in metric spaces. In: Proc. VLDB. (1997)

4. Orenstein, J., Manola, F.: Probe spatial data modelling and query processing in
an image database application. IEEE Trans. on Software Engineering 14(5) (1988)
611–629

5. Brinkhoff, T., Horn, H., Kriegel, H.P., Schneider, R.: A storage and access archi-
tecture for efficient query processing in spatial database systems. In: Proc. SSD.
(1993)

6. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence
databases. In: Proc. FODO. (1993)

7. Faloutsos, C., adn Y. Manolopoulos, M.R.: Fast subsequence matching in time
series database. In: Proc. SIGMOD. (1994)

8. Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast nearest
neighbor search in medical image databases. In: Proc. VLDB. (1996)

9. Seidl, T., Kriegel, H.P.: Optimal multi-step k-nearest neighbor search. In: Proc.
SIGMOD. (1998)

10. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Proc. SSD. (1995)
11. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann (2006)
12. Keogh, E.: Exact indexing of dynamic time warping. In: Proc. VLDB. (2002)

